
AN821
Advanced Encryption Standard Using the PIC16XXX
INTRODUCTION

One of the most widely used block cipher algorithms is
the Data Encryption Standard (DES), adopted in 1977
by the American National Standards Institute (ANSI).

After more than twenty years of use with continuous
aging due to advances in cryptography, the National
Institute of Standards and Technology (NIST) on Sep-
tember 12, 1997, started a process to stimulate the
development and submission of alternatives to the
DES. Twenty-one algorithms were analyzed in the first
round and five algorithms were analyzed in the second
round. On October 2, 2000 the NIST announced that
the new encryption technique, named Advanced
Encryption Standard (AES), would use the Rijndael
algorithm, designed by two well-known specialists,
Joan Daemen and Vincent Rijmen from Belgium. The
new AES will be used to protect sensitive information of
federal computer systems, as well as many private
businesses.

FUNDAMENTAL ENCRYPTION
OVERVIEW

Throughout history, mankind has faced the problem of
storing and transmitting sensitive information in a way
that could guarantee both reliable and easy access to
authorized persons and prevent undue and illegal
access. This has led to the development of many inge-
nious methods to cipher and decipher data.

The phenomenal development of computers and
expansion of digital information exchange has led to a
fundamental problem related to the availability, control,
and security of data. To deal with this problem, several
computer based encryption technologies and stan-
dards were developed. One of the most popular meth-
ods developed is the Block Cipher.

An algorithm that uses a key is, in general, much more
secure. If the algorithm itself is secure in its design,
then the data is secure (as long as the key is secure)
even if the encryption algorithm is known. The only way
to decipher the message is through the use of the cor-
rect key.

There are two basic types of keys:

1. Symmetric
2. Public

In a symmetric key algorithm, both encryption and
decryption processes use the same key, which must be
kept secret. In a public key system, two keys are used:
one public (used to cipher messages) and another, pri-
vate and secret (used to decipher the message).

Author: Caio Gubel
Microchip Technology Inc.
 2002 Microchip Technology Inc. DS00821A-page 1

AN821
In the AES (Symmetric Key) method, the plain text is
broken in several blocks of the same size. For exam-
ple, the following plain text:

"I pass death with the dying and birth with new washed
baby, and am not contained between my hat and
boots." (Walt Whitman)

This text is broken into 16-byte (arbitrary size) chunks
as shown in Example 1:

EXAMPLE 1: PLAIN TEXT DIVIDED INTO 16-BYTE BLOCKS

Next, each block (plus an encryption key) is combined
together using an algorithm that executes a complex
function resulting in the production of a ciphered block.
See Example 2.

EXAMPLE 2: PLAIN TEXT BLOCK TO CIPHERED BLOCK PROCESS

The deciphering process takes the encrypted block
plus the encryption key and passes them through an
algorithm that executes the reverse process, resulting
in a plain text block. See Example 3.

EXAMPLE 3: CIPHERED BLOCK TO PLAIN TEXT BLOCK PROCESS

 I pass death wit h the dying and birth with new w ashed baby, and

 am not contained between my hat a nd boots\0tuvwxyz(1,2)

Note 1: \0 is a single character and represents End of String.
2: Through a process called ‘padding’, an incomplete 16-byte text block may be completed using random

characters like “tuvwxyz.”

Plain Text Block + Key
Encryption
Algorithm

Ciphered Block

I pass death wit + waltwhitman,poet → dfkei5k7kkko23aq

Ciphered Block + Key
Decryption
Algorithm

Plain Text Block

dfkei5k7kkko23aq + waltwhitman,poet → I pass death wit
DS00821A-page 2  2002 Microchip Technology Inc.

AN821
HOW THE AES ALGORITHM IS
IMPLEMENTED IN A PIC16XXX
MICROCONTROLLER

The AES Algorithm - An Overview

AES is a symmetric key block cipher algorithm that may
use three different block and key sizes:

• 16-byte - 128 bits
• 24-byte - 192 bits
• 32-byte - 256 bits

The algorithm executes a series of rounds. The inter-
mediate results of the rounds over the block are called
states.

The number of round transformations is variable and a
function of the sizes of the key and the text, shown as
follows:

TABLE 1: ROUND TRANSFORMATIONS
REQUIRED

* Chosen for implementation in this Application Note.

For these transformations, the state (block) and the key
are both taken as matrixes, as shown in Table 2 and
Table 3.

TABLE 2: BLOCK MATRIX

TABLE 3: KEY MATRIX

Note: In the 16-byte (128-bit) implementation, both matrixes are 4x4.

16-byte
block

24-byte
block

32-byte
block

16-byte key 10* 12 14

24-byte key 12 12 14

32-byte key 14 14 14

Block[0] Block[4] Block[8] Block[12] Block[16] Block[20] Block[24] Block[28]

Block[1] Block[5] Block[9] Block[13] Block[17] Block[21] Block[25] Block[29]

Block[2] Block[6] Block[10] Block[14] Block[18] Block[22] Block[26] Block[30]

Block[3] Block[7] Block[11] Block[15] Block[19] Block[23] Block[27] Block[31]

Key[0] Key[4] Key[8] Key[12] Key[16] Key[20] Key[24] Key[28]

Key[1] Key[5] Key[9] Key[13] Key[17] Key[21] Key[25] Key[29]

Key[2] Key[6] Key[10] Key[14] Key[18] Key[22] Key[26] Key[30]

Key[3] Key[7] Key[11] Key[15] Key[19] Key[23] Key[27] Key[31]
 2002 Microchip Technology Inc. DS00821A-page 3

AN821
Key Schedule - Expansion and Selection:
Encryption

In order to prepare for the round transformations, a
“key schedule” operation must be executed. This oper-
ation uses the original key to create several round
keys. Each round key, including the original one, will be
used in one of the rounds.

This operation is performed in two steps:

1. Key Expansion -> takes the key from the previous
round and expands it to create the key for the
next round, according to the C code for 16-byte
(128-bit key) shown below:

2. Round Key Selection -> takes the round buffer in
blocks of 16 bytes (for 128-bit keys), so that the
keys (taken in bytes) for a given round "i" are:

After the enc_key_schedule, an initial key addition
must be executed:

Initial key_addition:

Before the first round of encryption, an initial
key_addition is performed. This operation exe-
cutes a simple XOR of the state with the initial
round key. In C for 16-byte (128-bit) key and block:

for(i=0;i<16;i++)

 Block[i] ^= W[0][i];

C Code for 16-Byte Key Expansion

The Structure of the Round
Transformations: Encryption

In the encryption process, each of the ten rounds (with
the exception of the last one) is composed of four
stages:

• byte_sub

• shift_row

• mix_column

• key_addition

The last round doesn’t execute the mix_column
stage, thus the sequence is:

• byte_sub

• shift_row

• key_addition

KeyExpansion(byte Key[], byte W[][])
{

byte rcon=1; // initial value of round constant
for (j=0;j<16;j++) // first key expansion no changed

w[0][j] = key[j];
 for(i = 1; i<11; i++)
 {
 for(j = 0; j<16; j++)

{
if(j<4) // calculate S_Box based values

 W[i][j] = W[i-1][j] ^ S_box(W[i-1][12+((j+1)%4)]];
else

 W[i][j] = W[i-1][j] ^ w[i][j-4]; //
if((j%4) == 0)

W[i][j] ^= rcon;
}
rcon = xtime(rcon); // calculate rcon for next round

}
}

with: Rcon = {0x36, 0x1B, 0x80, 0x40, 0x20, 0x10,
0x08, 0x04, 0x02, 0x01}; where Rcon represents a
vector of round constants.

W[i] [0] W[i] [4] W[i] [8] W[i] [12]

W[i] [1] W[i] [5] W[i] [9] W[i] [13]

W[i] [2] W[i] [6] W[i] [10] W[i] [14]

W[i] [3] W[i] [7] W[i] [11] W[i] [15]
DS00821A-page 4  2002 Microchip Technology Inc.

AN821
TABLE 4: S-BOX OR ENCRYPTION SUBSTITUTION TABLE (VALUES IN HEXADECIMAL)

DESCRIPTION OF ENCRYPTION STAGES:

byte_sub:

In this stage, each byte of the block matrix is replaced
by the content of the S-box at the position defined by
the byte that is going to be substituted. In this case, the
S-box or substitution table may be seen as a 256 byte
invertible vector/matrix used to map the substitution
process.

This is equivalent to the following C language fragment:

for(i=0;i<BLOCKSIZE;i++)

 block[i]=S_box[block[i]];

EXAMPLE 4: S-BOX SUBSTITUTION

shift_row:

The second stage of the round process executes a
cyclical shift (rotate left) of the rows of the state table.
The row number 0 is not affected, and the other rows
are shifted according to Table 5:

TABLE 5: ENCRYPTION CYCLICAL
SHIFT TABLE

EXAMPLE 5: shift_row TRANSFORMATION

For the 16-byte block and key version (the imple-
mented one), a state table with the following content:

Becomes the following after the shift_row transfor-
mation:

y

0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

If block[0] = 0x41, then in the S-Box table go to 4 in
‘x’ axis and 1 in ‘y’ axis to get S-box[0x41] -> 0x83
thus the contents of block[0] = 0x83

shifts
of row 1

shifts
of row 2

shifts
of row 3

16-byte block 1 2 3

24-byte block 1 2 3

32-byte block 1 3 4

A B C D

E F G H

I J K L

M N O P

A B C D

F G H E

K L I J

P M N O
 2002 Microchip Technology Inc. DS00821A-page 5

AN821
mix_column:

This operation, described in the AES Proposal (see
Chapter 2 - Mathematical Preliminaries and Section
4.2.3 - The MixColumn Transformation), comprises the
multiplication of each column ai of the state by a fixed
matrix c(x) following some special rules (Polynomials
with coefficients in GF(28)), see Example 6.

The general form of this matrix multiplication is shown
in the following equation:

An example of matrix multiplication can be seen in
Example 7.

key_addition:

This step takes the next round key and executes an
XOR with the state in the form :

for(i=0;i<16;i++)

 Block[i] ^= W[round+1][i];

--

EXAMPLE 6: MATRIX MULTIPLICATION CONCEPTS USING SPECIAL RULES

First, let’s define the xtime operation:

if(a<0x80)

a<<=1;

else

a=(a<<1)^0x1b;

From this we can see that the xtime operation for values lower than 0x80 is equivalent to a shift left (multiply by 2). For
values bigger than or equal to 0x80, an extra XOR with 0x1B is necessary.

Multiply c[i][0]=0xA7 by a[i]=0x0D

Where

0xA7 • 0x01=0xA7;

0xA7 • 0x02=xtime(0xA7)=0x55; (((0xA7)<<1) ^0x1B)

0xA7 • 0x04=xtime(xtime(0xA7))=0xAA; ((0x55)<<1)

0xA7 • 0x08=xtime(xtime(xtime(0xA7)))=0x4F; (((0xAA)<<1) ^0x1B)

Therefore, 0xA7 • 0x0D may be written as:

(0xA7 • 0x01) ⊕ (0xA7 • 0x04) ⊕ (0xA7 • 0x08) = 0xA7 ⊕ 0xAA ⊕ 0x42

The partial results are not added, but instead they are XORed to generate the new terms of the column.

b0
b1
b2
b3

02
01
01
03

03
02
01
01

01
03
02
01

01
01
03
02

a0
a1
a2
a3

= X

FIXED MATRIX c(x)

Note: ⊕ means XOR.
DS00821A-page 6  2002 Microchip Technology Inc.

AN821
EXAMPLE 7: MATRIX MULTIPLICATION

b0 = 2 • 5A ⊕ 3 • 11 ⊕ 1 • FD ⊕ 1 • 89

where

2 • 5A = xtime (5A) = B4

3 • 11 = 11 ⊕ xtime (11) = 11 ⊕ 22 = 0x33

1 • FD = FD

1 • 89 = 89

therefore

b0 = B4 ⊕ 33 ⊕ FD ⊕ 89 = F3

b1 = 1 • 5A ⊕ 2 • 11 ⊕ 3 • FD ⊕ 1 • 89

where

1 • 5A = 5A

2 • 11 = xtime (11) = 22

3 • FD = FD ⊕ xtime (FD) = FD ⊕ E1 = 1C

1 • 89 = 89

therefore

b1 = 5A ⊕ 22 ⊕ 1C ⊕ 89 = ED

b2 = 1 • 5A ⊕ 1 • 11 ⊕ 2 • FD ⊕ 3 • 89

where

1 • 5A = 5A

1 • 11 = 11

2 • FD = xtime (FD) = E1

3 • 89 = 89 ⊕ xtime (89) = 80

therefore

b2 = 5A ⊕ 11 ⊕ E1 ⊕ 80 = 2A

b3 = 3 • 5A ⊕ 1 • 11 ⊕ 1 • FD ⊕ 2 • 89

where

3 • 5A = 5A ⊕ xtime (5A) = 5A ⊕ Β4 = EE

1 • 11 = 11

1 • FD = FD

2 • 89 = xtime (89) = 09

therefore

b3 = EE ⊕ 11 ⊕ FD ⊕ 09 = 0B

Now, the general form of b[i] = c[i][0] • a[0] ⊕ c[i][1] • a[1] ⊕ c[i][2] • a[2] ⊕ c[i][3] • a[3];

Observation1: The partial results are XORed (⊕) instead of added.

Observation2: In this multiplication (•), each time a carry bit occurs, the result must be XORed with 0x1B (xtime).

b0
b1
b2
b3

02
01
01
03

03
02
01
01

01
03
02
01

01
01
03
02

5A
11
FD
89

= X

FIXED MATRIX c(x)
 2002 Microchip Technology Inc. DS00821A-page 7

AN821
Key Schedule: Expansion and Selection:
Decryption

In order to prepare for the round transformations, a
“key schedule” operation must be executed. This func-
tion is basically the same as the one used in encryp-
tion; the difference is that, in the encryption process,
the round keys are used in the direct order, W[0], W[1],
W[2],...., while in the decryption process, they are used
in the reverse order: W[10], W[9], W[8],

After the dec_key_schedule, an initial key addition
must be executed:

Initial key_addition:

Before the first round of decryption, an initial
key_addition is performed. This operation exe-
cutes a simple XOR of the state with the final
round key. In C (for 128-bit key and block):

for(i=0;i<16;i++)

 Block[i] ^= W[10][i];

The Structure of the Round
Transformations: Decryption

In the decryption process, each of the ten rounds (with
the exception of the first one) is composed of four
stages:

• byte_sub

• shift_row

• inv_mix_column

• key_addition

The first round doesn't execute the inv_mix_column
stage, thus the sequence is:

• byte_sub

• shift_row

• key_addition
DS00821A-page 8  2002 Microchip Technology Inc.

AN821
TABLE 6: Si-BOX OR DECRYPTION SUBSTITUTION TABLE (VALUES IN HEXADECIMAL)

DESCRIPTION OF DECRYPTION STAGES:

byte_sub:

In this stage, each byte of the block is replaced by the
content of the Si-box at the position defined by the byte
that is going to be substituted. In this case, the Si-box
or substitution table, may be seen as a 256-byte invert-
ible vector/matrix, used to map the substitution process
in the inverse direction taken by the S-box.

This is equivalent to the following C language fragment:

for(i=0;i<BLOCKSIZE;i++)

block[i]=Si_box[block[i]];

This relationship of boxes may be understood easily as
follows:

S-box[i] = j

Si-box[j] = i

EXAMPLE 8: Si BOX SUBSTITUTION

y

0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

If block[0] = 0x83, then in the Si-Box table, go to 8 in
‘x’ axis and 3 in ‘y’ axis to get Si-box[0x83] -> 0x41,
thus the contents of block[0] = 0x41
 2002 Microchip Technology Inc. DS00821A-page 9

AN821
shift_row:

The second stage of the round process executes a
cyclical shift (rotate left) of the rows of the state. The
row number 0 is not affected and the other rows are
shifted according to Table 7:

TABLE 7: DECRYPTION CYCLICAL
SHIFT TABLE

EXAMPLE 9: shift-row TRANSFORMATION

For the 16-byte block and key version (the imple-
mented one), a state with the following content:

Becomes the following after the shift_row transfor-
mation:

inv_mix_column:

The implementation follows the same rules applied to the
mix_column routine, except the inv_mix_column
uses the fixed matrix c(x) shown below. See the
mix_column section under the description of Encryption
Stages for an explanation of the matrix multiplication used
in the AES algorithm.

key_addition:

This step takes the next round key and executes an XOR
with the state in the form: (NUMROUNDS=11 for 16-byte
block).

for(i=0;i<16;i++)

 Block[i]^=W[NUMROUNDS- rounds][i];

shifts
of row 1

shifts
of row 2

shifts
of row 3

16 byte block 3 2 1

24 byte block 5 4 3

32 byte block 7 5 4

A B C D

F G H E

K L I J

P M N O

A B C D

E F G H

I J K L

M N O P

b0
b1
b2
b3

0E
09
0D
0B

0B
0E
09
0D

0D
0B
0E
09

09
0D
0B
0E

a0
a1
a2
a3

= X

FIXED MATRIX c(x)
DS00821A-page 10  2002 Microchip Technology Inc.

AN821
Program Structure
The general structure of the encryption program is:

key_addition(block,key); // initial key addition

 rounds =10;

while (rounds--) // loop 10x

{

substitution_S(block);

enc_shift_row(block);

if(rounds != 1) // last round is done without mix_column

 mix_column(block);

enc_key_schedule(key); // direct key_schedule executed on-the-fly

key_addition(block,key);

}

The general structure of the decryption program is:

init_decryption_key(key) // create the initial decryption key from initial key

 rounds=10;

key_addition(block,key); // initial

while (rounds--) // loop 10x

{

substitution_Si(block); // substitution with Si_box table

dec_shift_row(block);

if(rounds != 10) // first round is done without inv_mix_column

 inv_mix_column(block);

dec_key_schedule(key); // inverse key_schedule executed on-the-fly

key_addition(block,key);

}

mix_column Optimization

The original mix_column transformation, as
described in the reference implementation of AES, is
time consuming. Therefore, the following optimized
equivalent form is recommended:

for(i=0;i<4;i++)

{

 Tmp = block[i+0] ^ block[i+0x1] ^ block[i+0x2] ^ block[i+0x3];

 Block[i=0x0] ^= Tmp ^ xtime(block[i+0x0]^block[i+0x1])

 Block[i+0x1] ^= Tmp ^ xtime(block[i+0x1]^block[i+0x2])

 Block[i+0x2] ^= Tmp ^ xtime(block[i+0x2]^block[i+0x3])

 Block[i+0x3] ^= Tmp ^ xtime(block[i+0x3]^block[i+0x0])

}

 2002 Microchip Technology Inc. DS00821A-page 11

AN821
inv_mix_column Optimization

The original inv_mix_column transformation, as
described in the reference implementation of AES, is
time consuming, so the optimized equivalent form is
used:

for(i=0;i<4;i++)

{

 Tmp0 = block[i+0] ^ block[i+0x1] ^ block[i+0x2] ^ block[i+0x3];

 Tmp1 = xtime(block[i+0] ^ block[i+0x2]);

 Tmp2 = xtime(block[i+1] ^ block[i+0x3]);

 Tmp3 = xtime(xtime(Tmp1 ^ Tmp2)) ^ Tmp0;

 Block[i=0x0] ^= xtime(block[i+0x0]^block[i+0x1] ^ Tmp1) ^ Tmp3;

 Block[i+0x1] ^= xtime(block[i+0x1]^block[i+0x2] ^ Tmp2) ^ Tmp3;

 Block[i+0x2] ^= xtime(block[i+0x2]^block[i+0x3] ^ Tmp1) ^ Tmp3;

 Block[i+0x3] = block[i+0x0] ^ block[i+0x1] ^ block[i+0x2] ^ Tmp0

}

On-The-Fly Key Schedule

The original key schedule functions use several RAM
positions, in order to save all round keys used in the
encryption/decryption process.

To reduce the RAM consumption, the implementation
of the round keys was done on-the-fly. To do this, three
different functions were added:

1. enc_key_schedule(key): This function takes
the actual key and generates the next round key
that is placed in the same RAM positions.

2. dec_key_schedule(key): This function takes
the actual key and generates the previous round
key that is placed in the same RAM positions.

3. init_decryption_key(key): This function
takes the initial key used to encrypt the code and
executes the enc_key_schedule(key) func-
tion NUMROUNDS times. The result is the last
round key used in the encryption.

The reason behind this is that in the encryption pro-
cess, the rounds use the scheduled keys (W) in the fol-
lowing sequence:

W[0] → W[1] → W[2] → W[3] → W[4] → W[5] → W[6] → W[7] → W[8] → W[9] → W[10]

While the decryption process uses the exact same
scheduled keys in the reverse order:

W[10] → W[9] → W[8] → W[7] → W[6] → W[5] → W[4] → W[3] → W[2] → W[1] → W[0]
DS00821A-page 12  2002 Microchip Technology Inc.

AN821
Given the generic round key:

enc_key Schedule:

The enc_key schedule may be understood in four
steps:

1. Column 0 is transformed as follows:

After that:

 K0= K0 ^ Rcon

Rcon = xtime(Rcon)

The startup value of Rcon =0x01

2. Column 1 is XORed with column 0 as follows:

3. Column 2 is XORed with column 1 as follows:

4. Column 3 is XORed with column 2 as follows:

dec_key Schedule

The dec_key schedule may be understood in the
exact same steps executed in reverse order:

1. Column 3 is XORed with column 2 as follows:

2. Column 2 is XORed with column 1 as follows:

3. Column 1 is XORed with column 0 as follows:

4. Column 0 is transformed as follows:

And after that:

K0=K0 ^ Rcon

if(Rcon &0x01)

Rcon = 0x80

else

Rcon >>1

This procedure is the exact inverse operation executed
over K0 in the enc_key process (i.e., the xtime func-
tion applied to Rcon).

K0 K4 K8 K12

K1 K5 K9 K13

K2 K6 K10 K14

K3 K7 K11 K15

K0 ^= s_box[K13] K4 K8 K12

K1 ^= s_box[K14] K5 K9 K13

K2 ^= s_box[K15] K6 K10 K14

K3 ^= s_box[K12] K7 K11 K15

K4 ^= K0

K5 ^= K1

K6 ^= K2

K7 ^= K3

K8 ^= K4

K9 ^= K5

K10 ^= K6

K11 ^= K7

K12 ^= K8

K13 ^= K9

K14 ^= K10

K15 ^= K11

K12 ^= K8

K13 ^= K9

K14 ^= K10

K15 ^= K11

K8 ^= K4

K9 ^= K5

K10 ^= K6

K11 ^= K7

K4 ^= K0

K5 ^= K1

K6 ^= K2

K7 ^= K3

K0 ^= s_box[K13] K4 K8 K12

K5 ^= s_box[K14] K5 K9 K13

K6 ^= s_box[K15] K6 K10 K14

K7 ^= s_box[K12] K7 K11 K15
 2002 Microchip Technology Inc. DS00821A-page 13

AN821
Source Code Example 1 (Encryption and
Decryption)

The aes_rijn.asm source code first encrypts 16 bytes
of data, then decrypts the 16 bytes of data that were just
encrypted. Listed below is some important information
you should know before using this source code:

1. Source code is written in Microchip Assembly
language (MPASM™ Assembler).

2. Source code in aes_rijn.asm has been
tested using MPLAB® 5.20.00:

- Simulator testing has been done using a
PIC16C622A device.

- MPLAB ICD testing has been done using a
PIC16F870 device. When using this device, the
tables.inc memory locations need to be
adjusted to accommodate the MPLAB ICD
memory needs.

3. The tables.inc file is listed in Appendix F.
This is where the S-TABLE & Si-TABLE can be
found.

4. ROM Memory needed for Example #1 is:

- (1416 x 14 bits) instructions

5. RAM Memory needed for Example #1 is:

- encryption: 38 bytes total
16 for the block cipher
16 for key
6 for loop control and partial result calculation

- decryption: 41 bytes total
16 for the block cipher
16 for key
9 for loop control and partial result calculation

6. Execution Speed (in instruction cycles,
calculated as the external clock/4):

- encryption time: up to 5273 cycles

- decryption schedule: up to 928 cycles

- decryption time: up to 6413 cycles

7. The 16-byte block vector is located in RAM
locations 0x20 - 0x2F:

- The set_test_block subroutine of the
aes_rijn.asm code loads the 16 bytes of
hard coded plain text data into the block vector.
In order to change the initial block vector data,
the set_test_block code needs to be
changed.

- The block vector is where the plain text data
resides before the encryption process. The
block vector is also where the encrypted text
resides after the encryption process and before
the decryption process, and finally, where the
plain text data resides after the decryption pro-
cess. It is important to be aware that the block
vector locations are overwritten during code
execution.

8. The 16-byte key vector is located in RAM loca-
tions 0x30 - 0x3F:

- The set_test_key subroutine of the
aes_rijn.asm code loads the 16 bytes of
hard coded key data into the key vector. In
order to change the initial key vector data, the
set_test_ key code needs to be changed.

9. Test data can be found in the following files:

- ecbvt.txt contains the encrypted results
(CT) for changing plain text block vector data
(PT) when the key vector data (KEY) is kept
constant at KEY=0000000000000000.

- ecbvk.txt contains the encrypted results
(CT) for changing key vector data (KEY) when
the plain text block vector data (PT) is kept con-
stant at PT=0000000000000000.

10. The files you will need for this example are as
follows:

- aes_rijn.asm

- tables.inc

- ecbvt.txt (KEY constant)

- ecbvk.txt (PT constant)

These files can be found with this Application Note on
the Microchip web site:

 www.microchip.com

Note: 41 bytes is the total needed; several regis-
ters are shared.

Note: The number of cycles shown here were the
largest found during simulations. Depend-
ing on your code implementation, these
times may vary. Warning: United States federal regulations allow the

Advanced Encryption Standard (AES) soft-
ware code to be downloaded from the
Microchip web site. The United States fed-
eral regulations restrict transfer of this
Advanced Encryption Standard (AES) soft-
ware by other means such as e-mail.
DS00821A-page 14  2002 Microchip Technology Inc.

AN821
Source Code Example 2 (Encryption)

The aes_encr.asm source code encrypts 16 bytes of
data. Listed below is some important information you
should know before using this source code:

1. Source Code is written in Microchip Assembly
language (MPASM Assembler).

2. Source Code in aes_encr.asm has been
tested using MPLAB 5.20.00:

- Simulator testing has been done using a
PIC16C622A device.

- MPLAB ICD testing has been done using a
PIC16F870 device. When using this device, the
tables.inc memory locations need to be
adjusted to accommodate the MPLAB ICD
memory needs.

3. The s_table.inc file is where the S-TABLE
can be found.

4. ROM Memory needed for Example #2 is:

- encryption: (728 x 14 bit) instructions

5. RAM Memory needed for Example #2 is:

- encryption: 38 bytes total
 16 for the block cipher
 16 for key
 6 for loop control and partial result calculation

6. Execution Speed (in instruction cycles, calcu-
lated as the external clock/4):

- encryption time: up to 5273 cycles

7. The 16-byte block vector is located in RAM
locations 0x20 - 0x2F:

- The set_test_block subroutine of the
aes_encr.asm code loads the 16 bytes of
hard coded plain text data into the block vector.
In order to change the initial block vector data,
the set_test_block code needs to be
changed.

- The block vector is where the plain text data
resides before the encryption process. The
block vector is also where the encrypted text
resides after the encryption process. It is impor-
tant to be aware that the block vector locations
are overwritten during code execution.

8. The 16-byte key vector is located in RAM
locations 0x30 - 0x3F:

- The set_test_key subroutine of the
aes_encr.asm code loads the 16 bytes of
hard coded key data into the key vector. In
order to change the initial key vector data, the
set_test_ key code needs to be changed.

9. Test data can be found in the following files:

- ecbvt.txt contains the encrypted results
(CT) for changing plain text block vector data
(PT) when the key vector data (KEY) is kept
constant at KEY=0000000000000000.

- ecbvk.txt contains the encrypted results
(CT) for changing key vector data (KEY) when
the plain text block vector data (PT) is kept con-
stant at PT=0000000000000000.

10. The files you will need to run and test this
Example are as follows:
- aes_encr.asm

- s_table.inc

- ecbvt.txt (KEY constant)
- ecbvk.txt (PT constant)

These files can be found with this Application Note on
the Microchip web site:

www.microchip.com

Note: The number of cycles shown here were the
largest found during simulations. Depend-
ing on your code implementation, these
times may vary.

Warning: United States federal regulations allow the
Advanced Encryption Standard (AES) soft-
ware code to be downloaded from the
Microchip web site. The United States fed-
eral regulations restrict transfer of this
Advanced Encryption Standard (AES) soft-
ware by other means such as e-mail.
 2002 Microchip Technology Inc. DS00821A-page 15

AN821
Source Code Example 3 (Decryption)

The aes_decr.asm source code decrypts the 16 bytes
of data. Listed below is some important information you
should know before using this source code:

1. Source Code is written in Microchip Assembly
language (MPASM Assembler).

2. Source Code aes_decr.asm has been tested
using MPLAB 5.20.00:

- Simulator testing has been done using a
PIC16C622A device. When using this device,
the tables.inc memory locations need to be
adjusted to accommodate the MPLAB ICD
memory needs.

- ICD testing has been done using a PIC16F870
device.

3. The tables.inc file is listed in Appendix F.
This is where the S-TABLE and Si-TABLE can
be found.

4. ROM Memory needed for Example #3 is:

- 1143 x 14 bit instructions

5. RAM Memory needed for Example #3 is:

- decryption: 41 bytes total
16 for the block cipher
16 for key
9 for loop control and partial result calculation

6. Execution Speed (in instruction cycles, calcu-
lated as the external clock/4):

- decryption schedule: up to 928 cycles

- decryption time: up to 6413 cycles

7. The 16-byte block vector is located in RAM
locations 0x20 - 0x2F:

- The set_test_block subroutine of the
aes_decr.asm code loads the 16 bytes of
hard coded plain text data into the block vector.
In order to change the initial block vector data,
the set_test_block code needs to be
changed.

- The block vector is where the encrypted text
data resides before the decryption process.
The block vector is also where the plain text
data resides after the decryption process. It is
important to be aware that the block vector
locations are overwritten during code execu-
tion.

8. The 16-byte key vector is located in RAM loca-
tions 0x30 - 0x3F:

- The set_test_key subroutine of the
aes_decr.asm code loads the 16 bytes of
hard coded key data into the key vector.

9. Appendix H and Appendix I hold test data:

- ecbvt.txt contains the encrypted results
(CT) for changing plain text block vector data
(PT) when the key vector data (KEY) is kept
constant at KEY=0000000000000000.

- ecb_vk.txt contains the encrypted results
(CT) for changing key vector data (KEY) when
the plain text block vector data (PT) is kept con-
stant at PT=0000000000000000.

10. The files you will need to run and test this exam-
ple are as follows:
- aes_decr.asm

- tables.inc

- ecbvt.txt (KEY constant)
- ecbvk.txt (PT constant)

These files can be found with this Application Note on
the Microchip web site:

 www.microchip.com

Note: The number of cycles shown here were the
largest found during simulations. Depend-
ing on your code implementation, these
times may vary.

Warning: United States federal regulations allow the
Advanced Encryption Standard (AES) soft-
ware code to be downloaded from the
Microchip web site. The United States fed-
eral regulations restrict transfer of this
Advanced Encryption Standard (AES) soft-
ware by other means such as e-mail.
DS00821A-page 16  2002 Microchip Technology Inc.

AN821
References

• Internet: Several good sources of information
about Cryptography, in general, and AES/Rijndael
were used in this Application Note:
- NIST: http://csrc.nist.gov/encryption/aes/

aes_home.htm
- Rijndael home page:http://www.esat.

kuleuven.ac.be/~rijmen/rijndael
- Ritter: http://www.io.com/~ritter
- Savard: http://home.ecn.ab.ca/~jsavard/

crypto
• Book: “Applied Cryptography”, Bruce Schneier,

John Wiley & Sons, Inc., ISBN 0-471-11709-9
• Implementations: Excellent implementations were

consulted and studied during the development
process and to them our acknowledgement and
gratitude:

- Paulo Barreto, Dr. Vincent Rijmen and
Antoon Bosselaers for their references and
fast C versions of Rijndael.

- Dr. Brian R. Gladman for his C++
 implementation.

- Mike Scott by his C version.

- Rafael R. Sevilla for his 80x86 assembly
version.

- Robert G. Durnal for his 80x86 assembly
version.
 2002 Microchip Technology Inc. DS00821A-page 17

AN821
APPENDIX A: AES ENCRYPTION FLOW CHART

key_addition

ENCRYPTION

Get block to be Ciphered
and ciphering key

Initiate ROUND_COUNTER
value = 10

substitution_S

enc_shift_row

ROUND_COUNTER
= 1?

True

mix_column

enc_key_schedule

key_addition

ROUND_COUNTER

ROUND_COUNTER

= 0?

END

True

Decrement

False

False
DS00821A-page 18  2002 Microchip Technology Inc.

AN821
APPENDIX B: AES DECRYPTION FLOW CHART

DECRYPTION

Get block to be deciphered
and ciphering key

key_addition

Initiate ROUND_COUNTER
value = 10

substitution_Si

dec_shift_row

ROUND_COUNTER
= 10?

True

inv_mix_column

dec_key_schedule

key_addition

ROUND_COUNTER

ROUND_COUNTER

= 0?

END

True

Decrement

False

False
 2002 Microchip Technology Inc. DS00821A-page 19

AN821
NOTES:
DS00821A-page 20  2002 Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
 2002 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rfPIC, Select
Mode and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00821A - page 21

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999 and
Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00821A-page 22  2002 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

05/16/02

WORLDWIDE SALES AND SERVICE

	Introduction
	Fundamental Encryption Overview
	How the AES Algorithm is Implemented in a PIC16XXX Microcontroller
	The AES Algorithm - An Overview

	TABLE 1: Round Transformations Required
	TABLE 2: Block Matrix
	TABLE 3: Key Matrix
	Key Schedule - Expansion and Selection: Encryption
	The Structure of the Round Transformations: Encryption

	TABLE 4: S-box or Encryption Substitution Table (Values in Hexadecimal)
	TABLE 5: Encryption Cyclical Shift Table
	Key Schedule: Expansion and Selection: Decryption
	The Structure of the Round Transformations: Decryption

	TABLE 6: SI-Box or Decryption Substitution Table (Values in Hexadecimal)
	TABLE 7: Decryption Cyclical Shift Table
	mix_column Optimization
	inv_mix_column Optimization
	On-The-Fly Key Schedule
	Source Code Example 1 (Encryption and Decryption)
	Source Code Example 2 (Encryption)
	Source Code Example 3 (Decryption)

	References
	Appendix A: AES Encryption Flow Chart
	Appendix B: AES Decryption Flow Chart
	Trademarks
	Worldwide Sales

