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It is well known that there are no perfectly well generators of random
sequences of numbers, implying the need of testing the randomness of the
sequences produced by such generators. There are many tests for measuring
the uniformity of the random sequences, and here we propose a few new
ones, designed by random walks. The experiments we have made show that
our tests discover some discrepancies of the random sequences passing many
other tests.

1 Introduction

Pseudo-random number generator (PRNG) is a device producing a sequence
of numbers s1s5 ... with a given distribution which is supposed to be uniform,
where sq, s9,... are elements of a given set of numbers. In fact, in practice,
we cannot design a perfect random number generator, since the way we are
building the device is not a random one, which affects the uniformity of the
produced sequences. That is why we use the word "pseudo” and we have to
measure the randomness of the obtained sequences. There are a lot of tests
for such measurements and all of them are measuring the difference between
the obtained pseudo-random sequences by a PRNG and the theoretically
supposed ideal random sequence. We say that a PRNG is passing a test if
the random sequences produced by that PRNG are passing the test with a
probability near to 1. We can classify PRNGs depending of the tests they
have passed. So, for obtaining a better classification we should have many
different tests. Here we propose several new tests based on the random walk
on a discrete coordinate plane.

Given a (pseudo) random sequence, a random walk can be defined in
many different ways. If the random sequence has elements from the set
{0,1,2,3} then we can use the four one-step directions left (0), right (1),
up (2) and down (3). But, if the random generator produces real numbers
from the interval [0, 1) then the directions can be chosen depending of their
belonging to the intervals [0,0.25), [0.25,0.5), [0.5,0.75), [0.75,1). Of course,
for arbitrary number sets, the movements can be defined in many other ways,
and in what follows we suppose that the considered sequences have members
from the set {0,1,2,3}.

The random walks can be used for designing many suitable tests for
PRNGs. We suppose that in all cases which we are considering each point
(x,y) of the discrete plane has a weight 0 at the beginning, and we increase



the weights of the points by using suitable definitions of the movements. We
consider two kind of movements described in Section 2. According to these
movements, the tests may be designed differently, depending of the way of
dividing of the plane in regions. We consider three ways of dividing of the
plane by using:

1) the coordinate axis - the plane is divided on four quadrants: {(x,y)|z >
0.5 > 0}, {(r.y)lw < 0.y >0}, {(r,y)lr < 0.y < 0}, {(.)lz > 0.y < 0},

2) circles - the plane is divided on rings {(x,y) | (2¢)* < 2?4y* < (2i42)*}
fore =0,1,2...;

3) squares - the plane is divided on bands {(x,y) | 2¢ < |z|+ |y| < 2042}
fore=0,1,2,... .

In Section 3 we will present in more details how the tests will be designed
according to the movements and the divisions of the plane.

In Section 4 we present several experiments obtained by the tests given
here and in [1], and a comparative analysis for six PRNGs is made as well.

2 Movements

We will consider the following two kinds of movements.

2.1 Movements with fixed number of steps
(chess-movements)

Let k£ be a fixed positive integer. For a given sequence a = s185...5y,
beginning from the coordinate centre (0,0) we make k steps according to
the values of the first k& elements sys5...5; and we add 1 to the weight of
the coordinate (m,n) where the movement stopped. After that, beginning
again from (0,0), we continue the movement following the next k elements
Sga1 ---S2% and we increase the weight of the point where the movements
stopped, and so on.

For a given pseudo-random sequence, we can count the weights of the
points of the plane. Note that the weight of a point is, in fact, the frequency
of arrivals at that point. On the other hand, assuming that we have a per-
fectly uniform random sequence, we can count the weights as a product of
the probability of the arrival at the point (m,n) and the number of trials,
obtaining in such a way the theoretical frequency of arrivals. Since the move-
ments are following a random sequence, the points of stops can be described



by a random vector (X, Y') and its probability distribution can be determined
by the following proposition.

Proposition 1 Let (m,n) be a point of the discrete plane and let k be a
positive integer. Then the probability Py(m,n) = P{X = m,Y = n} that a
movement beginning from the coordinate centre (0,0) will stop at the point
(m,n) after k steps is equal to 0 in the case when |m|+|n| > k or the number
|m| + |n| + k is odd, and in the opposite case it is equal to

E=|m|=|n]|

P =g > <|m|k+q><k_|?|_q><k7’fj'”|”g'|”'_‘iq>‘ 0

9=0

Proof Let m > 0, n > 0. (The other cases can be treated in the same
manner.) If & and m+n have different parity then it is not possible to arrive
at the point (m,n) beginning from the coordinate centre, and the same is
true if & > m + n. In the opposite case, for reaching the point (m,n) we
need to make at least m steps to the right and at least n steps up. So, if
we have m + ¢ (¢ > 0) steps at the right, we have to have ¢ steps at the

k k—m —
left and that can be made by ( ) ( " q) ways. The remaining
m+q q
k —m — 2q steps have to be made up or down and if n + r of them are made

up then r steps have to be made down, where n + 2r = k& — m — 2¢, which

k—m—2
can be realized by e ways.
r
Finally, since the probability of moving left, right, up, down is 1/4, the
e ) .1
probability of making k steps is T O

By Proposition 1 we have that the density plot of the probability distri-
bution looks like a chess table (see Appendix).

Note that
Py(m,n) = Pe(n,m) = Py(|m/, |n]) (2)
since the equality (1) can be transformed in a form symmetrical on m and
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2

n. For instance, when is an odd number, we have
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where [a] denotes the integer part of a. A similar formula can be derived for
the even case.

From the joint distribution of (X,Y), we determine the marginal distri-
butions of X and Y, particulary. Using the symmetry of m and n in the
equation (2), we can conclude that the random variables (r.v.) X and Y are
identically distributed. By the total probability theorem, we have

k=]
P{X=m} = Y P{X=mY=n}
n=—(k=|m|)
(===
1 22: k k—|m|—p\ 1
T omtk g Im|+p p 4P’

where m € {—k,—k+2,... . k—2,k}.

ke
The r.v. X (or Y) can be presented as a sum X = ZX“ where X 1s a
=1
r.v. denoting the movement in the :-th step and

Xi: ( 1_/11 1(/)2 1}4 > 3)

Namely, X; = —1 if we make a step at left, X; = 1 if we make a step at right
and X; = 0 if we make a step up or down. The mean and the variance of X;
are £X; =0 and DX; = 1/2 which imply that £ X =0 and DX = k/2. By

the central limit theorem we have:

Proposition 2 The distribution of the random variable X converge to the
normal N(0,k/2) distribution for enough large k. O

2.2 Movements with random number of steps
(sun-movements)

The difference between chess-movements and sun-movements is only in choos-
ing the number of steps before stops. Namely, now at first we fixed an integer
[ > 1 and read the members s, s5,...,5; of the sequence a = s1s5...584 and
after that beginning from (0,0) we make k; steps following the sequence
S141 - - - Si4k, s Where the number ky = s185. .. 57 1s being represented in 4-base
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system. After that we choose the next | members sg, 1141,..., 5k +2 and
beginning again from (0,0) we make ko = Sg, 4141 - .- g +2) steps following
the sequence Sg, 42141 - - - Sky+21+k,, and so on. Note that 0 < k; < 48— 1 for
each e = 1,2,... So, the number of steps k; can be considered as a random
variable K with set of values {0,1,...,4' —1}.

Consider the case of a perfectly uniform random sequence. Then using
the total probability theorem, the probability P(m,n) = P{X =m,Y =n}
that a movement beginning from the coordinate centre (0,0) will stop at the

411
point (m,n) is given by P(m,n) = Z Py(m,n)P{K =k}, where Py,(m,n)
k=0
is defined as for chess-movements. Also, in this case, K has the uniform
1
distribution on the set {0,1,...,4' — 1} and so P{K = k} = i well.

Thus, we have proved

Proposition 3
P(mv n) = Pk(mv n) (4)

4

By Proposition 3 we have that the density plot of the probability distri-
bution looks like a sun (see Appendix).

The same arguments as for chess-movements give rise the description
K

of the rv. X = ZX“ where X; are defined as in (3). From EX’ =

=1

E(E(X|K)), j = 1,2, we have determined that:

, A1
EX=0. DX=EX’=-——.

Proposition 4 The distribution of the random variable X can be approxi-

4t —1
mated by the normal N (0, T) distribution.
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Proof The characteristic function of the r.v. X is px () = T Z (cos 5)
7=0

4h—1

2+ O(t4). On the other
41

and its Maclaurin’s serie is px(t) = 1 —

side, the characteristic function of the normal N (0, ) distribution is

4t — 1
t2> and both functions have the same three members

olt) = exp ( -

of their Maclaurin’s series. O

3 Tests

Using the three ways of dividing of the discrete plane on regions (described
in Section 1) and the two kinds of movements (Section 2), we will design six
tests as well. In each of them, we compare the random sequences obtained
by PRNGs with the supposed theoretical ones by using the Pearson y*-test,
C s (0 — B
where the test statistics is given by y* = Z 7

=0

bution with A — 1 degrees of freedom. In this formula & denotes the number

. and it has 2 distri-

of classes (regions of division of the plane), O; denotes the number of arrivals
at 2-th class from a random sequence obtained by a PRNG and F; is the the-
oretically obtained (expected) frequency. We accept the assumption that a
random sequence generated by PRNG is uniformly distributed if y? < X%L_Lp,
where X%L—l,p is a number which satisfy the condition P{yx* > X%L—Lp} = p,
for given p. (In our experiments, we take p = 0.05.) In opposite case, we
reject the assumption of uniformity. Note that the statistics will be relevant
only if we have enough large sequences.

Chess-Quadrant Test (CQT) [4] For this test we use the chess-
movements. The discrete plane is divided by the coordinate axis on four
regions (quadrants) and for a given pseudo-random sequence o = 135 . .. 84
let Og, O1, Oz, O3 be the numbers of arrivals in corresponding regions. The
weight of the origin (0,0) is divided by 4 and then added to each of the
regions. Theoretically, if « is really a random sequence, and if we want to
have altogether s stops i.e. the sum of the weights of all points in the plane

to be s, we will have Fog = K; = Fy = F3 = Z (Clearly, s = [%])



Sun-Quadrant Test (SQT) This test is of the same kind as CQT, but
here we consider sun—movementssinstead of chess-movements and we have
again Iyy = Fy = Fy = B3 = 1 Since we have s stops we should test

sequences with average of d = s(I + FK) members, where FK = (4' —1)/2
is the mean of the r.v. K.

Chess-Circle Test (CCT) Here we consider the chess-movements and
we divide the plane on rings R; = {(z,y) | (2¢)* < 2? + y* < (20 + 2)?}
fore =0,1,2,.... We should consider only finite number of rings. Namely,
for a given number £k of steps before stop, the points in the rings R;, for
2t > k, have a weight equal to 0. But, since the probability of a stop in
a ring R; is decreasing when ¢ is increasing, it is enough to consider only
the rings Ro, Ry ..., Ry_o for some h much smaller than & and the region
Ry = {(x,y) | 2* +y* > (2h — 2)*}. For a theoretical case, according to
(1), we can count the frequency of arriving at the region R; by

h—2
Ei=s Y  Pmmn),i=0,....h=2,  E,_i=s-Y E (5)
(m,n)ER; 1=0

where s denotes the number of stops.

Sun-Circle Test (SCT) This test is similar to CCT, but here we con-
sider sun-movements instead of chess-movements. Consequently, the differ-
ence between the CCT and SCT appears only in (5) where the probabilities
Py(m,n) should be replaced by P(m,n) (given in (4)), in order to obtain the
SCT. Also, we should test sequence with average of d members, as in SQT.

Chess-Square Test (CST) There is no big difference between CCT and
CST except of the division of the plane. We consider the chess-movements
and we divide the plane on bands B; = {(x,y) | 2¢ < ||+ |y| < 2¢ + 2} for
i=0,1,2,...,h—2 and the region B,_1 = {(x,y) | |x|+ |y| > 2h — 2}, where
h can be choosed much smaller than k. The values F; are obtained as in (5)
by replacing B; instead of R;.

Sun-Square Test (SST) The SST is obtained in a same manner as CST
where chess-movements are replaced by sun-movements instead. Everything

else is as in SCT.

Remark 1 We have divided the discrete plane on circles because of the
normal distribution (Propositions 2 and 4). On the other side, the limitations
|m| + |n| < k in Proposition 1 suggested the division on squares.



4 Experiments

We have checked several PRNGs presented in [1] with our tests. The obtained
results are given in Table 1 below. In our experiments we wanted to have
about s = 10° stops, i.e. the weight of the plane to be about 10°. We took
k = 256 (and then d is about 256 x 10°) when chess-movements were used,
and [ = 4 for the sun-movements (in which case the number of steps before
stops is between 0 and 255, and the average value of d is about 130 x 10°).

For CQT and SQT we used the whole discrete plane and we took (fol-
lowing [4]) that a pseudo-random sequence was passing the y?-test if y? <
7.815262 with significance level p = 0.05 and three degrees of freedom.

For making computer programs for the tests CCT, SCT, CST and SST
we considered only a part of the discrete plane limited by |z| < 50, |y| < 50.
(We should note that in all of the experiments we have made, the stops were
in this part of the plane with probability near to 1.)

In such a way for CCT and SCT we took h = 26 and we divided the
plane on 26 regions consisting of the rings Ry,..., R4 and of the region
Rys = {(z,y) | 2* + y* > 2500}. A pseudo-random sequence passes the
yi-test if x? < 37.658 with significance level p = 0.05 and 25 degrees of
freedom.

The situation with CST and SST is a little more complicated. Namely,
because of our limitation |z| < 50, |y| < 50, we divided the plane on 36
regions, i.e. on 25 bands B, = {(x,y) | 2¢ < ||+ |y| < 2¢ 4+ 2} for ¢ =
0,1,2,...,24, 10 "semi-bands” B, = {(a,y) | 2¢ < ||+ |y| < 20+ 2, |z| <
50, |y| < 50} for ¢ = 25,...,34 and the rest Bss = {(x,y) | 2| + |y| > 70}.
In this case we took that a pseudo-random sequence passes the y2-test if
Y? < 49.8102 with significance level p = 0.05 and 35 degrees of freedom.

Further, we present a few PRNGs we were checking with our tests, all of
them from [1]:

- MWC (multiply-with-carry) generator x,, = @ - x,_1 + carry mod 2
where the multiplier a is choosed from a predefined list.

- KISS is defined by

r, = ar,_,+1 mod 2%
Yo = Yna(I+ L¥)(I+ R7T)(I+ LP),
2y = 22,1 + 2n_g +carry mod 2%

where the y’s are a shift register sequence and the z’s are a simple multiply-
with-carry sequence.



- ULTRA combines a Fibonacci generator x, = x,_go,_33 mod 232, x’s
odd, with the multiply-with-carry generator y,, = 30903y,_1 +carry mod 26,
returning z, +y, mod 232,

- CG (congruential generator) is defined by ¢, = ax,—1+b mod m where
a,b and m are positive integers.

- RAN2 is from Numerical Recipes [3].

- MSRAN is the system generator in Microsoft Fortran. It is the congru-
ential generator x,, = 48271z,_y mod (2°' —1).

The values of y*-test statistics for the above PRNGs are presented in
Table 1. For each PRNG we have made two experiments, and the bold
numbers denote the cases when the PRNG did not pass the corresponding
test.

cQT SQT CCT SCT CST SST
MWC 3.6507 1.1157 28.2029 31.0619 30.1743 51.8553
1.9320 5.2171 29.1727 15.4776 28.3449 27.2860
KISS 7.6002 0.4745 39.5095 16.6549 50.3437 26.7905
5.1371 4.4888 41.9264 17.6388 64.0689 23.4839
ULTRA 7.4117 2.9033 17.3133 20.9626 34.0260 25.2775
1.8869 10.2128 24.4770 18.8330 34.1187 25.2625
CG 42.0610 11.8853 | 596.0693 | 161.7642 | 536.1579 | 156.8406
646.3155 | 389.4645 26.2560 35.5271 41.2609 28.1710
RAN2 16.5810 31.7990 25.5687 | 517.5578 29.4951 554.2418
11.3912 13.3155 27.8888 | 551.4363 28.9031 606.0271
MSRAN 5.0328 9.9846 19.7406 | 444.5602 31.1509 | 508.2729
4.4327 8.3007 32.1389 | 447.7816 | 43.5622 | 521.6509

Table 1: The values of y?-test statistics

It can be seen from the Table 1 that we can classify different PRNGs.
So, MWC and ULTRA passed the tests quite well, KISS passed the tests
relatively well, while RAN2 and MSRAN did not pass the tests designed by
sun-movements, and it seems that MSRAN is better then RAN2 according
Depending on the choosing of the parameters of CG, quite
different values of y?*-statistics were obtained, i.e. we can conclude that CG

is a kind of unstable PRNG.

to our tests.



5 Conclusion

We have defined six different tests for measuring the uniformity of the random
sequences generated by PRNGs by using the idea of a random walk. The
experiments we have made showed that they can separate the PRNGs on
different classes, so they can be used for checking the usefulness of PRNGs.
The results we have obtained correspond to those obtained by other tests,
but not completely. Since it is important to be aware that a PRNG produces
really good random sequences, one have to test it with as many different tests
as it is possible. Those we have proposed here can be used for that task as
well.
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Appendix

100

a0 -

60

40

20

a 20 40 a0 a0 100

Figure 1: Density plot of chess-movem ent. The brighter parts have higher
probability to be visited, while the darker parts have less. The black ones
are not visited at all.
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Figure 2: Density plot of sun-movement. The brighter parts have higher
probability to be visited, while the darker parts have less.
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