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Abstract

Several protocols are presented that allow two par-
ties Alice and Bob not sharing any secret information
initially (except possibly a short key to be used for
authentication) to generate a long shared secret key
such that even an enemy Eve with unlimited comput-
ing power is unable to obtain a non-negligible amount
of information (in Shannon’s sense) about this key.

Two different models are considered. In a first
model we assume that Alice can send information
to Bob over a noisy main channel but that Eve is
able to receive the same information over a parallel
independent noisy channel from Alice to Eve. In a
second, more general model we assume that Alice,
Bob and Eve receive the output of a random source
(e.g., a satellite broadcasting random bits) over three
independent individual channels. The condition that
the channels be independent can be replaced by the
condition that they be independent only to a known,
arbitrarily small degree.

We demonstrate that even when FEve’s channel is
superior (i.e., less noisy) to Alice’s and Bob’s chan-
nel(s), they can generate an information-theoretically
secure secret key by communicating over a public
(error-free) channel to which Eve is assumed to have
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unrestricted access. The results of this paper sug-
gest to base the security of cryptographic systems on
realistic statistical assumptions about the partial in-
dependence of two (three) channels and about a rea-
sonable lower bound on the noise power on the en-
emy’s channel, as an alternative to commonly used
approaches based on an intractability hypothesis.

The paper suggests two general conclusions:

(1) for cryptographic purposes, a given noisy com-
munication channel should not be converted in-
to an error-free channel (by means of error-
correcting codes) on which a conventional cryp-
tographic protocol is executed, but rather cryp-
tographic coding and error-control coding should
be combined, and

(2) a mere difference in the signals received by the
enemy and the legitimate receiver, but not nec-
essarily with an advantage to the receiver (such
as his sharing of a secret key with a sender or
knowledge of a trapdoor), may be sufficient for
achieving cryptographic security. This observa-
tion seems to have broader applications in cryp-
tography.

1. Introduction

One of the classical problems in cryptography is
to transmit a message M securely to a legitimate re-
ceiver such that an enemy is unable to obtain useful
information about M. In the classical model of a
cryptosystem introduced by Shannon [17], the enemy
has access to the insecure transmission channel; thus
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he is assumed to receive the entire ciphertext C, i.e.,
an identical copy of the message received by the legit-
imate receiver. Shannon defined a cipher system to
be perfect when the ciphertext gives no information
about the plaintext, i.e., when

I(M;C) & H(M)-HM|C) = 0

or, equivalently, when M and C are statistically in-
dependent. H(X) denotes the entropy of the random
variable X and is defined [16] by

H(X) = =) P(X=z)log, P(X=x),

and H(X|Y) denotes the conditional entropy of X
when given the random variable Y and is defined by

H(X|Y) ==Y P(X=1Y =y)log, P(X =z|Y =y).
(z,y)

We refer to [8] for an introduction to information the-
ory.

Shannon proved that a necessary condition for a
cipher to be perfect is that the secret key K, which is
shared initially by the legitimate communicants and
about which the enemy is assumed to have no a priori
information, satisfies

H(K) > H(M), (1)

i.e., the number of binary digits in the secret key must
be at least as great as the number of bits of informa-
tion in the message.

A perfect cipher is unconditionally secure because
even an enemy with unlimited computational re-
sources is unable to break it. In virtually all applica-
tions it is completely impractical to use a secret key
that satisfies (1). Because of Shannon’s pessimistic
inequality (1), perfect secrecy is often prejudged as
being impractical. It is one of the main goals of
this paper to relativize this pessimism by pointing
out that Shannon’s analysis assumes that, except for
the secret key, the enemy has access to precisely the
same information as the legitimate receiver, and that
this apparently innocent assumption is much more
restrictive than has generally been realized.

Virtually all presently-used ciphers use a short se-
cret key and can therefore theoretically be broken,

for instance by an exhaustive key search. The goal of
designing such a practical cipher is therefore to prove
that there exists no efficient algorithm for breaking
it, for a reasonable definition of breaking. Howev-
er, for no existing cipher can the security be proved
without invoking an unproven intractability hypoth-
esis. For instance the security of the famous Diffie-
Hellman public-key distribution system [7] is based
on the (unproven) difficulty of the discrete logarithm
problem in the multiplicative group modulo a large
prime p for which p — 1 also has a large prime fac-
tor. Surprisingly, even the existence of computation-
ally secure ciphers is an open problem, but it has
been proved [13] that, for virtually all definitions of
breaking a cipher and of computational difficulty, the
cascade of several additive binary stream ciphers is
at least as computationally secure as the strongest
component cipher.

Information-theoretic or unconditional security is
more desirable in cryptography than computational
security for two reasons. First, for the former no as-
sumption about the enemy’s computing power need
be made, and second, no definition of security need
be given because the utmost one can wish to prove
is that the enemy has no information (in Shannon’s
sense) about the plaintext. Note that there are many
possible definitions for the computational security of
a cipher, and it is not obvious which one to choose.

As mentioned above, one way of achieving uncondi-
tional cryptographic security is the use of an imprac-
tically large amount of secret key. Some alternative
approaches try to ensure that an enemy cannot ob-
tain the same information as the legitimate receiver,
but these systems are at the moment still not tru-
ly practical. Quantum cryptography introduced by
Wiesner and put forward by Bennett, Brassard et al.
[1, 5], which is not practical (although a prototype
exists) because it requires the transmission of sin-
gle photons, is based on the uncertainty principle of
quantum physics. Maurer’s strongly randomized ci-
pher makes use of a public random string that is too
long to be read entirely in feasible time and is imprac-
tical because no source of such an immense amount of
randomness has yet been discovered. Both these sys-
tems allow two parties initially sharing a short secret
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key to generate a much longer and unconditionally se-
cure shared secret key. In the first of these systems,
the secret key is required for authentication (as in a
realistic implementation of our protocols) and in the
second system it is used to select a feasible number
of random bits to generate the keystream.

Some other approaches to unconditional crypto-
graphic security are based on the assumption that
the enemy is restricted in the amount of information
about the ciphertext that he can obtain. The draw-
back of these approaches is that such an assumption
is usually completely unrealistic. Perfect local ran-
domizers considered by Maurer and Massey [14] are
based on the unrealistic assumption that an enemy
can obtain only a small number of ciphertext bits.
Wyner [20] and subsequently Csiszdr and Korner [6]
considered a situation where the enemy receives the
message transmitted by a sender over a channel that
is noisier than the legitimate receiver’s channel. The
assumption that the enemy’s channel is worse than
the main channel may be reasonable in an applica-
tion where the quality of the enemy’s channel can be
controlled (for instance by monitoring the received
signal power at the output of an optical fiber and
thus limiting the signal power that an enemy can ex-
tract from the fiber [9] without being detected), but
is unrealistic in general.

In this paper, new approaches to provable
information-theoretic security are presented that are
based on novel and generally much more realistic as-
sumptions about the enemy’s obtainable information.
Our assumptions are (1) that the noise power on the
enemy’s channel is at least a certain known fraction
of the noise power on the legitimate user’s channel(s)
and (2) that the noise on the enemy’s channel is at
least to some known, but arbitrarily small degree in-
dependent of the noise on the other channel(s). A
first model is introduced in Section 2 in which Alice
can send information to Bob through a noisy main
channel where Eve (the enemy) receives the same in-
formation through an independent (possibly superior)
channel. In Section 3 it is demonstrated that the pre-
viously needed condition that Eve’s channel be worse
than the main channel can be removed. An analy-
sis is given for the case of binary symmetric channels

(BSC). In the generalized model of Section 4, Alice,
Bob and Eve are assumed to receive the output of a
random source (for example a satellite broadcasting
random bits) over independent individual channels,
where again Eve’s channel may be much more reliable
than the other two channels. A further generalization
and some open problems are suggested in Section 5.

An essential feature of our protocol is the use of
an (error-free) public communication channel between
Alice and Bob. It is assumed that all messages sent
over the public channel are received by Eve without
error, but that she cannot corrupt the messages or
introduce faked messages. Authentication and data
integrity can be ensured by using an unconditionally
secure authentication scheme [19] based on universal
hashing, which requires that Alice and Bob share a
short secret key beforehand. In this case, the purpose
of our protocol is to stretch (rather than to generate)
a secret key unconditionally securely. Part of the new
key can be used for authentication in a subsequent in-
stance of the protocol. The use of a public channel
by two parties for extracting a secret key from an
initially shared partially secret string was previously
considered by Leung-Yan-Cheong [10] and indepen-
dently by Bennett, Brassard and Robert [2]. Another
somewhat related paper is [15].

A novel technique used in our protocols is the con-
version of the error-free public channel into a con-
ceptual notsy broadcast channel by combining noisy
information from the actual noisy channels with in-
formation to be sent over the conceptual channel, and
sending the result over the public channel. Another
novel technique is that of reliability estimation which
allows the receiver at the output of a noisy channel
to select only those messages that have been received
sufficiently reliably and to discard the other messages.

This paper is concerned with key distribution
rather than encryption. Note however that an un-
conditionally secure secret key can be used as the
one-time pad in the well-known perfect Vernam ci-
pher [18].

2. Secret Communication over Broad-
cast Channels
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Figure 1. Model of the discrete memoryless broadcast channel introduced by Csiszar and Kdrner [6].

The common input to the main channel and to Eve’s channel is the random variable X sent

by Alice. The superscripts K and N indicate that the information word U¥ is encoded into

a codewords X~ which is transmitted by N (independent) uses of the channel. The channel

behavior is completely specified by the conditional probability distribution Py z|x.

In his celebrated paper [20], Wyner considered a
situation in which Alice can send information to Bob
over a discrete memoryless channel (DMC) [8] such
that a wire-tapper Eve can receive Bob’s output only
through an additional cascaded independent DMC. A
channel is memoryless if successive uses of the chan-
nel are independent of each other. Wyner’s setting
is in information theory called a degraded discrete
memoryless broadcast channel. Wyner proved that in
such a (generally unrealistic) setting Alice can send
information to Bob in virtually perfect secrecy, even
though Alice and Bob share no secret key initially,
thus seemingly contradicting Shannon’s result (1).

Wyner’s model and results were generalized by
Csiszdr and Korner [6] who considered a discrete
memoryless broadcast channel (cf. Figure 1) in which
the wire-tapper Eve’s received message is not neces-
sarily a degraded version of the legitimate receiver’s
message. The common input to the main channel
and Eve’s channel is the random variable X chosen
by Alice according to some probability distribution
Px, and the random variables received by the legiti-
mate receiver Bob and by the enemy Eve are Y and
Z, respectively. The superscript N in Figure 1 in-
dicates that the channel is used (independently) N

times to transmit an N-digit codeword X ¥ resulting
from encoding a K-bit information word UX. With-
out loss of generality the information word is assumed
to be a binary random sequence. The channel behav-
ior is completely specified by the conditional probabil-
ity distribution Py z x. Note that in Wyner’s setting,
X,Y and Z form a Markov chain, i.e., Pz xy = Pz|y-
(Equivalently, I(X; Z|Y) =0.)

The secrecy capacity Cs of the broadcast channel
of Figure 1 is defined as the maximum rate K/N at
which Alice can reliably send information to Bob such
that the rate at which Eve obtains information is ar-
bitrarily small. In other words, the secrecy capacity
is the maximal number of bits that Alice can secretly
send to Bob per use of the channel. More formally,
the secrecy capacity can be defined as the maximal
rate R = K/N such that for every v > 0 and for
sufficiently large N there exists a code of length N
with 2K codewords together with a decoding func-
tiond: YV — {0,1}¥: YN s UK = d(Y") such
that P[UX # UX] < v and H{U¥|ZV)/K > 1—~
where ) denotes the main channel output alphabet.

For very general probability distributions Py 7 x
(and more generally for every pair of condition-
al probability distributions (Py x, Pz x) such that
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Py 7| x is not necessarily defined), the secrecy capac-
ity Cs of the broadcast channel of Figure 1 is given
by

Cs

max [1(X;Y) ~ I(X; 2)
= max [H(X|2)-HXY) @)

(see [6]), where I(U;V) 2 H(U) — H(U|V) denotes
the (mutual) information [8] that the random variable
V gives about the random variable U (and vice versa).
Moreover, the intuitive result holds that the secrecy
capacity is zero unless the enemy’s channel is noisier
than the main channel. In other words, a message can
be transmitted secretly from Alice to Bob only under
the generally unrealistic assumption that the enemy’s
channel is worse than the main channel. It is one of
the achievements of this paper that this unrealistic
assumption is no longer needed.

As a motivating example in which the use of feed-
back from Bob to Alice allows Alice and Bob to gener-
ate a secret key even when Eve’s channel in Figure 1 is
superior to the main channel from Alice to Bob (and
thus provably no secret key can be generated without
feedback), let both channels be additive white Gaus-
sian noise (AWGN) channels with statistically inde-
pendent noise. For example, Alice’s sender could be
on a satellite. Assume further that Alice uses binary
antipodal signaling to transmit an uncoded sequence
of independent and completely random bits (K = N
in Figure 1). In order to convert the enemy’s advan-
tage into a disadvantage Bob picks only those bits out
of the data stream that he receives very reliably, but
discards less reliable bits. Note that since the receiv-
er output is analog (Gaussian distribution with mean
+1 or -1 according to the bit sent, and with variance
proportional to the noise power) rather than two-level
quantized, the reliability of a decision about the bit
sent by Alice can be determined as a function of the
absolute value of the receiver’s output. Bob now uses
the public feedback channel to inform Alice of which
bits he picked. Although Bob’s bit error probability
is on the average worse than Eve’s bit error probabil-
ity, it is nevertheless better when averaged only over
the selected bits. Note that, by the independence of
the two channels, knowledge of the positions of the
bits received reliably by Bob gives no information to

Eve about the values of these bits. By adding modu-
lo 2 several of the selected bits or, more generally, by
applying an appropriate linear hashing function, Al-
ice and Bob can now reduce Eve’s information about
the extracted bits to an arbitrarily small fraction of
a bit while keeping the probability that Alice’s and
Bob’b extracted strings disagree sufficiently small.

Clearly, the protocol just described is completely
impractical when the main channel is much worse
than the enemy’s channel because the rate at which
Alice and Bob can agree on secret bits is extremely
small since the event that Bob receives a bit sent by
Alice more reliably than Eve has very small proba-
bility. A more efficient protocol is described in the
following section for the more interesting case of bi-
nary symmetric channels.

3. Key Distribution Protocols for Bi-
nary Symmetric Broadcast Chan-
nels

In this section, the important special case of the
broadcast channel of Figure 1 is considered where
both the main channel and Eve’s channel are binary
symmetric channels (BSC) with bit error probabili-
ties € and 9, respectively. Without loss of generality
we assume that e < 1/2 and § < 1/2. We first assume
that the two channels are independent, but the more
general case of dependent channels is discussed later.

When no feedback is allowed, the secrecy capacity
can be determined according to (2). Let h(.) denote
the binary entropy function defined by

h(z) = —zlogs z — (1 — z)log, (1 — )
for 0 < z < 1 and by h(0) = h(1) = 0.
Theorem 1. The secrecy capacity (without feedback)
of the broadcast channel of Figure 1, where the main
channel is a BSC with error probability e < 1/2 and

Eve’s channel is an independent BSC with error prob-
ability § < 1/2, is given by

. _ { h(8) — h(e) if 6 >,

0 otherwise.
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Proof. Px is characterized by the single parameter
P(X =0) = p. (It follows that P(X =1) =1—-p.)
The entropy of a binary random variable taking on
the two values with probabilities p and 1 — p, re-
spectively, is given by h(p). H(XY) can be ex-
pressed in two different ways, viz. H(XY) = H(X)+
H(Y|X) = HYY) + H(X|Y). Hence H(X|Y) =
H(X)-—HY)+ HY|X). We have H(X) = h(p),
H(Y|X) = h(e) because H(Y|X = z) = h(e) in-
dependent of z, and H(Y) = h(p + € — 2pe) since
PY =0)=p(l—¢€)+ (1 —p)e=p+e—2pe. Thus
H(X|Y) = h(p)+h(e)—h(p+e—2pe) and similarly one
obtains that H(X|Z) = h(p) + h(8) — h(p + 6 — 2pd).
The theorem follows from the fact for every p < 1/2,
h(p + & — 2p€) is a monotonically increasing function
for 0 < & < 1/2 such that H(X|Z) — HX|Y) =
h(8) — h(e) + h(p + € — 2pe) — h(p + § — 2pd) is max-
imized for p = 1/2, in which case the last two terms
vanish. |

It should be pointed out that the proofs for (2) giv-
enin [6] and [20] are non-constructive existence proofs
based on a random-coding argument. We also refer
to [11] for a simplified treatment of Wyner’s wire-tap
channel. The problem of finding actual efficiently en-
codable and decodable codes that perform well in a
particular situation is not solved in general. Howev-
er, one can often find practical codes that achieve a
constant fraction of the secrecy capacity. The situa-
tion is thus similar as for the well-known problem of
designing practical error-correcting codes [4], which
is actually a special case of our problem: it is known
that for a given channel codes with rate arbitrarily
close to the channel capacity [8] exist whose block
error probability (for the optimal decoder) is arbi-
trarily small, but it is not known whether efficiently
encodable and decodable such codes exist.

We now return to our problem of using a public
channel to generate a secret key shared by Alice and
Bob, even when Eve’s channel is superior to the main
channel. Unfortunately, the method discussed in the
previous section for AWGN channels based on a re-
liability estimation does not work for BSCs because
every bit received through a BSC is equally reliable.
More precisely, the conditional probability distribu-
tion over the inputs, given the output of the channel,

is the same (up to a permutation of the inputs) for ev-
ery output digit. However, when we consider N > 1
consecutive uses of the BSC as one use of a concep-
tual super-channel with 2% inputs and 2V outputs, a
reliability decision can be made when only a subset
of the inputs are chosen with non-zero probability.
This approach, which will be discussed in more de-
tail in the next section, is equivalent to the use of an
error-correcting code. We now present a more effi-
cient protocol that works well when the channels are
sufficiently independent

For a given broadcast channel specified by Py 7 x
we define the secrecy capacity with public discussion,
denoted as C, as the maximal rate (in bits per chan-
nel use) at which Alice and Bob can agree on a secret
key using arbitrary public discussion such that Eve
receives only an arbitrarily small amount of informa-
tion. The following theorem gives a general upper
bound on Cj.

Theorem 2. The secrecy capacity with public dis-
cussion of a discrete memoryless broadcast channel
specified by Py zx is upper bounded by

Co < max I(X;Y|2) £ max[H(X|2)-H(X|Y2)),

i.e., by the mutual information between X and Y,
given that Z is known.

Proof. Assume that Eve provides Z to Alice and Bob
for free. Knowing Z cannot reduce the secrecy ca-
pacity because Alice and Bob could always discard
Z. The remaining amount of information shared by
Alice and Bob, I(X;Y|Z), is thus an upper bound on
the amount of information shared by Alice and Bob
in secrecy. O

It should be pointed out that the upper bound
maxp, I(X;Y|Z) on C, is not achieved in general.
Consider as an example a binary broadcast channel
that selects Y randomly and independently of X and
forms Z = X + Y. Clearly, I(X;Y) = 0 and there-
fore also C; = 0, but note that I(X;Y|Z) = 1 since,
when Z is given, additionally giving Y uniquely de-
termines X. It is therefore somewhat surprising that
the upper bound of Theorem 2 is achieved in the case
of independent binary symmetric channels:
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Theorem 3. The secrecy capacity with public discus-
sion of the broadcast channel of Figure 1, where the
main channel is a BSC with error probability e < 1/2
and Eve’s channel is an independent BSC with error
probability 6 < 1/2, is given by

Cs = max I(X;Y|Z) = h(e+ 6§ — 2€ed) — h(e).
p.e
Moreover, C is strictly positive unless € = 0.5 or § =
0, i.e., unless X and Y are statistically independent
or the enemy receives Z = X, respectively.

Proof. Note first of all that I(X;Y|Z) £ H(Y|Z) —
HY|XZ)=H(Y|Z)- H(Y|X) where HY|XZ) =
H(Y|X) follows from the independence of the chan-
nels. By an argument similar to that used in the proof
of Theorem 1 one can show that H(Y|Z) — H(Y|X)
is maximized for the choice Px(0) = Px (1) =1/2 for
which it takes on the value h(e+ 8 — 2e§) — h(e). The
term e+d —2ed corresponds to the error probability of
a BSC that is the cascade of two independent BSC’s
with error probabilities € and J.

The key observation for proving that the upper
bound can be achieved is that, by appropriately
choosing the feedback message, Bob can send bits
to Alice (and to Eve since the feedback channel is
assumed to be public) such that Alice receives these
bits with error probability €, whereas Eve receives the
bits with the larger error probability € + 6 — 2¢d. In
other words, Bob can create a conceptual broadcast
channel in which the conceptual channel to Alice is
equivalent to the actual main channel from Alice to
Bob but Eve’s conceptual channel is equivalent to a
cascade of the actual main channel and Eve’s actu-
al channel. Bob can use this conceptual backward
channel to send secret information to Alice at a rate
equal to its secrecy capacity, which is according to
Theorem 1 equal to h(e + § — 2ed) — h(e).

To illustrate how Bob can send a codeword V'V
over this conceptual backward channel, assume that
Alice transmits a sequence XV of independent and
completely random bits, i.e., the encoder in Fig-
ure 1 is replaced by a straight wire and K = N.
The noise on the channels is for each use charac-
terized by two binary, statistically independent ran-
dom variables D and E with P(D = 1) = § and

P(E=1)=¢ whereY =X+ FEand Z = X + D.
Here and in the sequel, addition (except addition of
entropies) is modulo 2 and vector addition is com-
ponentwise. Thus the blocks received by Bob and
Eve are XV + EV and XV + DV, respectively. Bob
adds the received word YV = XV 4+ EN to V'V and
sends WV = VN 4+ YN = XV + VN + EN over
the public channel. Alice, who knows X%, can add
X% to WY and thereby obtains VY + EV | which is
equivalent to receiving V'V with error probability e.
Eve on the other hand knows Z¥ = X~ + DV and
WV = XN+ V¥ 4+ EVN and can do no better than
to compute Z¥ + W& = V¥ 4+ EN + DV and to dis-
card ZV and W, which is equivalent to receiving
VN over a cascade of the actual main channel and
Eve’s actual channel.

In order to prove that without loss of optimality
Eve can form ZN 4+ W/ and discard ZV and WV,
we show that H(VN|ZVNWN) = H(VN|ZN + WN)
as follows.

HWVNZNWN) = HVN|ZN+WN wN)

HVNWN| ZN + WMy - HWN | ZN + W)
= HWVNIZN+ WM+ BWN|VN, ZN 4+ wh)
—~HWYN|1ZVN+ W),

The first step follows from the fact that the pair
(ZN,WP¥) uniquely determines the pair (ZV +
WHN W?H) and vice versa and the other steps are
applications of standard information-theoretic iden-
tities [8]. The result now follows upon noting that
HWN|\VN ZNeWN) = H(XN+ VN DN |V N VN4
EN4+DV) = N and thus also HWY|ZVN+WN) =N
since XV is completely random and statistically in-
dependent of V¥, EN and DV.

To prove the last claim, note that h(z) is a mono-
tonically increasing function for 0 < z < 1/2, and
that e+ — 2ed > € with equality if and only if either
0=0o0re=1/2. O

We now consider the more general case of depen-
dent channels. When the main BSC and Eve’s BSC
are dependent, this situation is equivalent to the fol-
lowing model with three independent BSCs. The
main channel and Eve’s channel each consist of a cas-
cade of two BSCs, where the first BSC with error
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probability €4 is common for both Bob and Eve, and
where the two cascaded channels have error proba-
bilities ep and €eg, respectively. The main and Eve’s
channels have error probabilities € and §, respective-
ly, and hence we have ¢ = €4 + eg — 2e4€p and
0 = es+eg—2e4€eg. Note that by creating conceptual
channels as described above, Bob can create a situ-
ation that is symmetric to the one considered here
in which Bob is the sender. Thus a protocol similar
to the one described above for independent channels
can be used when either €4 < €g or eg < €g. The
proof of the following theorem is similar to that of
Theorem 3. The lower bound is positive if and only
if either €4 < €g or eg < €g.

Theorem 4. The secrecy capacity with public discus-
ston of the broadcast channel discussed above satisfies

Cs > max{h(ea+eg—2¢x¢er), heg+er—2eper)}

—h(es + e — 2€4€B).

We have demonstrated a method for converting a
situation in which Eve’s channel is superior to the
main channel into a situation where her channel is in-
ferior, which can be exploited according to [6]. How-
ever, as mentioned earlier, the proofs given in [6] are
non-constructive, and it is an open problem whether
efficiently encodable and decodable codes exist that
exploit the full secrecy capacity. A method that is
different from that proposed in [6] and [20] for ex-
ploiting the availability of a superior channel is to
use a reconciliation and universal hashing informa-
tion reduction protocol as described in [2]. One open
problem that will be addressed in [3] is to generalize
the proof for the information reduction protocol given
in [2] to cases where Eve knows K bits of information
rather than the output of a 2%-valued function.

4. Generating a Mutual Secret Key
from Randomness Received over
Independent Channels

Consider a random source (e.g., a satellite broad-
casting random bits) that is received by Alice, Bob
and Eve over three at least to some degree indepen-

dent individual channels. In this section we present
a protocol by which Alice and Bob can generate a
mutual secret key by public discussion after individ-
ually receiving a noisy version of the same sequence
of random bits from the source. The generated secret
key is information-theoretically secure. Thus even an
enemy with unlimited computing power cannot ob-
tain more than a negligible amount of information in
Shannon’s sense about the key. Somewhat surprising-
ly, the protocol works even for cases in which Eve’s
channel is better than Alice’s and Bob’s channel, i.e.,
even when Eve’s version of the same random string
contains less errors.

Because thermal noise in different receivers is sta-
tistically independent and also the atmospheric noise
is to some degree independent for Alice, Bob and Eve,
the above assumption appears to be realistic in many
cases. An additional assumption about Eve’s mini-
mal error probability (noise power) can be realistical-
ly mild because Eve’s channel need not be assumed
to be worse than the Alice’s and Bob’s channels. The
significance of the protocol presented below is there-
fore that it allows to base cryptographic security on
a realistic statistical assumption as an alternative to
the common approach of founding the security on an
unproven intractability hypothesis.

Consider a binary symmetric source emitting a se-
of random bits. Alice, Bob and
Eve receive noisy versions of these bits, i.e., Alice re-

quence Xi,X5,...

ceives X; + F;, Bob receives X; + G; and Eve receives
X;+H; fori=1,2,..., where F;,G; and H; are in
the following assumed to be statistically independent
random variables taking on the value 1 with probabil-
ities €4,€ep and eg, respectively, and where addition
is modulo 2. When F;,G; and H; are not completely
independent, our protocol still works but the analysis
may become more involved. Without loss of general-
ity we assume that e4,ep,eg < 1/2. However, it is
not assumed that eg > €4 or €g > €p, i.e., that either
Alice or Bob has an advantage compared to Eve. Let
6A:1—6A,6B:1—€B andéEzl—eE.

In order to create a situation conceptually similar
to that considered in the previous section where Alice
can send bits V; to Bob over a main channel such that
Eve receives these bits over another (possibly better)
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channel, Alice can send the sum V; + X; + F; over the
public channel. Both Bob and Eve can recover a noisy
version of V; by adding their respective noisy versions
of X;, i.e., Bob can compute V; + F; + G; and Eve
can compute V; + F;+ H;. By an argument similar to
that used in the proof of Theorem 3 one can show that
without loss of optimality Bob and Eve can discard
all other received information. Note that the noise
seen by Bob and Eve on their respective conceptual
channels is F; + G; and F; + H;, respectively, and
is not independent. The situation is thus equivalent
to the broadcast channel considered in Section 3 (cf.
Figure 1) but where now the main channel and Eve’s
channel are not independent. When both e < €4
and eg < ep then the lower bound of Theorem 4 is
0 and the protocol of the previous section is hence
useless.

Nevertheless the following protocol allows Alice
and Bob to generate a secret key. Alice random-
ly selects a codeword V¥ from the set of codewords
of an appropriate error-correcting code C with code-
words of length N and sends it to Bob over the
above mentioned conceptual channel. Bob receives
VN + FN + GY and Eve receives VN + FN + HV,
In order to create an advantage over the enemy even
when e€g > €g, Bob only accepts a block when it
is received very reliably, i.e., when it is very close
to an actual codeword of C. Bob then publicly an-
nounces which blocks he accepted. Although Eve re-
ceives codewords V" more reliably than Bob on the
average, her conceptual channel is nevertheless worse
than Bob’s channel if averaged only over those code-
words accepted by Bob. Because consecutive uses of
the channel are independent, the blocks discarded by
Bob are also useless for Eve. One problem with this
approach is that for a general code it seems very diffi-
cult to compute the amount of information obtained
by Eve, but in some cases bounds can be given.

Note that Alice cannot use this restricted (to cer-
tain block) broadcast channel because she does not
know in advance which blocks will be received reli-
ably by Bob. However, the advantage created by the
reliability estimation and block selection can be ex-
ploited by Alice and Bob by using a reconciliation and
information reduction protocol as described in [2] or

by creating yet another conceptual channel from Bob
back to Alice (and to Eve).

Consider now the following special case. Alice us-
es a repeat code of length N, ie., for j = 1,2,...
she randomly selects an information bit R; and sends
V}N =00...0if B; =0 and VjN = 11...1 otherwise
over the conceptual channel to Bob. Bob accepts a
received block if and only if it is exactly equal to one
of the codewords, i.e., if and only if the block consists
of either only 0’s or only 1’s. Although a sufficient-
ly reliable decision could also be made in the case
where the received block contains only few 0’s or few
1’s, such blocks are discarded in order to deprive Eve
of blocks that might be more useful for her than for
Bob. The probability that a codeword is received by
Bob without error is given by

Pcorrect = (6A(SB + 6AEB)N

and similarly the probability that a codeword is re-
ceived as its complement equals

Derror = (]- - 6A65 - 6AGB)N-

The probability that Bob accepts a codeword is thus
given by Paccept = Pcorrect + Perror- The channel from
Alice to Bob thus corresponds to a binary symmetric
channel with error probability 8 = Perror/Paccept-

Let a,s for r,s € {0,1} be the probability that a
single bit 0 sent by Alice is received by Bob as r and
by Eve as s. Thus

agp = 0A0BOE + €a€BeER,
0ap1 = 0a0BeEp + €a€BOE,
ajp = 0a€pdp +e€adper
and a1 = Oda€eer +€40BOE.

Let further p,, for 0 < w < N be the probability that
a 00...0 codeword sent by Alice is accepted by Bob
(correct or not) and is received by Eve as a particular

given block of Hamming weight w. We have
P = gy Yafy +ajy Yaf).

Eve’s error probability when she guesses the bit sent

- 5O

w=[N/2]

by Alice is
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In order to allow for a successful protocol, N should
be chosen such that v > a. However, it is important
to note that this condition is not sufficient because
Eve is not forced to make a hard decision about the
bit but can rather wait until the end of the protocol to
make a soft decision about the final string shared by
Alice and Bob based on the entire information that
she collected. The relevant quantities are therefore
the capacities C'4a g and C 4 g of the restricted channels
from Alice to Bob and to Eve, averaged only over
those blocks accepted by Bob. The capacity of a BSC
with error probability € is equal to 1 — h(e) [8], hence

Cap = 1-h(B).

Car can be computed as the average capacity of
SN2 (N) BSCs where each channel is weighted
with the probability (py + PN—w)/Pacceps that it is
used:

[N/2]
N Dw +pN7w < Dw >
Cap = PwTPN-w () _p—Eey).
AL Z (’IU) (pw +pN—w)

w=0 paccept

When Cyp > Cag, Alice and Bob can use a posteri-
orierror-correction as proposed in [2] with subsequent
universal hashing to extract a secret key about which
Eve’s information is arbitrarily small.

FEzample: Consider a case in which Eve receives the
output of the random source more reliably than Al-
ice and Bob; let €4 = eg = 0.2 and eg = 0.15. Note
that Alice and Bob each receive 1 — h(eq) = 0.278
bits of information about each random bit where-
as Eve receives 1 — h(eg) = 0.39, i.e., 40 % more.
Let N = 5. Then peorrect = 0.14539, Perror =
0.003355, Paccept = 0.14875, ago = 0.55, ap; = 0.13,
ag = ay; = 0.16, pp = 0.05043, p; = 0.01200,
p2 = 0.002917, ps = 0.0007695, ps = 0.00026619
and ps = 0.00014198. Hence 8 = 2.25% compared
to v = 6.63% and thus Bob receives the selected bits
much more reliably than Eve. One further obtains
Cap = 0.845 and Cyg = 0.745, i.e., Eve’s capacity is
12% less than Bob’s capacity.

When this protocol is used by Alice and Bob and
when an ideal code were used to eliminate the remain-
ing errors, then the number of random bits from the
source that are required to generate one bit of shared
secret key is ideally given by N/[(Cas — CAr)Paccept)
which for the above example evaluates to 336.

Clearly there exist more efficient protocols for the
above choice of error probabilities when more reason-
able codes are used, but an analysis becomes very
tedious. It seems also possible to gain secrecy at the
cost of analyzability by using protocols with several
rounds of interaction, making repeated use of concep-
tual channels and reliability estimation.

5. Generalizations and Open Problems

The settings of the previous two sections can be
generalized in the following way. Alice, Bob and Eve
receive (repeatedly at discrete time instances) ran-
dom variables X, Y and Z, respectively. Rather than
being the output of some channels, these random vari-
ables are assumed to be generated according to some
given joint probability distribution Pxy z. We define
the secrecy capacity of X and Y with respect to Z,
denoted S(X,Y|Z), as the maximal rate (per use of
a set of such random variables) at which Alice and
Bob can by public discussion generate key bits about
which Eve has an arbitrarily small amount of infor-
mation. The following result is stated without proof.

Theorem 5. The secrecy capacity of X and Y with
respect to Z is lower bounded by

S(X,Y|Z) > max{max[I(V;Y)—I(V;Z)],

Py x

max [I(W|X) — I(W; Z)]} .

Py vy

where the inner mazimizations are over choices of the
indicated conditional probability distributions.

We believe that the observations made in this pa-
per are of rather fundamental nature in cryptography,
theoretical computer science as well as in information
theory. Many theoretical and practical problems re-
main open: characterizing the secrecy capacity for
general settings, finding codes that perform well the-
oretically or also practically in a given setting, and
determining the importance of the number of rounds
of interaction.
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