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Abstract—This is the second part of a three-part paper on

secret-key agreement secure against active adversaries. In

the first part, we showed that when two parties, willing to

generate a secret key, but connected only by a completely in-

secure communication channel, have access to independent

repetitions of some random experiment, then the possibil-

ity of secret-key agreement depends on a certain property,

called simulatability, of the probability distribution modeling

the parties’ initial knowledge. More generally, the simulata-

bility condition is important in the context of identification

and authentication among parties sharing some correlated

but not necessarily identical partially secret keys. Unfortu-

nately, this condition is a priori not very useful since it is not

clear how to decide efficiently whether it is satisfied or not

for a given distribution PXY Z . We introduce a new formal-

ism, based on a mechanical model for representing the in-

volved quantities, that allows for dealing with discrete joint

distributions of random variables and their manipulations

by noisy channels. We show that this representation leads

to a simple and efficient characterization of the possibility

of secret-key agreement secure against active adversaries.

Keywords. Cryptography, unconditional security, secret-key

agreement, authentication.

I. Introduction

In many situations, two parties Alice and Bob, who have
access to (correlated) information modeled by random vari-
ables X and Y , respectively, can, by communication over
an insecure channel, generate a secret key S about which
an adversary Eve, initially knowing a third random vari-
able Z, has virtually no information (e.g., in terms of Shan-
non entropy). In particular, Eve cannot obtain substantial
information about the secret key even with infinite compu-
tational resources.

In [9] it was shown that such key agreement can be
possible in principle even if Alice and Bob’s communica-
tion channel does not offer authenticity (let alone confi-
dentiality). In this case however, the random variables
X , Y , and Z must satisfy a certain condition, called non-
simulatability. Unfortunately, this condition is a priori not
easy to check for a given distribution PXY Z . It is the goal
of this paper to develop a calculus for discrete distribu-
tions which yields efficient criteria for the possibility of key
agreement secure against active adversaries. Further ap-
plications of this calculus are also discussed.

The outline of this paper is as follows. In Section II,
we repeat the definition of simulatability of a distribution
PXY Z and briefly recall the results of [9], stating that this
is the key condition in the context of unconditional security
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of key agreement in the presence of active adversaries. In
Section III we develop a new calculus, based on represent-
ing distributions in a mechanical model, for joint distribu-
tions of three random variables and noisy channels acting
on them. Finally, we use this calculus in Section IV to
derive efficiently verifiable criteria for (non-)simulatability.

II. The Simulatability Condition

It is not surprising that secret-key agreement secure
against active adversaries as defined in [9] can only be pos-
sible if Alice and Bob have some initial advantage over Eve
in terms of the distribution PXY Z . More precisely, it was
shown that this advantage must be such that Eve cannot
generate from Z a random variable X which Bob, know-
ing Y , is unable to distinguish from X (and vice versa).
The following property of a distribution PXY Z was defined
in [6] (see also [9]).

Definition 1: [6] Let X , Y , and Z be random variables.
Then X is simulatable by Z with respect to Y , denoted by

simY (Z → X) ,

if there exists a conditional distribution PX |Z such that

PXY = PXY , where PXY =
∑

PY Z · PX|Z .

Another way of stating that simY (Z → X) holds is that
there exists a random variable X such that I(X ; XY |Z) =
0, i.e., XY → Z → X is a Markov chain, with PXY = PXY .

In [9] the following facts were shown. The pessimistic
result is that whenever either simY (Z → X) or simX(Z →
Y ) holds, then no secret-key agreement is possible at all
in the active-adversary scenario. The reason is that Bob
has no advantage over Eve from Alice’s viewpoint, or vice
versa. Thus Eve can impersonate one of the legitimate
partners without facing the risk of being detected, and the
protocol being aborted.

On the other hand, however, if neither X nor Y is simu-
latable by Eve, then an active adversary is not much more
powerful than a passive one. More precisely, in the sce-
nario where the parties have access to repeated realizations
of their random variables, the achievable secret-key gener-
ation rates do not depend on whether Eve is only a pas-
sive wire-tapper or even an active attacker. (Clearly, an
active Eve can always block the communication channel
completely and prevent any communication between Alice
and Bob.)

These facts show that the simulatability condition de-
fined above is of paramount importance in the context of
key agreement secure against active adversaries. Let us
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begin the analysis of this condition with two properties of
distributions PXY Z satisfying it.

Consider the special scenario where all the parties obtain
noisy versions of a binary signal (e.g., a satellite signal) over
some independent channels, i.e., where

PXY Z|R = PX|R · PY |R · PZ|R

holds for some binary R (see for instance [5] or [7]). In
this setting, the condition simY (Z → X) is equivalent to
I(Y ; Z) ≥ I(Y ; X). One implication of this equivalence is
always true, as Lemma 1 shows.

Lemma 1: Let PXY Z be a distribution such that
simY (Z → X) holds. Then

I(Y ; Z) ≥ I(Y ; X) .
Proof. There exists a conditional distribution PX|Z such
that PXY = PXY . Hence we have

I(Y ; Z) = H(Y ) − H(Y |Z)

= H(Y ) − H(Y |ZX)

≥ H(Y ) − H(Y |X)

= I(Y ; X)

= I(Y ; X) ,

where the second equality holds since I(Y ; X|Z) = 0. 2

However, the inverse implication is not true in general.
To see this, consider the following distribution PXY Z [8].
Let the random variables X and Y be binary and dis-
tributed according to

PXY (0, 0) = PXY (1, 1) =
1 − α

2
,

PXY (0, 1) = PXY (1, 0) =
α

2

for some α < 1/2. The random variable Z is generated
by sending [X, Y ] over an erasure channel with positive
erasure probability 1− r. Clearly, both simY (Z → X) and
simX(Z → Y ) hold for this distribution PXY Z if and only
if

r +
1 − r

2
≥ 1 − α ,

i.e., r ≥ 1 − 2α. On the other hand, I(Y ; Z) ≥ I(Y ; X)
holds exactly if

r ≥ 1 − h(α) .

It may be somewhat surprising that for r ∈ [1 − h(α), 1 −
2α[, Eve cannot simulate X with respect to Y although she
has more information about Y than X provides.

As the example of the noisy versions of a binary signal
shows, the fact that X and Y are simulatable does not
imply that secret-key agreement against passive adversaries
is not possible. However, the following statement, closely
related to the inverse direction of this implication, is true.
Note here that the so-called intrinsic information I(X ; Y↓
Z) was introduced in [8] as a general upper bound on the
secret key rate S(X ; Y ||Z). The definition of this quantity
is I(X ; Y↓Z) := minXY→Z→Z I(X ; Y |Z).

Lemma 2: Let PXY Z be such that I(X ; Y↓Z) = 0. Then
both simY (Z → X) and simX(Z → Y ) hold.

Proof. Let PZ|Z be a conditional distribution with

I(X ; Y |Z) = 0 . (1)

(Such a distribution exists according to [2].) Equivalently,
XY → Z → Z is a Markov chain such that (1) holds, i.e.,
X → Z → Y is also a Markov chain. We show simY (Z →
X). The proof that simX(Z → Y ) holds is analogous. Let
X be generated from Z by the channel PX|Z := PX|Z .

(This extends the Markov chain to XY → Z → Z → X,
hence XY → Z → X is also a Markov chain.) We show
that PXY = PXY holds. To see this, note that

PXY Z = PXZ · PY |XZ = PXZ · PY |Z

and

PXY Z = PXZ · PY |XZ = PXZ · PY |Z

because I(X ; Y |Z) = I(X ; Y |Z) = 0. From PXZ = PXZ

(which is true by construction of X) we conclude PXY Z =
PXY Z , hence PXY = PXY . 2

III. A Calculus for Discrete Distributions and

Channels

According to Section II, the simulatability condition al-
lows for separating the cases where secret-key agreement
is possible and impossible in the presence of active adver-
saries. However, the characterization is a priori not prac-
tical because it depends on the existence of a particular
channel (with certain properties) among the (uncountably
infinite) set of all discrete channels with given input and
output alphabets. In the sequel, we address the following
questions:

• Is it, for a given distribution PXY Z , possible to decide
efficiently whether simY (Z → X) holds?
• If simY (Z → X) holds, is it possible to efficiently find a
channel PX|Z for which we have PXY = PXY ?

We start by analyzing an example.

Example 1: Let the distribution PXY Z of the random
variables X , Y , and Z with ranges X = {x1, x2}, Y =
{y1, y2}, and Z = {z1, z2, z3} be as follows:

PXY Z(x1, y1, z1) = 6/100 ,
PXY Z(x2, y1, z1) = 4/100 ,
PXY Z(x1, y1, z2) = 9/100 ,
PXY Z(x2, y1, z2) = 6/100 ,
PXY Z(x1, y1, z3) = 15/100 ,
PXY Z(x2, y1, z3) = 10/100 ,
PXY Z(x1, y2, z1) = 36/100 ,
PXY Z(x2, y2, z1) = 4/100 ,
PXY Z(x1, y2, z2) = 9/100 ,
PXY Z(x2, y2, z2) = 1/100 ,
PXY Z(x1, y2, z3) = 0 ,
PXY Z(x2, y2, z3) = 0 .
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In order to decide whether simY (Z → X) holds, let us first
consider the marginal distributions PXY and PY Z .

PXY y1 y2 PX (xi) PY |X=xi
(y1)

x1 0.3 0.45 0.75 0.4
x2 0.2 0.05 0.25 0.8

PY Z y1 y2 PZ(zj) PY |Z=zj
(y1)

z1 0.1 0.4 0.5 0.2
z2 0.15 0.1 0.25 0.6
z3 0.25 0 0.25 1

We jointly represent these distributions as follows. We
mark every symbol xi ∈ X and every zj ∈ Z with an empty
or filled circle, respectively, where the size (or mass) of the
circle corresponds to the probability PX(xi) or PZ(zj), and
the position in the interval [0, 1] is given by the probability
PY |X=xi

(y1) or PY |Z=zj
(y1), respectively (see Figure 1).

1/4 1/4

z2x1
x21z z30.5 10

3/4 1/41/2

Fig. 1. Representation of PXY Z

Note that not the entire information about PXY Z is con-
tained in this representation: only the distributions PXY

and PY Z , but not PXY Z , can be reconstructed from the
quantities represented in the picture. We will see, how-
ever, that whether or not X is simulatable by Z with re-
spect to Y depends, not surprisingly, only on PXY and
PY Z , as Theorem 1 shows. On the other hand, not every
such representation corresponds to a distribution PXY Z .
This is only true if the total mass of each point set is 1,
and if the marginal distribution PY is equal for both dis-
tributions PXY and PY Z . The last condition is equivalent
to the fact that the sets of full and empty circles have the
same center of gravity when interpreted as point masses.

Let now Z(2) with Z(2) = {z
(2)
1 , z

(2)
2 } be generated by

sending Z over the channel

PZ(2) |Z(z
(2)
1 , z1) = 1 ,

PZ(2) |Z(z
(2)
2 , z2) = 1 ,

PZ(2) |Z(z
(2)
2 , z3) = 1 .

For the new distribution PXY Z(2) , the above representation
is as shown in Figure 2: Two masses have been united in
their center of gravity.

Let then Z(2) be sent over the additional channel
PZ(3) |Z(2) , where Z(3) = {z

(3)
1 , z

(3)
2 , z

(3)
3 }, with

PZ(3) |Z(2) (z
(3)
1 , z

(2)
1 ) = 1 ,

PZ(3) |Z(2) (z
(3)
2 , z

(2)
2 ) = 1/2 ,

PZ(3) |Z(2) (z
(3)
3 , z

(2)
2 ) = 1/2 .

This corresponds to splitting one of the masses into two
(equal) parts (see Figure 3).
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Fig. 2. The Channel P
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Fig. 3. The Channel P
Z(3) |Z(2) , and P

XY Z(3)

Finally, let PX|Z(3) , with X = {x1, x2}, be given by

PX|Z(3) (x1, z
(3)
1 ) = 1 ,

PX|Z(3) (x1, z
(3)
2 ) = 1 ,

PX|Z(3) (x2, z
(3)
3 ) = 1 .

The use of this channel again corresponds to uniting two
masses in their center of gravity. The constellation of
the masses with respect to X and X are now equal (see
Figure 4), which means that PXY = PXY holds. Hence
simY (Z → X) is true, and the corresponding channel PX|Z

is the cascade of the three channels above:

PX |Z(x1, z1) = 1 ,

PX |Z(x1, z2) = PX |Z(x2, z2) = 1/2 ,

PX |Z(x1, z3) = PX |Z(x2, z3) = 1/2

(see Figure 5).
We will now make this representation in the mechani-

cal model more precise and exploit the direct connection
between distributions and channels on one side and mass
constellations as well as mass operations on the other for
giving a simple characterization of non-simulatability. The
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Fig. 5. The Cascaded Channel P
X|Z

purpose of the physical model is to give more intuitive
deductions and formulations of results that could as well
be stated and proved purely in terms of distributions and
channels. Theorem 1 below makes a direct link between the
two formalisms and justifies the point of view we take. In
the following, particular emphasis is given to an intuitive
presentation.

Definition 2: For an integer N ≥ 1, an N -dimensional
(normed) mass constellation M := (mi, ai)i=1,...,` is a fam-
ily of pairs with mi ∈ (0, 1] and ai ∈ [0, 1]N for all i such
that

∑

i mi = 1. We additionally assume that the pairs
are ordered with respect to the lexicographic ordering of
the vectors ai. The center of gravity (center for short)
c(M) of such a constellation is given by

c(M) :=
∑̀

i=1

miai .

Two constellations are equicentered if they have the same
center of gravity. A constellation M ′ = (m′i, a

′
i)i=1,...,`′

is derived from M = (mi, ai)i=1,...,` by mass splitting if
`′ = ` + 1, and if there exist 0 < p < 1, 1 ≤ i0 ≤ `, such
that

(m′
i, a

′
i) =

��� �� (mi, ai) 1 ≤ i < i0
(pmi0 , ai0 ) i = i0
((1 − p)mi0 , ai0 ) i = i0 + 1
(mi−1 , ai−1) i0 + 1 < i ≤ ` + 1 .

Furthermore, M ′ is derived from M by mass union if `′ =
` − 1, and if there exist i1 < i2, i1 ≤ iu ≤ i2, such that

(m′
i , a

′
i) =

�������� �������
(mi, ai) 1 ≤ i < i1
(mi+1, ai+1) i1 ≤ i < iu
(mi1 + mi2 ,

mi1
ai1

+mi2
ai2

mi1
+mi2 � i = iu

(mi, ai) iu < i < i2
(mi+1, ai+1) i2 ≤ i ≤ ` − 1 .

We call mass splitting and mass union basic mass opera-
tions. Neither of them changes the center of gravity. A
constellation M is called stronger than M ′, denoted by
M ; M ′, if there exists a finite sequence of basic opera-
tions that transforms M into M ′.

It is clear that if M ; M ′, then the two constellations
M and M ′ are equicentered. On the other hand, there exist
equicentered constellations such that none is stronger than
the other (see Figure 6).

10 0.5

(0.1,0) (0.5,0.25) (0.8,0.5) (0.5,0.75) (0.1,1)

Fig. 6. Incomparable Constellations: None is Stronger

Let PUV be the joint distribution of two random vari-
ables U and V with ranges U and V = {v1, . . . , vN+1}.
Then the N -dimensional constellation MU←V is defined by

MU←V =

(PU (u), (PV |U=u(v1), . . . , PV |U=u(vN )))u∈U .
Note that the definition of MU←V leads to a one-to-one

correspondence between distributions PUV , where |V| =
N + 1, and N -dimensional normed mass constellations
(mi, ai)i=1,...,` contained in the simplex characterized by

(a)j ≥ 0 and
∑N

j=1 (a)j ≤ 1.
Theorem 1 links simulatability and mass constellations.

In this context, note first that for every distribution PXY Z ,
MX←Y and MZ←Y are equicentered.

Theorem 1: Let PXY Z be the joint distribution of X , Y ,
and Z. Then X is simulatable by Z with respect to Y if
and only if MX←Y is stronger than MZ←Y :

simY (Z → X) ⇐⇒ MZ←Y ; MX←Y .
Proof. Let PU1V and PU2V be the joint distributions of
random variables U1 and V , and U2 and V , respectively.
Clearly, MU2←V can be obtained from MU1←V by a mass
splitting or mass union operation if and only if there exists
a “splitting channel” (as in Figure 2) or a “union channel”
(see Figure 3) PU2|U1

, respectively, such that

P
U2V

(u2, v) = �
u1∈U1

PU1V (u1, v) · P
U2|U1

(u2, u1)

= PU2V (u2, v) .

The statement now follows from the facts that every dis-
crete channel (with m output symbols) can be represented
as a cascade of splitting and union channels, and that a
cascade of channels is equivalent to the sequence of the
corresponding mass operations. The first of these two facts
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can be shown as follows. First, all the letters of the input
alphabet can be split, one after the other, to m symbols
each (by m−1 splitting channels with certain probabilities
for each symbol), and they can be united by union channels
to the output symbols of the discrete channel. The second
fact is obvious. 2

Unfortunately, the condition given in Theorem 1 is a
priori not more than a new formulation of simulatability,
and is not obviously verifiable more efficiently. However,
it leads to an efficiently checkable criterion as Corollary 3
and Theorem 5 below show.

As a preparation for these results, we describe a special
mass operation, called mass approach, that can be com-
posed by four basic operations (see Figure 7).

0.5 10

Center of Gravity

Fig. 7. A Mass Approach

Lemma 3: Let a constellation M = (mi, ai)i=1,...,` be
given, and let i 6= i′, 1 ≤ i, i′ ≤ `. We denote by

ci,i′ := (miai + mi′ai′)/(mi + mi′)

the center of gravity of the ith and i′th masses. Then for
every λ ∈ [0, 1] there exists a sequence of four basic mass
operations transforming M into the constellation that one
obtains when the ith and i′th pairs are replaced by the
pairs

(mi, ai + λ(ci,i′ − ai))

and
(mi′ , ai′ + λ(ci,i′ − ai′))

(which must be correctly put into the ordering).
Proof. The idea is that the masses mi and mi′ “exchange”
a suitable mass 0 ≤ me ≤ min{mi, mi′}, i.e., that both
masses are split into two parts, one of which is equal
to me in both cases, and the union operation is applied
twice to the remaining mass with the me-part of the other
mass. Hence four basic operations are required. Because
the choice me = 0 leaves mi and mi′ unchanged, whereas
me = min{mi, mi′} corresponds to mass union, and since
the result depends linearly on me, every position of mi and
mi′ on their connecting line such that the masses are closer
to each other, and such that the center of gravity remains
unchanged, can be achieved this way. More explicitly, the
mass me must be chosen as λ · min{mi, mi′}. 2

IV. Efficiently Checking for Simulatability

A. The Binary Case

We have now established the mechanical model and the
necessary techniques for our characterizations of simulata-

bility. In Corollary 3 we give a simple and efficiently verifi-
able, both necessary and sufficient condition for simulata-
bility with respect to a binary random variable Y . Fur-
thermore, the proof of Theorem 2 additionally shows that
the corresponding channel PX|Z can even be computed ef-
ficiently.

We first define what it means that a one-dimensional
mass constellation is “more centered” than another. This
relation leads to the characterization we are looking for.
Note that this relation is not a total ordering of the set
of constellations: When considering two random mass con-
stellations, typically no one will be more centered than the
other (see Figure 6).

Definition 3: For a one-dimensional mass constellation
M and for 0 < t ≤ 1, we denote by `t(M) the leftmost
masses of M of total amount t. (Typically, of one of the
masses in M , only a part will be in `t(M).) A constellation
M ′ is called more centered than M , denoted by

M ′ ≺ M ,

if for all t,

c(`t(M
′)) ≥ c(`t(M))

holds, where c(S) stands for the center of gravity of a set
S of masses.
Note first that this is a symmetric notion, i.e., that “left”
and “≥” could be replaced by “right” and “≤” without
changing the definition. Given two (finite) mass constel-
lations, this quantity can be efficiently checked (i.e., in
time linear in the total number of masses—there can-
not exist a more efficient algorithm since all the masses
have to be taken into account). To see this, note that
M ′ = (m′j , a

′
j)j=1,...,`′ ≺ M is equivalent to the fact that

for every 1 ≤ k < `′, the center of the set of masses
m′1, . . . , m

′
k is not left of (i.e., smaller than) the center of

`m′

1+···+m′

k
(M).

Theorem 2: Let two equicentered one-dimensional mass
constellations M and M ′ be given. Then M is stronger
than M ′ if and only if M ′ is more centered than M :

M ; M ′ ⇐⇒ M ′ ≺ M .
Clearly, Corollary 3 follows immediately from Theorems 1
and 2.

Corollary 3: Let PXY Z be the joint distribution of ran-
dom variables X , Y , and Z, where Y is binary. Then X is
simulatable by Z with respect to Y if and only if MX←Y

is more centered than MZ←Y , i.e.,

simY (Z → X) ⇐⇒ MX←Y ≺ MZ←Y .
Proof of Theorem 2. We assume first that

M ′ = (m′j , a
′
j)j=1,...,`′ ≺ M = (mi, ai)i=1,...,`

holds. We show by induction that for every 0 ≤ j0 ≤
`′, there exists a sequence of basic mass operations that
transforms M into a constellation Mj0 = (mk, ak)k=1,...,`

such that for every j ≤ j0, there exists k(j) (where k(j) 6=
k(j′) if j 6= j′) with mk(j) = m′j and ak(j) ≤ a′j , and such
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that the center of the masses m1, . . . , mj0 of Mj0 is equal
to c(`m1+···+mj0

(M)).
Clearly, this holds for j0 = 0. We assume that the state-

ment is true for 0 ≤ j0 < `′ and show its validity also for
j0 + 1. Let Mj0 = (mk, ak)k=1,...,` be defined as above.

We transform Mj0 into Mj0+1 as follows. First, the left-
most among the masses mj0+1,mj0+2, . . ., of total amount
m′j0+1, are united into their center of gravity. Let
(mj0+1, aj0+1) = (m′j0+1, aj0+1) be the resulting mass.
Then, because of M ′ ≺ M and by the induction assump-
tion, the center of the masses (m1, a1), . . . , (mj0+1, aj0+1)
is not on the right-hand side of the center of gravity of
`m′

1+...+m′

j0+1
(M ′). Hence there exists a sequence of mass

approaches, applied only to masses among m1, . . . , mj0+1,
such that each of the resulting masses (still of the same
sizes) is on the left-hand side of (or at the same position
as) the corresponding mass of M ′ (see Figure 8). Hence
this new constellation satisfies the induction assumption
for j0 + 1, and this concludes the induction argument.

m ’1 m ’2 m ’3 j   +10
m ’

1m 

|

2m 

|

j   +10
m 

|

3m 

|

j   +10
M

m 

|

r

m ’s

10

. . . 

. . . 

M’

Fig. 8. M ′ and Mj0+1

Therefore M is stronger than some M satisfying the
above property, with respect to M ′, for j0 = `′. How-
ever, because M and M ′ are both equicentered to M , and
because all masses of M lie, roughly speaking, on the left
of (or at the same place as) the corresponding masses of
M ′, we must have that M = M ′, hence M ; M ′.

We show the necessity of the condition M ′ ≺ M for
M ; M ′ to hold. Assume for M and M ′ and for some t
that

c(`t(M
′)) < c(`t(M)).

Then M 6; M ′ holds because the basic mass operations,
i.e., mass union (mass splitting leaves all the centers un-
changed), can only move the center of the set `t(M) to the
right (union of two masses, one in the set `t(M), and one
in the complement) or leave it at the same place (union
within `t(M) or within its complement). 2

The criterion for simulatability of Corollary 3 is simple
and verifiable in linear time. Moreover, the proof of The-
orem 2 also shows how a channel PX |Z for simulating X
with respect to Y can be constructed efficiently.

B. The General Case

Let us now, after the complete analysis of the case of a
binary random variable Y , consider the general case again.
In Definition 4, we give a straight-forward, and also effi-
ciently checkable, generalization of the notion that a con-
stellation is more centered than another. This leads to a

necessary criterion for simulatability (Theorem 5). How-
ever, although it appears to be sufficient as well in many
cases, we give an example for which non-simulatability is
not detected by the criterion.

Definition 4: Let M and M ′ be two N -dimensional mass
constellations. Let furthermore a line L, passing through
the origin, be given. We now consider the orthogonal pro-
jections of all the masses in the N -dimensional space onto
L. This yields two one-dimensional equicentered mass con-
stellations ML and M ′

L. We say that M ′ is more centered
than M , M ′ ≺ M , if M ′

L ≺ ML for every line L.
It is not difficult to see that also in N dimensions M ; M ′

can only hold if M ′ ≺ M holds. The reason is that ML ;

M ′
L follows from M ; M ′: Projections of mass operations

are mass operations again.
Theorem 4: Let M and M ′ be N -dimensional equicen-

tered mass constellations. If M is stronger than M ′, then
M ′ must be more centered than M :

M ; M ′ =⇒ M ′ ≺ M .
Corollary 5: Let PXY Z be the joint distribution of X ,

Y , and Z. If MX←Y is not more centered than MZ←Y ,
then X is not simulatable by Z with respect to Y , i.e.,

MX←Y 6≺ MZ←Y =⇒

simY (Z → X) does not hold .
Note that this condition is, despite the fact that the number
of lines through the origin is infinite, efficiently verifiable
since the number of points is finite. First, not every direc-
tion, i.e., every line, has to be checked separately. There

are only at most
(

`+`′

2

)

directions for which the mass con-
stellations are different (with respect to the order of the
masses), where ` and `′ are the numbers of masses in M
and M ′, respectively. Equal orders means that, in the N -
dimensional space, the same masses are “leftmost.” Hence,
all these directions can be treated simultaneously by look-
ing at extremal directions. Furthermore, only the values t
corresponding to a subset of the masses in M ′ have to be
considered (as in the one-dimensional case).

Unfortunately, the given condition is not sufficient for
simulatability (i.e., for a mass constellation being stronger
than another) in the N(≥ 2)-dimensional case (although it
appears to be a “good” condition failing to detect non-
simulatability only with small probability for “random”
distributions.) The following is a counterexample.

Example 2: Consider the following two-dimensional
mass constellations M and M ′.

M = (0.2, (0, 0)) , (0.2, (0, 0.5))

(0.2, (0.5, 0)) , (0.2, (0.5, 0.5))

(0.2, (0.25, 0.25)) ,

M ′ = (0.2, (0.1, 0)) , (0.2, (0.1, 0.5))

(0.2, (0.4, 0)) , (0.2, (0.4, 0.5))

(0.1, (0.15, 0.25)) , (0.1, (0.35, 0.25))

(see Figure 9).
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Fig. 9. A 2-Dimensional Counterexample

It is not difficult to see that M ′ ≺ M holds. First, it
clearly holds for the horizontal line and, because the (hor-
izontal) distances between neighboring masses change in
the same ratios, for all lines except the vertical line, for
which the projected constellations are identical however.

On the other hand, M cannot be transformed into M ′

by basic operations. This is true because when considering
the projection to the vertical line, it is clear that no union
operation can be made except between masses with the
same y-coordinate. However, with such operations only,
M can clearly not be transformed to M ′ because of the
masses with y-coordinate 1/2. Hence M 6; M ′ holds.

V. Concluding Remarks

We have analyzed the so-called simulatability condition
which is of central importance in the context of uncondi-
tionally secure identification and authentication between
parties sharing correlated information. For instance, this
condition characterizes the possibility of secret-key agree-
ment based on joint randomness in the presence of an ac-
tive adversary [9]. However, the criterion was not shown
to be efficiently verifiable previously; it was not even clear
whether it can be checked in finite time.

We have introduced a new mechanical model for repre-
senting joint distributions of discrete random variables and
their manipulations by noisy channels. This representation
in one dimension (i.e., if one of the random variables is bi-
nary) leads to a simple necessary and sufficient criterion for
simulatability which is verifiable in deterministic time lin-
ear in |X |+ |Y|+ |Z|. Moreover, the given algorithm yields
the corresponding channel if simulatability does hold. In
the general n (≥ 2)-dimensional case, an apparently close-
to-tight (yet not sufficient in all cases) necessary criterion,
which is checkable in time polynomial in |X | + |Y| + |Z|,
has been described. It is an open question, however, to find
a simple necessary and sufficient criterion for the general
case.

The introduced formalism can be helpful also with re-
spect to other problems dealing with discrete distributions
and noisy channels. An example is to determine the intrin-
sic conditional information I(X ; Y ↓Z), a quantity that is
closely related to the possibility of secret-key agreement
against passive adversaries [8], [11], [4], [3].
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