
Rep rinted from INFORMATION AND CONTROL

	

Vol . 55, Nos. 1-3, October/November/December 1982
All Rights Reserved by Academic Press, New York and London

	

Printed in Belgium

On the Security of Ping-Pong Protocols

D. DOLEV

Institute of Mathematics and Computer Science, Hebrew University, Jerusalem

S. EVEN t

Computer Science Department, Technion, Haifa, Israel

AND

R. M. KARP $

Computer Science Division, EELS, University of California, Berkeley,
Berkeley, California 94720

Consider the class of protocols, for two participants, in which the initiator
applies a sequence of operators to a message M and sends it to the other
participant ; in each step, one of the participants applies a sequence of operators to
the message received last, and sends it back . This "ping-pong" action continues
several times, using sequences of operators as specified by the protocol . The set of
operators may include public-key encryptions and decryptions. An 0(n') algorithm
which determines the security of a given protocol (of length n) is presented . This is
an improvement of the algorithm of Dolev and Yao (IEEE Trans. Inform . Theory
IT-30 (2) (1983), 198-208) .

1. INTRODUCTION

The use of public-key encryption, (Diffie and Hellman, 1976 ; Rivest et al.,
1978) for secure network communication has received considerable attention .
Such systems are effective against a "passive" eavesdropper, namely, one
who merely taps the communication line and tries to decipher the intercepted
message. However, as pointed out by Needham and Schroeder (1978), an
improperly designed protocol can be vulnerable to "active" sabotage .

* Part of the research was done while the author visited IBM Research Lab, San Jose,
California .

t Part of the research was done while the author visited the EECS Department, U.C .
Berkeley . Supported by NSF Grants MCS 79-15762 and MCS 82-04506 and the Fund for the
Promotion of Research at the Technion .

1 Research supported by NSF Grant MCS 81-05217 .

57
0019-9958/82 $2 .00

Copyright © 1982 by Academic Press, Inc .
All rights of reproduction in any form reserved .

58

	

DOLEV, EVEN, AND KARP

The saboteur may be a legitimate user in the network . He can intercept
and alter messages, impersonate other users or initiate instances of the
protocol between himself and other users, in order to use their responses . It
is possible that through such complex manipulations he can read messages,
which are supposed to be protected, without cracking the cryptographic
systems in use .

In view of this danger it is desirable to have a formal model for discussing
security issues in a precise manner, and to investigate the existence of
efficient algorithms for checking the security of protocols .
Dolev and Yao (1983) investigated the security of what we call here

"ping-pong protocols." These protocols involve two participants, the sender
S and the receiver R. Let M be a message generated by S . First, S applies a
sequence of operators to M and sends it to R. Next, R applies a sequence of
operators to the message received, and sends the result back to R . In each
step, the participant applies a sequence of operators to the last message
received, and sends it back. The number of times this is done, as well as the
sequences of operators used, is defined by the protocol .

Dolev and Yao considered the security of two such families of protocols,
assuming only few limitations on the behavior of the saboteur . Their second
and more general family of protocols is extended here to allow more
operators, and an O(n 3) time algorithm for checking the security of protocols
is presented . This improves the algorithm of Dolev and Yao, which is 0(n8)
time .

We briefly recall the essence of public-key systems (see Diffie and
Hellman, 1976 or Rivest et al., 1978 for more details). Every user X has an
encryption function Ex and a decryption function Dx . Both are mappings
from {0, 11* into {0, 11*. There is a public directory containing all (X, Ex)
pairs, while the decryption function Dx is known only to X. The main
requirements on Ex , Dx are :

(1) ExDx = DxEx = , , where . is the identity function, and

(2) knowledge of Ex(M) does not reveal anything about the value M.

Before we attempt any formal definitions of protocols or security let us
consider several simple examples of protocols, and discuss informally their
security .

EXAMPLE 1 . Consider the following protocol :

(1) (X, E,,(M), Y),
(2) (Y, Ex(M), X),

which simply means this : X wants to send M to Y and get an echo in order
to verify that M has reached Y. He computes E,,(M), using Y's public

PING-PONG PROTOCOLS 59

encryption key and sends via the network (X, E,,(M), Y), which stands for
"X sends to Y the message E,,(M) ." Clearly, no one but Y can apply D,, to
E,,(M), in order to recover M. After doing so, Y computes Ex(M) and sends
(Y, Ex(M), X) . When X gets it he can compare the echo, DXEx(M), with the
original M in order to verify that M has indeed reached Y.

This innocent-looking protocol is insecure. A saboteur Z may intercept
(X, E,,(M), Y) and replace it by (Z, E,,(M), Y). Y will get M, and respond,
according to the protocol by sending (Y, E Z (M), Z). Z can now read M by
applying his secret key, DZ . He can then even produce the echo
(Y, Ex(M), X) and send it over to the satisfied and unsuspecting X. Clearly,
this works only ifM does not include information about the original sender's
identity . Indeed, this observation leads to the technique of name-appending :

EXAMPLE 2 . (1) (X, E y(MX), Y),
(2) (Y, Ex(M), X) .,

The word MX is formed by appending to M the name X. Now, after Y
applies D,, to EY(MX) to get MX, he checks whether the suffix of the string
matches the declared name of the sender, i .e ., X. If it does not, he knows that
someone has meddled with the message and simply terminates his
participation in this instance of the protocol . Otherwise, he computes Ex(M)
and sends (Y, Ex(M), X) .

This protocol is indeed secure . A formal way to prove it will be shown in
Section 3 .

One may be led to believe that name-appending is the cure for all evils,
but consider this seemingly "even safer" protocol :

EXAMPLE 3 . (1) (X,E,,(E,,(M)X), Y),
(2) (Y, Ex(M), X) .

Here the name X is appended to E,,(M) instead of to M itself. This protocol
is insecure!

One can use the algorithm of Section 3 to verify that this protocol is
insecure. There are two natural ways to crack this protocol. One method is
as follows : Z sends (Z, E,,(E,,(E,,(M) X)), Y), receives (Y, EZ(E,,(M) X), Z),
sends (Z, E,,(E,,(M) Z), Y) and receives (Y, E z(M), Z). Another method : Z
sends (Z, Ex(Ex(M) Z), X) and receives (X, EZ(M), Z) .

In addition to the operator Ex and Dx , we have used in the last two
examples two more operators, which we shall denote ix and dx . If X is a
string (name of user X) and M is a string (message) then ix(M) = MX. Let S
be a string, dx(S) is defined as follows . If X is a suffix of S, i.e ., S = MX,

60

then dr(S) = M ; else, dr(S) is undefined, which means that the participation
in this instance of the protocol is terminated . Clearly,

dd ii = A

but i X dX(S) is not even defined (unless S =MX for some M).
Let us also define an operator d, which is simply the removal of the

appended user name . This is easy to do, if, for example, all names use
exactly the same number of bits . Therefore, it is natural to assume that a
saboteur can perform d . Thus, for every user name X,

diX = A

but again ixd(S) = S only if S = MX.
In general we shall assume that there is a set of operators E which can be

used by the participants in the network . Some operators may have a user
name subscript (such as Ex, Dx , ix , and dX in our examples) . The subset of
operators, which user X can perform will be denoted by EX and will be
called X's vocabulary. The vocabularies of all users are similar in the sense
that if one replaces the index X by Y, and Y by X, in XX , the result is 2;y .

Also, there will be a given set of cancellation rules of the form CT = A,
where a and r are elements of X . If both a and r are indexed then the indices
are the same . The cancellation rules are similar for all users . Thus, if one or
both operators are indexed then the same cancellation rule holds for every
user name index .

In our examples,

E' _ {d} U {EX, DX , ix , dX I X is a user name},

EX = {d, DX } U {Ey , i y , d, I Yis a user name},

and the cancellation rules are

EXDX = A,

DXEX = A,

dx ix = A,

and
dix = A,.

Note that if a, b, c E E', ab = A and be = A then a = c . This follows from
the fact that members of L' are operators : Let w E {0, 1 } *. abc(w) =
a(bc(w)) = a(w), since be = A, but on the other hand, abc(w) =
ab(c(w)) = c(w) . Thus a = c.

Given a string a E L'*, one may repeatedly apply cancellation rules until

DOLEV, EVEN, AND KARP

PING-PONG PROTOCOLS 61

no cancellation rule is applicable any more . By the previous paragraph, the

reduction process has the Church-Rosser property (Rosen, 1973), and thus
the end result is unique. Let us denote this reduced form of a by a .

An underlying assumption in our analysis is that the set E is free from any
relations other than those implied by the cancellation rules . That is, two

strings of operators, a and /3 are equivalent if and only if both have the same
reduced form .

II. PING-PONG PROTOCOLS AND SECURITY

DEFINITION . A ping-pong protocol P(S, R) is a sequence

T = (a, , a 2 , . . ., a,) of operator-words, such that if i is odd then ai E Z and if

it is even then a; E ER .

The structure of the protocol is similar for every ordered pair of (different)

users. Thus, if in P(V, W), we replace the index V by X, and W by Y, we get

P(X, Y). We assume that for every two users X and Y, P(X, Y) may be

initiated, i .e ., there are no restrictions, imposed by the network or the users,

on communication via P.

In Example 1, a, [S, R] = E,, a 2 [S, R] = EsDR and l = 2 . In Example 2,

a, [S, R] = ER i s , a 2 [S, R] = ES dsDR and again 1=2. In both examples,

a,(M) is sent by S to R and a z a,(M) is sent by R, back to S .

In general the interpretation is as follows : S invents a message-word

M E {0, 1) * . He applies a, to it and sends it to R; i .e ., the first step is

(S, a,(M), R) . Next (R, a z a,(M), S), etc. If l is odd the last step is

(S, a,a l , . .) a,(M), R) and if l is even, then it is (R, a,a,_, • • • a,(M), S) .
In this paper, we are not concerned with the purpose of using P . Instead,

we are interested only in the question of whether a saboteur (or a group of
them) can extract M.

Thus, we assume that some user S has invented a message M, chosen a

user R and initiated P(S, R) on M. We assume that neither S, nor R, is a

saboteur. We have to define what are the actions which the saboteur(s) can

take .
We shall assume that for every 1 < i < 1, for every two different users X

and Y and for every WE {O, 1 } * the saboteur can effect ai [X, Y] on W. We
shall explain, shortly, why we make this assumption, but if one believes that
this is too conservative one may restrict the saboteur actions, and as long as

these restrictions are symmetric (not username dependent), an 0(n 3)
algorithm for checking security still exists . For example, one could assume

that a saboteur cannot effect a, [S, R] if he is not S, or that he cannot effect

a; [S, R], 1 <i<1, ifhe is not S .
Let us denote the saboteur by Z. If X = Z, then Z has no difficulty to get

a, (W), since a, E EZ . If X ~ Z (and X is not one of the collaborating

62 DOLEV, EVEN, AND KARP

saboteurs) Z may be able to convince X to initiate P(X, Y) on W. By tapping
the message (X, a,(W), Y), Z will get a,(W).

In order to effect a, [X, Y] on W, for 1 < i < l, Z can wait for P(X, Y) to
occur (or somehow convince X to initiate it), wait for the (i - l)th message,
(X, a t _, a ;_ 2 . . . a,(M), Y)-assuming i is even, intercept it and replace it
with (X, W, Y). Now, Y responds with (Y, a,(W), X), as expected of him
(assuming a,(W) is defined) and sends it through the network, where Z can
tap it. It follows that the language of operator-words which a single saboteur
Z can effect (on any WE (0, 11*) is

d = [EZ U {ajX, Y] 11 < i < l, X and Y are different users }] * .

DEFINITION . Let a, [S, R] be the first operator-word of P(S, R) and
Z (~ {S, R } . P is insecure if there exists an operator-word y E .A such that
ya, =), .

Observe that it is not necessary to consider a, a ;_, a,(M), for 1 < i < 1,
which is also heard over the network . For if a y C .J exists which satisfies
ya ; a ; _, • • • a, =) then there is a y' E d (in fact y' = ya ; a ; _, • a2 will do)
for which y'a, = A .

In the definition of security given above, we called P insecure if for some
ordered pair of users (not including saboteurs), a y C .A exists for which
ya, =, . In fact, such a y exists for one pair (S, R) if and only if it exists for
every set of users. This follows immediately from the fact that change of
names of users does not change the pattern of cancellations . Thus, in what
follows we shall restrict our attention to a fixed pair of users, (S, R), free of
saboteurs, and only consider the question of whether for a, [S, R] a y E d
exists which satisfies ya, = ~ .

One may wonder why we have defined A to include Z,, but have not
allowed a set of saboteurs {Z„ Z 2 , . . ., Zm } and put UT, .E,, in A instead .
Let us show that this is not necessary, since whatever a set of saboteurs can
do, a single saboteur can do also .

Assume y = 6,#, 82/32 - " #1 6k+ 1 , where for every 1 <j < k + 1,
*

S; E f U -yZ I
L PM- 1

	

~v

and for every 1 <j < k, /3j is some a; [X, Y], where X ~ Y and

y • a,[S,RI =). .

We may assume that if f3, = a; [X, Y] then the performer of a 1 (X for odd i, Y
for even i) is not a saboteur, for otherwise a ; E [U Z, j * and there is no
need to single out /3,, which can be absorbed in 8; .

	

P

If we now replace saboteur Zp by Z, for all p, in y, the cancellation will

PING-PONG PROTOCOLS

	

63

still occur, and all a,'s used (for ft's) will still be legitimate, since its two
users will be different. Thus, if a y exists for a set of saboteurs, it exists for
one .

Our next goal is to restrict A even further, in order to simplify the security
decision problem. Let us show that if a y E A exists, for which
y • a, [S, R] =), then the same statement holds for

A'= {_ZU{a;[X,Y] 1 i<l,X~Yand{X,Y}cR,S,Z}}* .

If we replace each user U Q~ {R, S } who appears in y by Z, the cancellation
pattern is maintained while each a ; either remains legitimate (with two
different users X, Y, {X, Y} (-- {R, S, Z}) or becomes an operator-word in
EZ . This proves that we can replace A by A' in the security decision
problem .

I II. AN ALGORITHM FOR CHECKING PROTOCOL SECURITY

Construct a nondeterministic finite state automaton A, as follows :
(1) State 0 is the (unique) initial state and state 1 is the (unique)

accepting state . The (input) alphabet is E = EZ U ES U ZR .
(2) There is a directed path from state 0 to state 1 whose (input)

labels correspond to a, [S, R] .
(3) For every input letter (operator) a E E Z , there is a self-loop from

0 to 0, labelled a.
(4) For every a, [X, Y], 1 < i < l and {X, Y} c {R, S, Z} there is a

loop from 0 to 0 whose edges are labelled, in sequence, by the letters of a ; .

Consider the protocol of Example 2 . We have seen that a, [X, Y] =E,,ix
and a 2 [X, Y] =ExddD,, . Thus, the automaton A is as shown in Fig. 1. The
self-loop labeled a E EZ represents 11 self-loops, i .e ., one for each member of
E'Z , where

EZ = {ER , Es , EZ , D Z , 1 R , is' 1Z , dR , ds , dZ , d} .

The security question, therefore, translates into the following : Is there no
accepting path, in A, whose corresponding input word w satisfies w = a,? The
protocol is secure if and only if no such collapsing word is accepted by A .

In our example, the loops whose intermediate states are 11 to 20, are all
superfluous, since they correspond to words in -Y* . Thus, A can be
simplified, as shown in Fig . 2.

Let us assume that the (simplified) automaton A has been constructed and
that its set of states is S = {0, 1, . . ., s } . We say that a directed path, p, in A

64

FIGURE 2

PING-PONG PROTOCOLS 65

collapses, if its corresponding word w collapses, i .e., w =,I. Define the
collapsing relation C c S X S as follows : (i,j) E C if there is a directed path
from i to j, in A, which collapses. The security question is therefore reduced
to the question of whether (0, 1) E C . The protocol P is secure if and only if

(0, 1) 6-t- C .
In what follows, i ->uj stands for an edge from state i to state j, labelled C .

Q is a queue of pairs of states. Our algorithm for constructing C is as
follows :

(0) C <- {(i, i) 1 0 < i < s}, Q+-C . [Comment : Each new pair of C

enters Q once]

while Q ± 0, do

(1) Delete the first pair, (i, j), from Q .

(2) If (j, k) E C and (i, k) (i~ C then put (i, k) in C and in Q .

(3) If (k, i) E C and (k,j) (~ C then put (k,j) in C in Q .

(4) If k->° i and j-,T l and az=) [is one of the cancellation rules]
and (k, l) c~ C then put (k, l) in C and in Q . od

The algorithm terminates, since there can be at most (s + 1) 2 pairs in C
and each can cause the loop to occur one ; the number of operations in each
pass of steps (1)-(4) is easily seen to be finite . We shall shortly examine the
time complexity questions more closely .

THEOREM 1 . The algorithm generates the collapsing relation C of
automaton A .

Proof. For every (i, j) E C let l(i, j) be the length of a shortest collapsing
path from i to j. It is easy to see that each (i, j) which is put in C by the
algorithm belongs there . We prove that if (i, j) E C then the algorithm will
put it into C, by induction on l(i, j). If l(i, j) = 0 (i .e ., i =j) then (i, j) is put
in C in step (0).

Assume now that all (i, j) E C for which l(i, j) < L have been put in C ; let
us prove that if l(i, j) = L then it is put in C also. Let w be the word which
corresponds to some shortest collapsing path for (i, j) . Let o be the first letter
of w . Eventually, in the process of collapsing w, o is cancelled with some r
via a cancellation rule or = A . Thus, w = aw, aw 2 .

If w 2 = A, then for ac = A to happen, w, must vanish first . Thus, w, = A .
Now if w, corresponds to a (p, q) path, since l(p, q) = L - 2, by the
inductive hypothesis (p, q) has been put in C and in Q. When it leaves Q, the
pair (i, j) is discovered via step (4), if it has not been generated earlier .

If W2 ~ A then both aw, z = . and w2 = A. Let k be the state on the path
between 6w, r and w2 . Clearly both (i, k) and (k, j) are in C, and since
l(i, k) < L and l(k, j) < L, by the inductive hypothesis both have been put in

66

	

DOLEV, EVEN, AND KARP

C and Q. When the last of them leaves Q, either through step (2) or step (3),
(i, j) will be generated and put in C, if it has not been put in C earlier .

Q.E.D .

If we apply the algorithm to the automaton of Example 2 (Fig . 2), the
final matrix, describing C, is as follows :

Since the (0, 1) cell is empty (i .e ., (0, 1) E~ C), the protocol of Example 2 is
secure .

In the complexity analysis which follows, we assume the RAM model, and
that the basic word-length is sufficient to accommodate all the operators .
Thus, the test of whether ar =) takes constant time .

THEOREM 2 . The time-complexity of the algorithm for constructing the
collapsing relation of automaton A (of s + 1 states) is O(s 3 + s 11, 1).

Proof. Note that for all states v :f- 0, the in-degree, d;,,(v), is exactly 1,
and the out degree, do.#), is at most 1 . For state 0, both d;,,(0) and d o „ t(0)
are bounded by s + If, 1 . Now consider the loop (1)-(4) of the algorithm .

If i + 0, j :f- 0, then step (2) takes at most s steps, since all we have to do
is compare the ith row of the matrix describing the current, C, with the jth
row. A similar observation holds for step (3), using columns. For step (4)
there is only one a and one r to check . Thus, in this case the loop takes time
O(s), and since the number of such pairs in C is bounded by s 2, the total
time spent on such pairs is O(s 3) .

If i = 0 but j =,4: 0, then steps (2) and (3) are still O(s) time, while step (4)
is O(JZZ (+ s) since we have to check each incoming edge k->° 0 against the
j -J 1 edge (assuming j + 1) to see if 6r = A, and the number of incoming

0 1 2 3 4 5 6 7 8 9 10

0 1 1 1

1 1
2 1

3 1 1 1 1
4 1 1 1 1 1 1

5 1 1 1
6 1 1 1 1 1 1

7 1 1 1 1 1
8 1 1 1 1 1 1

9 1 1 1
10 1 1 1 1 1

	

1

PING-PONG PROTOCOLS 67

edges (k -4° 0) is bounded by If, I + s. Since the number of such pairs is s,
the total time spent on such pairs is 0(s(I EZ I + s)). The case of j = 0 but
i * 0 is similar .

Finally, if both i = 0 and j = 0, steps (2) and (3) are redundant, while
step (4) takes O(s(IEZ I + s)) time, since each incoming edge i -v' 0 (i * 0)
has to be checked against each of the do „ t (0) (<I . ' I + s) outgoing edges,
and each 0+Tj (j # 0) has to be checked against each of the d;,,(0)
(< If, I + s) incoming edges, but there is no need to check a self-loop against
a self-loop . Thus, the time spent in this case is also 0(s(12 + s)) .

	

Q.E.D.

Let us denote by n the length of the protocol P, which is measured as

where I a ; I is the length of the operator-word a ; . Thus, n is the total number
of operators used in P. Since each word a 1 [X, Y] generates exactly 6 loops in
the automaton A (one for each choice of an ordered pair of users (X, Y) out
of the set {S, R, Z},) the number of states s of A is 0(n), while the number of
self-loops is I EZ 1 . If the operators (and cancellation rules) are fixed and are
not part of the input of the security problem, then JE'Z j and the table of
cancellation rules is of constant size .

Thus, Theorem 2 implies, immediately, the following corollary :

COROLLARY 1 . For fixed vocabulary and cancellation rules, there exists
a security checking algorithm ofping gong protocols (of two users) . Its time-
complexity is 0(n 3), where n is the length of the protocol .

In fact, one may allow the definition of the generic vocabulary and
cancellation rules to be part of the input, and still maintain the 0(n 3) bound
on the time-complexity . One only needs to incorporate the preparation of the
cancellation rules in form of a table into the algorithm (in time 0(n2)). Thus,

COROLLARY 2 . For ping gong protocols of two users there exists a
security checking algorithm whose input is the generic cancellation rules and
the protocol. Its time-complexity is 0(n 3), where n is the length of the input .

EPILOGUE

Essentially, the problem we have solved in Section III is that of checking
whether the intersection of a regular language and a certain context-free
language is non-empty . Classically, if one is given a context-free language L,
by a grammar G in CNF, and a regular language R, by a nondeterministic

68

	

DOLEV, EVEN, AND KARP

automaton A, one constructs a new grammar G' which defines L r1 R, and
then one can check in linear-time whether G' defines the empty language . If
the description of G is of length m and A is of n states then G' comes out of
size O(n3m). Thus, this leads to an 0(n3)-time, 0(n 3)-space algorithm to
solve the security problem, while our solution is 0(n 3)-time, 0(n 2)-space. In
fact, our algorithm can be generalized to answer the question of whether
L n R is empty, in O(n 3m)-time. O(n 2m)-space .

Another issue is that of protocols for k > 2 users . If one assumes that for
P(UI , U2 , . . ., Uk) the saboteur can effect every a ; for k users, not necessarily
distinct, then one saboteur is as powerful as many, and an 0(n 3) security
checking algorithm similar to the one shown in Section III follows . However,
it is natural to assume that this is not the case, since the user who is
supposed to perform a I , observing that not all k users are distinct, will
become suspicious and will not cooperate .

Even and Goldreich have recently shown that there is an 0(k) bound on
the number of "useful" saboteurs . Thus, for a fixed k an 0(n 3) security
checking algorithm exists . However, if the number of users of P is part of the
problem's intput this observation is not useful since the straightforward
extension of the algorithm leads to an exponential blow up .

The problem of testing the security of protocols which are not of the ping-
pong type remains wide open .

ACKNOWLEDGMENTS

The authors would like to thank Oded Goldreich and Michael A . Harrison for helpful
discussions .

REFERENCES

DIFFIE, W. AND HELLMAN, M. E. (1976), New directions in cryptography, IEEE Trans .
Inform . Theory IT-22 (6), 644-654 .

R(VEST, R. L ., SHAMIR, A., AND ADLEMAN, L. (1978), A method for obtaining digital
signatures and public-key cryptosystems, Comm. ACM 21 (2), 120-126.

NEEDHAM, R. M . AND SCHROEDER, M. D. (1978), Using encryption for authentication in
large networks of computers, Comm. ACM 21 (12), 993-999 .

DOLEV, D. AND YAO, A. C. (1983), On the security of public key protocols, IEEE Trans .
Inform . Theory IT-30 (2), 198-208 .

ROSEN, B. K. (1973), Tree-manipulating systems and church-rosser theorems, J. Assoc .
Comput. Mach. 20 (1), 160-187 .

Printed by the St . Catherine Press Ltd., Tempelhof 41, Bruges, Belgium

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

