
ar
X

iv
:c

s.
C

R
/0

50
90

56
 v

1
 1

9
Se

p
20

05

PAIRING-BASED IDENTIFICATION SCHEMES

DAVID FREEMAN

Abstract. We propose four different identification schemes that make use of bilinear pairings, and
prove their security under certain computational assumptions. Each of the schemes is more efficient
and/or more secure than any known pairing-based identification scheme.

1. Introduction

An identification scheme is a protocol whereby Peggy the Prover proves to Victor the Verifier
that she is indeed who she says she is. In practice, Peggy’s identity is encoded in a private key a
and a public key y. The protocol takes the form of Peggy proving to Victor that she has knowledge
of the private key a. For example, the private key might be a and the public key y = xa (mod p),
where a and x are integers and p is a prime number, and Peggy proves her identity by demonstrating
that she knows the discrete logarithm of y to the base x. Now, Peggy could simply tell Victor a,
and Victor could verify that a is the correct private key, but then Victor could impersonate Peggy
to a third party. A viable identification scheme must prevent this from happening; we require that
Victor can’t impersonate Peggy even if she proves her identity to him polynomially many times.
Because of this property, an identification scheme is also called a zero-knowledge proof of identity.

Feige, Fiat, and Shamir [7] introduced the first identification scheme in 1988, based on the
difficulty of inverting RSA. Soon thereafter, Guillou and Quisquater [9] and Schnorr [15] introduced
their own identification schemes, based on RSA and discrete logarithms respectively. These two
schemes are still amongst the most efficient and well-studied identification schemes, though their
security has never been reduced to a standard computational problem such as factoring or discrete
logarithms.

Identification schemes are closely related to signature schemes. For example, one way for Peggy
to prove her identity to Victor is for him to ask her to digitally sign a message of his choice; if the
signature is hard to forge, then a valid signature will constitute an acceptable proof of identity.
On the other hand, many of the standard identification schemes can be converted to a signature
scheme by replacing Victor with a one-way hash function.

Recent years have brought a host of signature schemes that make use of bilinear pairings. The
first of these was the short signature scheme of Boneh, Lynn, and Shacham in 2001 [6]. This
was quickly followed by a spate of pairing-based schemes designed for various applications: group
signatures, ring signatures, aggregate signatures, multisignatures, threshold signatures, and more.
Given this plethora of pairing protocols and the close relationship between identification schemes
and signatures, it is natural to ask whether there might be a pairing-based identification scheme
that has some advantage over the GQ or Schnorr schemes. The first step in this direction was
taken by Kim and Kim in 2002 [11]. Their scheme was later shown to be flawed; others have since
proposed pairing-based identification schemes [10], [16], [17], but none has given a convincing proof
of security with a tight reduction.

In this paper, we present four new identification schemes based on pairings, and prove their secu-
rity given certain computational assumptions. We begin in Section 2 by giving a formal definition
of security for identification schemes, reviewing some standard computational assumptions, and
describing the bilinear pairings useful for cryptography. In Section 3, we describe a basic scheme

1

based on the Boneh-Lynn-Shacham signatures and prove its security in the random oracle model
under the Computational Diffie-Hellman assumption. Since the random oracle model is somewhat
unsatisfactory for proving security of identification schemes, in Section 4 we modify the scheme so
that it does not require the use of hash functions. To prove security of this new scheme we intro-
duce a new assumption, called the “one-more-Computational Diffie-Hellman” assumption, which is
related to several existing assumptions in the literature.

In Section 5 we take another tack, adapting a signature scheme that does not make use of
random oracles for its proof of security. The proof of security of this scheme relies of the “Strong
Diffie-Hellman assumption,” an analogue of the “Strong RSA assumption” used to prove security
of RSA signatures. Finally, in Section 6 we introduce a scheme whose proof of security relies on the
assumption that the pairing used is a one-way function. We show that this assumption is weaker
than any other made in this paper, and thus this scheme is the most secure of our new schemes.

Having presented our four new schemes and proved their security, in Section 7 we describe
two other pairing-based identification schemes in the literature, and in Section 8 we examine the
bandwidth and computational requirements of all six schemes. We conclude that each of our four
protocols is the preferred identification scheme in some context, for either efficiency or security
reasons.

1.1. Acknowledgments. Research for this paper was conducted during a summer internship at
HP Labs, Palo Alto. I thank Vinay Deolalikar for suggesting this problem and for providing advice
and support along the way. I also thank Gadiel Seroussi for bringing me to HP and for supporting
my research.

2. Preliminaries

2.1. Identification schemes. Formally, an identification scheme consists of a key-generation al-
gorithm G that creates a valid set of keys a (Peggy’s private key) and pa (Peggy’s public key), and
an interactive protocol (P,V) that takes as input the public and private keys, and outputs 1 (ac-
cept) or 0 (reject). We require that if both users follow the protocol and use a valid public/private
key pair, the protocol always outputs 1 (accepts). We also require that any cheating prover A that
does not know Peggy’s private key cannot interact with an honest verifier V and give output 1;
this is a “passive attack.” Furthermore, we require that a cheating verifier B cannot interact with
Peggy, pass what he learns on to the cheating prover A, and have A interact with an honest verifier
V and output 1; this is an “active attack.” We note that a passive attack is a special case of an
active attack, in which B outputs nothing. This leads us to the following definition:

Definition 2.1 (cf. [8, Definition 4.7.8]). A (t, q, ǫ)-identification scheme is a triple (G,P,V), where
G is a probabilistic polynomial-time algorithm and (P,V) is a pair of probabilistic interactive
machines running in time at most t, satisfying the following conditions:

• Viability: For any α ∈ {0, 1}n, let G(α) = (aα, pα). Then

Pr [〈P(aα, pα),V(pα)〉 = 1] = 1.

• Security: For any α ∈ {0, 1}n, let G(α) = (aα, pα). For any probabilistic interactive machine
B running in time at most t, let Tα be a random variable describing the output of B(pα)
after interacting with P(aα, pα) q times. Then for any probabilistic interactive machine A
running in time at most t,

Pr [〈A(pα, Tα),V(pα)〉 = 1] < ǫ.

Note that the security condition implies that a third party, Malice, cannot impersonate Peggy to
Victor, provided that Malice cannot interact concurrently with Peggy and Victor. Indeed, if Malice

2

can interact concurrently with both, she may impersonate Peggy by referring Victor’s queries to
Peggy and relaying the response back to Victor.

2.2. Computational assumptions. All of public-key cryptography relies on certain computa-
tional assumptions for its security; e.g. that factoring is difficult. The assumptions relevant to our
identification schemes are of the Diffie-Hellman type, named after the two creators of public-key
cryptography. The original Diffie-Hellman problem is known as the Computational Diffie-Hellman
(CDH) problem.

Definition 2.2. Let G be a cyclic group of order n, let g ∈ G, and let a, b ∈ Zn. The Computational
Diffie-Hellman problem in G is as follows: Given {g, ga, gb}, compute gab.

The (t, ǫ)-Computational Diffie-Hellman assumption holds in G if there is no algorithm A : G
3 →

G running in time at most t such that

Pr
[

A(g, ga, gb) = gab
]

≥ ǫ,

where the probability is taken over all possible choices of (g, a, b).

It is possible that given a triple (g, ga, gb), it is hard to compute gab but easy to compute some
partial information about gab, such as its least significant bit. To ensure that no such partial
information can be gained, we must make an even stronger assumption, known as the Decision
Diffie-Hellman (DDH) assumption.

Definition 2.3. Let G be a cyclic group of order n, let g ∈ G, and let a, b, c ∈ Zn. The Decision
Diffie-Hellman problem in G is as follows: Given {g, ga, gb, gc}, determine whether gab = gc.

The (t, ǫ)-Decision Diffie-Hellman assumption holds in G if there is no algorithm A : G
4 → {0, 1}

running in time at most t such that
∣

∣

∣
Pr

[

A(g, ga, gb, gab) = 1
]

− Pr
[

A(g, ga, gb, gc) = 1
]
∣

∣

∣
≥ ǫ,

where the probabilities are taken over all possible choices of (g, a, b, c).

2.3. Bilinear maps and pairings. Joux and Nguyen [12] showed that an efficiently computable
bilinear map on G gives an algorithm for solving the Decision Diffie-Hellman problem on G. Boneh,
Lynn, and Shacham [6] make use of this property in their signature algorithm by using the pairing
to verify that the signature creates a valid Diffie-Hellman tuple. Our identification schemes will
use pairings in their verification procedures in a similar manner.

The following definition gives the conditions necessary for a bilinear map to be useful for crypto-
graphic purposes. To simplify our exposition, we will consider only the case where both arguments
of the pairing are in the same group; for the more general case, see [6].

Definition 2.4. Let G1 and G2 be cyclic groups of prime order p. A map e : G1 × G1 → G2 is a
cryptographic pairing if the following conditions hold:

• Bilinearity: for all x, y ∈ G1 and a, b ∈ Z, e(xa, yb) = e(x, y)ab.
• Non-degeneracy: if g is a generator of G1, then e(g, g) is a generator of G2.

Remark 2.5. A cryptographic pairing e can be used to solve the DDH problem on G1 as follows:
given {g, ga, gb, gc}, where g is a generator of G1 and a, b, c are integers, compute h1 = e(g, gc) and
h2 = e(ga, gb). Then h1 = h2 in G2 if and only if c = ab (mod p). If the CDH problem in G1 is
hard and the DDH problem is easy (e.g. if there is a cryptographic pairing on G1), G1 is known as
a Gap Diffie-Hellman group. The Gap Diffie-Hellman problem is to solve the CDH problem given
an oracle for the DDH problem.

3

The only known examples of cryptographic pairings are derived from the Weil and Tate pairings
on elliptic curves over finite fields. The study of these groups is deep and beautiful and is of great
interest to current researchers. However, in describing our protocols we will not take into account
the structure of the groups involved in the pairing; rather, we will make certain computational
assumptions about the group and use the pairing as a “black box.” For further information on
elliptic curves, see [3] or [4].

3. Identification scheme based on BLS signatures

A particularly simple method of building identification schemes is to use a digital signature
algorithm. Victor the Verifier sends a random message to Peggy the Prover, Peggy signs the
message with her secret key, and Victor verifies that the signature is correct. If the signature
scheme is secure against forgery, the cheating prover has a negligible chance of creating a valid
signature on a random message given him by an honest verifier, no matter how many signatures he
has obtained from the honest prover.

Boneh, Lynn, and Shacham [6] were the first to devise a digital signature scheme based on
pairings. The algorithm provides for signatures of half the length of a DSS signature with an
equivalent level of security, and as such it makes for a particularly efficient identification scheme
in terms of bandwidth. A full description of the BLS signature scheme, along with a definition
of security for signature schemes and the security theorem for the BLS scheme, can be found in
Appendix A.

We now show how the BLS signature scheme can be adapted nearly verbatim to serve an an
identification scheme. We describe the scheme as an interactive protocol between Peggy the prover
and Victor the verifier.

Protocol 3.1. Let G1, G2 be cyclic groups of prime order p, and let e : G1 × G1 → G2 be a
cryptographic pairing. Let g be a generator of G1. Let H : {0, 1}∗ → G1 be a full-domain hash
function.

Key generation: Pick random x ← Zp, and compute v ← gx. The public key is v, and
Peggy’s secret key is x. Let n be a positive integer.

Interactive protocol:
(1) Victor sends Peggy a random M ∈ {0, 1}n.
(2) Peggy computes h = H(M) and sends Victor σ = hx.
(3) Victor computes e(g, σ) and e(v, h). If the two are equal he outputs 1 (accept); else he

outputs 0 (reject).

Since our signature makes use of a hash function and the proof of security is in the random oracle
model, we must add another parameter to our description of security of identification schemes. We
say that a scheme using a hash function is a (t, q, r, ǫ)-identification scheme if the conditions of
Definition 2.1 hold, with the additional requirement that (A,B) make no more than r queries to
the hash function.

Theorem 3.2. Suppose the (t′, ǫ′) Computational Diffie-Hellman assumption holds in G1. Then
Protocol 3.1 defines a (t, qS , qH , ǫ)-identification scheme for all t and ǫ satisfying

ǫ ≥ 2ne(qS + 1)

2n − q
· ǫ′ and t ≤ t′ − c(qH + 2qS),

where c is a constant that depends on G1, and e is the base of the natural logarithm.

Proof (sketch). If Peggy and Victor follow the protocol, then Protocol 3.1 satisfies the viability
condition of Definition 2.1, since

e(g, σ) = e(g, hx) = e(g, h)x = e(gx, h) = e(v, h)
4

by bilinearity of e. The security follows from the security of the BLS scheme: a successful cheating
prover A will send an element σ in step (2) that is accepted by the honest verifier. This σ is, with
high probability, a valid BLS signature for a previously unseen message M . The security of the
BLS scheme against existential forgery under chosen-message attack thus implies the security of
Protocol 3.1. The exact bounds for the running time and success probability follow from the proof
of security of the BLS scheme (Theorem A.3). For details, see Appendix B. �

4. Identification schemes based on the one-more-CDH assumption

Protocol 3.1, an identification scheme derived directly from the BLS signature scheme, is unsatis-
factory in several ways. While the communication overhead is minimal (one element of G1 and one
random string which needs only to be large enough to avoid hash collisions), the prover and verifier
must both compute the hash of the parameter M , which adds computational time. In addition,
the proof of security is in the random oracle model, which requires us to introduce another security
parameter and to assume that the hash function H acts as a random function. Recent attacks on
SHA-1 and other hash functions have called into question the credibility of such an assumption, so
we would ideally like our identification schemes to be hash-free.

Our first attempt at constructing a pairing-based identification scheme that does not use hash
functions is simply to recreate the scheme based on BLS signatures, but do away with the hash
function.

Protocol 4.1. Let G1, G2 be cyclic groups of prime order p, and let e : G1 × G1 → G2 be a
cryptographic pairing. Let g be a generator of G1.

Key generation: Pick random x ← Zp, and compute v ← gx. The public key is v, and
Peggy’s secret key is x.

Interactive protocol:
(1) Victor sends Peggy a random challenge h ∈ G1.
(2) Peggy computes sends Victor σ = hx.
(3) Victor computes e(g, σ) and e(v, h). If the two are equal he outputs 1 (accept); else he

outputs 0 (reject).

We can think of Protocol 4.1 as Protocol 3.1 where instead of sending a random message M
in step (1), Victor sends the hash h of the message M ; if the hash is random, then h is just a
random element of G1. With this modification, the reduction of the scheme to the Computational
Diffie-Hellman assumption in G1 breaks down, as that reduction requires that Peggy can’t compute
M from h. The security of this scheme thus requires a different assumption.

To determine what kind of security assumption we need to make, we examine the behavior of
an attacker. The cheating verifier A interacts with the honest prover P by sending q queries of her
choice h1, . . . , hq and receiving the ‘signature’ of each message, hx

1 , . . . , hx
q . The cheating prover B

must then take a random query h and return hx. (Note that by the bilinearity of the pairing e, hx

is the only element that B can send in step (2) that will cause an honest verifier to accept.) If q = 0,
then this is the Computational Diffie-Hellman problem: compute hx from {g, gx, h}. If q > 0, we
are asking for the solution to a CDH problem given the solution to q related CDH problems. We
formalize this notion in the following definition.

Definition 4.2. Let G be a finite cyclic group. Let A be a randomized algorithm that takes
input g, ga ∈ G and has access to two oracles. The first is a CDH oracle CDHg,ga(·), which on
input h ∈ G returns ha ∈ G. The second is a challenge oracle C() that, when invoked, returns
a random challenge point r ∈ G. Furthermore, we require that A cannot invoke its CDH oracle
after it has invoked the challenge oracle. We say that algorithm A has advantage ǫ in solving the

5

one-more-CDH problem in G if

Pr [A(g, ga, r ← C()) = ra] ≥ ǫ,

where the probability is taken over the choices g and ga input to A and the r output from C().
We say the (t, q, ǫ)-one-more-CDH assumption holds in G if there is no algorithm A that runs in

time at most t, makes at most q queries to its CDH oracle, and has advantage at least ǫ in solving
the one-more-CDH problem in G.

Definition 4.2, while it has not appeared previously in the literature, is closely related to the
“one-more-RSA-inversion” and “one-more-discrete-logarithm” problems defined by Bellare, et al.
[1]. Bellare and Palacio [2] use these assumptions to prove the security of the well-known Guillou-
Quisquater and Schnorr identification schemes, so it seems eminently reasonable that we should
have to use a similar assumption in proving the security of our scheme.

We now prove the security of Protocol 4.1 based on the one-more-CDH assumption.

Theorem 4.3. Suppose the (t, q, ǫ)-one-more-CDH assumption holds in G. Then Protocol 4.1 is a
(t−O(1), q, ǫ)-identification scheme.

Proof. Let (g, gx) be the public parameters for Protocol 4.1. Suppose (A,B) is an attack that
(t, q, ǫ)-breaks Protocol 4.1 in the sense of Definition 2.1. Define an algorithm C that attempts to
solve the one-more-CDH problem in G1, as follows:

(1) For each challenge hi that the cheating verifier B sends to the honest prover P in step (1)
of the protocol, query the CDH oracle with hi. Run B on the set of outputs {hx

i }.
(2) Simulate the honest verifier V by querying the challenge oracle C(). Send the output r as

input to the cheating prover A.
(3) Output t, the element of G1 sent by the cheating prover A in step (2) of the protocol.

If (A,B) successfully breaks the identification scheme, then the element t satisfies e(g, t) = e(ga, r),
and thus by the bilinearity of the pairing, t = ra. The probability of success of C is thus at least ǫ.
Furthermore, C makes at most q queries to the CDH oracle and runs in time t + O(1). �

5. Identification scheme based on the Strong Diffie-Hellman assumption

Protocol 4.1 is very efficient, requiring an exchange of two elements of G1, one exponentiation for
the prover, and two pairing computations for the verifier. The one-more-CDH assumption required
to prove the scheme’s security seems reasonable, especially given that similar assumptions are used
in the security proofs of two well-known identification schemes [2]. However, the fact that the
one-more-CDH assumption has not previously appeared in the literature may give one pause, as it
is generally not advisable to introduce new assumptions about computational difficulty. Thus we
would like to find an identification scheme that is as efficient as Protocol 4.1 but requires a weaker
security assumption, or at least one that is more widely believed to hold for the groups used in
implementations.

The difficulty in adapting the BLS signature scheme into an identification scheme resulted from
the random oracle nature of the security proof. Thus we may have more success if we try to adapt
a signature scheme that does not require random oracles for its security. Boneh and Boyen [5] have
devised such a scheme; a full description of the scheme and the theorem describing its security can
be found in Appendix A. The security rests on an assumption known as the Strong Diffie-Hellman
assumption.

Definition 5.1 ([5, §3.2]). Let G be a cyclic group of prime order p, and let g be a generator. The q-

Strong Diffie-Hellman problem in G is defined as follows: given a (q+1)-tuple (g, gx, g(x2), . . . , g(xq))
6

as input, output a pair (c, g1/(x+c)), where c ∈ Zp. An algorithm A has advantage ǫ in solving the
q-SDH problem in G if

Pr
[

A(g, gx, g(x2), . . . , g(xq)) = (c, g
1

x+c)
]

≥ ǫ,

where the probability is over the choice of g ∈ G and x ∈ Z
∗
p.

We say that the (t, q, ǫ)-Strong Diffie-Hellman assumption holds in G if there is no algorithm A
that runs in time t and has advantage ǫ in solving the q-SDH problem in G.

In our protocol based on the Boneh-Boyen scheme, Victor the Verifier sends a random challenge
message to Peggy the Prover, which Peggy then signs with her private key.

Protocol 5.2. Let G1, G2 be cyclic groups of prime order p, and let e : G1 × G1 → G2 be a
cryptographic pairing. Let g be a generator of G1.

Key generation: Pick random x, y ← Z
∗
p, and compute u ← gx, v ← gy, and z ← e(g, g).

The public key is (u, v, z), and Peggy’s secret key is (x, y).
Interactive protocol:

(1) Victor sends Peggy a random m ∈ Z
∗
p.

(2) Peggy chooses a random r ∈ Z
∗
p, computes σ = g1/(x+m+yr), and sends Victor (σ, r).

(3) Victor computes e(σ, u · gm · vr). If the result is equal to z he outputs 1 (accept); else
he outputs 0 (reject).

Theorem 5.3. Suppose the (q′, t′, ǫ′)-SDH assumption holds in G1. Then Protocol 5.2 defines a
(t, q, ǫ)-identification scheme, provided that

q ≤ q′, ǫ ≥ 2ǫ′ ·
(

p

p− q

)

+
2q

p− q
≈ 2ǫ′ and t ≤ t′ −Θ(q′2T),

where T is the maximum time for an exponentiation in G1.

Proof. We first check the viability condition. If Peggy and Victor both follow the protocol, then
Victor will always accept, since

e(σ, u · gm · vr) = e(g1/(x+m+yr), gx · gm · gyr) = e(g, g) = z

by bilinearity of e. To check the soundness condition, given an attacker (A,B) that (t, q, ǫ)-breaks
the scheme (in the sense of Definition 2.1), we can define an attacker C that (t + O(1), q, ǫ′)-breaks
the Boneh-Boyen signature scheme, where ǫ′ = ǫ(1− q/p). The reduction is identical to that in the
proof of Theorem 3.2, and we choose not to repeat the details. �

6. Identification scheme based on pairing as a one-way function

The identification scheme of Protocol 5.2 is less efficient than that of Protocol 4.1, requiring both
more bandwidth and more computation. However, the assumption required to prove security is
weaker for the former, implying a tradeoff between efficiency and security. One may ask how far we
can carry this tradeoff: what is the weakest possible assumption necessary for a secure identification
scheme? We now propose a scheme whose proof of security rests solely on the assumption that
the pairing e : G1 × G1 → G2 is a one-way function when one argument is fixed. This assumption
is weaker than both Computational Diffie-Hellman in G1 and Decision Diffie-Hellman in G2, both
of which are standard assumptions that have been used to prove the security of a wide variety of
cryptosystems.

When we say than a pairing is a one-way function, we mean that given g ∈ G1 and y ∈ G2, it is
hard to invert the pairing; that is, to find an element h ∈ G1 such that e(g, h) = y.

7

Definition 6.1. Let e : G1×G1 → G2 be a cryptographic pairing. We say that e is a (t, ǫ)-one-way
pairing if for any algorithm A that takes as input g ∈ G1 and x ∈ G2, produces as output an
element of G1, and runs in time at most t,

Pr [e(g,A(g, x)) = x] < ǫ,

where the probability is taken over the possible values of g and x. Given any such A, we say that
A inverts the pairing with probability at most ǫ.

To support our claim that one-wayness of pairings is a weak assumption, we note that inverting
a pairing is no easier than solving either the Computational Diffie-Hellman problem in G1 or the
Decision Diffie-Hellman problem in G2. Indeed, solving the equation e(g, h) = e(ga, gb) for h
solves the CDH problem for (g, ga, gb) in G1, and solving the equations e(g, hi) = zi for hi given
zi ∈ {z, za, zb, zc} allows us to use the pairing e to determine whether zab = zc in G2. For precise
statements and proofs of these facts, see Appendix C.

Now that we are confident that inverting a pairing is a sufficiently hard problem, we forge onward
and define an identification scheme based on the difficulty of inverting a pairing.

Protocol 6.2. Let G1, G2 be cyclic groups of prime order p, and let e : G1 × G1 → G2 be a
cryptographic pairing.

Key generation: Pick random P,Q← G1, random y ← G1, and random s← Z
∗
p. Compute

v ← e(P,Q)−1 · y−s ∈ G2. The public key is (P, y, v), and Peggy’s secret key is (Q, s).
Interactive protocol:

(1) Peggy chooses random R← G1 and r ← Zp, and sends Victor x = e(P,R) · yr ∈ G2.
(2) Victor sends Peggy a random m ∈ Z

∗
p.

(3) Peggy computes T = R ·Qm ∈ G1 and a = r + ms ∈ Zp, and sends Victor (T, a).
(4) Victor computes e(P, T) ·ya ·vm ∈ G2. If the result is equal to x he outputs 1 (accept);

else he outputs 0 (reject).

Remark 6.3. It is easy to see that this protocol is viable: if Peggy and Victor both follow the
protocol, Victor will always output 1, since

e(P, T) · ya · ve = e(P,R ·Qm) · yr+ms · (e(P,Q)−1 · y−s)m

= e(P,R) · e(P,Q)m · yr+ms · e(P,Q)−m · y−ms

= e(P,R) · yr

= x.

Showing security is a trickier matter. Our proof uses the “heavy row” technique introduced by
Feige, Fiat, and Shamir [7] in their seminal paper on proofs of identity. The proof closely follows
those of Okamoto’s schemes [14] based on the discrete logarithm and RSA inversion. We state the
theorem below and give a sketch of the proof; the full proof can be found in Appendix D.

Theorem 6.4. Suppose e : G1 × G1 → G2 is a (t′, ǫ′)-one-way pairing, where ǫ′ > 3/16 and
p = |G1| = |G2| ≥ 17. Then Protocol 6.2 is a (t, q, ǫ)-identification scheme, provided that

ǫ >
2

p
and c0 +

3(t + csq)

ǫ
≤ t′

for some constants c0, cs depending on G1, G2, and the pairing e.

Proof (sketch). In Remark 6.3 we demonstrated the viability condition of Definition 2.1, so we
need only show the security condition. We suppose there is an algorithm (A,B) that breaks Protocol
6.2, and construct an algorithm C that tries to invert the pairing. Given P ∈ G1 and y ∈ G2, we
simulate Protocol 6.2 using (P, y) as the public key and our own randomly chosen private key

8

(Q∗, s∗). Successful execution of the algorithm (A,B) on this instance of the protocol gives a valid
interaction between the cheating prover A and the honest verifier V. If we run the algorithm again
and use the same random coins in the algorithm (A,B), the “heavy row” lemma tells us that we
will, with high probability, find a second valid interaction between A and V. From the transcripts
of these two interactions we can compute X ∈ G1 such that e(P,X) = y, and we have inverted the
pairing.

The specific description of the algorithm C is as follows:

(1) Given input P ∈ G1 and y ∈ G2, choose random Q∗ ∈ G1 and s∗ ∈ Zp, and compute
v = e(P,Q∗)−1y−s.

(2) Simulate Protocol 6.2 with (P, y, v) as the public key and (Q∗, s∗) as the private key.
(3) Run (A,B) on the simulated protocol 1/ǫ times. If the attack succeeds, record RAB (the

random coins of (A,B)) and the transcript (x,m, T, a).
(4) Run (A,B) on the simulated protocol 2/ǫ times, using RAB as the random coins. If the

attack succeeds, record the transcript (x,m′, T ′, a′).

(5) Let Q = (T/T ′)1/(m−m′) ∈ G1 and s = (a− a′)/(m−m′) ∈ Zp. Output

Z = (Q/Q∗)1/(s∗−s) .

If steps (3) and (4) succeed and (Q, s) 6= (Q∗, s∗), then step (5) outputs a Z such that e(P,Z) = y,
and we have inverted the pairing. Since the probability of success of (A,B) is ǫ, step (3) succeeds
with constant probability. Furthermore, if ǫ > 2/p, then for at least half of the choices of RAB, the
probability of success of (A,B) given the random coins RAB is at least ǫ/2. (This is the “heavy
row” lemma; see Appendix D for details.) Thus step (4) succeeds with constant probability at
least half of the time. Finally, the pairs (Q, s) and (Q∗, s∗) cannot be distinguished even by an
infinitely powerful cheating algorithm, so the probability that (Q, s) 6= (Q∗, s∗) is nearly 1. When
we calculate these probabilities more precisely, we find that the probability of success of C is at
least 3/16.

Finally, we analyze the running time of C. If cs is the time taken to simulate the protocol with
the private key (Q∗, s∗), then each iteration of steps (3) and (4) takes time t + csq, so those two
steps take time 3(t + csq)/ǫ. Steps (1) and (5) take a constant amount of time, say c0, so the total
running time is c0 + 3(t + csq)/ǫ. �

The assumption p ≥ 17 in Theorem 6.4 is trivial, since in cryptographic applications p ≈ 2160.
However, the assumption that e is a (t′, ǫ′)-one-way pairing with ǫ′ > 3/16 is a bit stronger than
we would like. If we remove both of these conditions we get the following reduction:

Corollary 6.5. Suppose e : G1 × G1 → G2 is a (t′, ǫ′)-one-way pairing. Then Protocol 6.2 is a
(t, q, ǫ)-identification scheme, provided that

ǫ ≥ max

{

3
√

ǫ′,
2

p

}

and t ≤ t′

2
− c0 − csq,

for some constants c0, cs depending on G1, G2, and the pairing e.

The reduction is the same as in the proof of Theorem 6.4, except we don’t iterate steps (3) and
(4) of algorithm C. For full details, see Appendix D.

7. Other identification schemes

While there have been several pairing-based identification schemes proposed in the literature,
none of these have been given full proofs of security with polynomial-time reductions. The first
such scheme, proposed by Kim and Kim [11] and based on the Gap Diffie-Hellman problem, was
shown to be breakable in constant time by any adversary knowing only the public key. Yao, Wang,

9

and Wang [17] proposed a modification of the scheme and proved it to be secure if the Gap Diffie-
Hellman problem (cf. Remark 2.5) is hard. However, their reduction requires exponential time, and
thus the proof is unsatisfactory. We will therefore not consider these two schemes when comparing
the various pairing-based identification schemes.

More recently, two pairing-based identification schemes have been proposed that appear to be
more promising. Shao, Cao, and Lu [16] have proposed a scheme very similar to our Protocol 5.2,
based on the Boneh-Boyen signature scheme. The authors claim that the scheme’s security depends
on the intractability of the Strong Diffie-Hellman problem, but they do not give a proof, and we
have not been able to come up with a reduction. The scheme is as follows:

Protocol 7.1 ([16]). Let G1, G2 be cyclic groups of prime order p, and let e : G1 ×G1 → G2 be a
cryptographic pairing.

Key generation: Pick random g ← G1 and x ← Z
∗
p, and compute v ← gx ∈ G1 and

z ← e(g, g) ∈ G2. The public key is (g, v, z), and Peggy’s secret key is x.
Interactive protocol:

(1) Peggy chooses a random w ∈ Z
∗
p and sends Victor τ = gw.

(2) Victor sends Peggy a random r ∈ Z
∗
p.

(3) Peggy sends Victor σ = g1/(xr+w).
(4) Victor computes e(σ, τ · vr). If the result is equal to z he outputs 1 (accept); else he

outputs 0 (reject).

Conjecture 7.2. Suppose there exists an algorithm (A,B) that (t, q, ǫ)-breaks Protocol 7.1. Then
there is an algorithm C that runs in time polynomial in t and q and succeeds in solving the Strong
Diffie-Hellman problem with probability polynomial in ǫ.

The final pairing-based identification scheme we consider was proposed by Hufschmitt, Lefranc,
and Sibert [10]. The scheme is similar to our Protocol 6.2.

Protocol 7.3 ([10]). Let G1, G2 be cyclic groups of prime order p, and let e : G1 ×G1 → G2 be a
cryptographic pairing.

Key generation: Pick random P ← G1 and a, b← Z
∗
p, and compute R← P a, S ← P b, Q←

P ab ∈ G1 and z ← e(P,P), v ← e(P,P)ab = e(P,Q) ∈ G2. The public key is (P,R, S, v, z),
and Peggy’s secret key is Q.

Interactive protocol:
(1) Peggy sends Victor a random r ∈ Z

∗
p and sends Victor w = zr = e(P,P)r.

(2) Victor sends Peggy a random c ∈ Z
∗
p.

(3) Peggy sends Victor σ = P r ·Qc.
(4) Victor computes e(P, σ) and w · vc in G2. If the two are equal he outputs 1 (accept);

else he outputs 0 (reject).

Hufschmitt, Lefranc, and Sibert describe a proof of security of their scheme against a “passive”
attack involving only a cheating prover A. They assert that if such an attacker breaks Protocol 7.3,
then this attacker can be used to solve the Gap Diffie-Hellman problem (cf. Remark 2.5), which is
(by definition) equivalent to solving the Computational Diffie-Hellman problem in G1.

One flaw in the design of Protocol 7.3 is that the scheme does not make use of the public
parameters R = P a and S = P b, and it appears that they are only included to allow us to reduce
breaking the protocol to breaking the Computational Diffie-Hellman problem in G1. If we ignore
these two parameters, then the passive attacker A can be used to invert the pairing e, and thus
the relevant computational assumption is not CDH but the weaker assumption that e is a one-way
pairing.

10

A more serious flaw is that while Protocol 7.3 appears to be secure against passive attacks, our
definition of security (2.1) considers an “active” attack, which involves a cheating prover A as
well as a cheating verifier B who tries to gain information by interacting with Peggy, the honest
prover. The protocol’s authors do not consider such an attack, and we have not yet found a
security assumption under which the scheme is secure. We conjecture that since the scheme is of
the same general format as the Schnorr and Guillou-Quisquater schemes ([15], [9]), the assumption
required for security of Protocol 7.3 will be similar to the assumptions required for the Schnorr
and GQ schemes. The latter are the “one-more discrete logarithm” and “one-more RSA inversion”
assumptions considered by Bellare and Palacio [2], so we expect that an analgous “one-more”
assumption will allow for a proof of security of Protocol 7.3.

8. Comparison of identification schemes

We now compare the various identification schemes we have presented in terms of bandwidth
and computation required for one iteration of each protocol. The results are summarized in Table
1.

ID Security Bandwidth Computation
Scheme Assumption G1 G2 Zp G1 exp. G2 exp. Pairings

3.1 CDH in G1 (ROM) 1 0 1∗ 1P 0 2V
4.1 one-more-CDH 2 0 0 1P 0 2V
5.2 SDH in G1 1 0 2 1P, 2V 0 1V
6.2 e is one-way 1 1 2 1P 1P, 2V 1P, 1V
7.1 SDH in G1(?) 2 0 1 2P, 1V 0 1V
7.3 ??? 1 1 1 2P 1P, 1V 1V

Table 1. Comparison of proposed identification schemes. The Bandwidth column
indicates the number of elements of G1, G2, and Zp exchanged during one instance
of the protocol. The Computation column indicates how many exponentiations in
G1, exponentiations in G2, and pairing computations the Prover and Verifier must
execute during one instance of the protocol. We note that the security proof of
Protocol 3.1 is in the Random Oracle Model. The entry 1∗ represents an element of
{0, 1}n; in practice 2n will be around the size of p.

Currently, the only pairings used in cryptographic applications are derived from the Weil and
Tate pairings on elliptic curves over finite fields Fq. These pairings map from the elliptic curve
group E(Fq) to some extension field Fqk ; the parameter k is called the embedding degree of the
curve E. For the pairing to be useful, it is necessary that the discrete logarithm problems in E(Fq)
and Fqk are both hard. Given current discrete logarithm algorithms, q ∼ 2160 and k ∼ 21024 appear
to be reasonable choices for the parameters.

We now assume that G1 = E(Fq), G2 = Fqk , and p ≈ q. An element P of E(Fq) can be
represented by an element of Fq corresponding to the x-coordinate of P , plus one bit for the sign
of the y-coordinate. Thus elements of G1 and Zp are of about the same size (log2 p bits), while
elements of G2 will be k times as large. Therefore if minimizing bandwidth is a primary concern,
one of Protocols 3.1 or 4.1 should be used. Protocols 6.2 and 7.3 require an element of G2 to be
transmitted, so they should be avoided.

If minimizing computational time is a primary concern, we will wish to minimize pairing com-
putation and perform as few exponentiations as possible in the larger group. Thus Protocols 5.2
and 7.1 are ideal for this application. If we only care about minimizing the Prover’s computational

11

time, as in a smart card application, then one of Protocols 3.1, 4.1, or 5.2 will be best. However,
Protocol 3.1 may be less preferable since the prover and verifier must each compute a hash function
in addition to performing the group computations.

Finally, if security is the foremost concern, then we should choose a scheme whose proof requires
the weakest security assumption. Table 2 shows the implications between the various computational
assumptions used to prove security of our protocols. We see that the weakest assumption is that
the pairing is a one-way function. Protocol 6.2 is based on this assumption, so this scheme is the
most secure.

e : G1 ×G1 → G2

is a one-way pairing
(Definition 6.1)

KS

CDH in G1

(Definition 2.2)
2:

nnnnnnnnnnnn

nnnnnnnnnnnn
dl

RRRRRRRRRRRRR

RRRRRRRRRRRRR

SDH in G1

(Definition 5.1)
one-more-CDH in G1

(Definition 4.2)

Table 2. Implications between various computational assumptions.

9. Conclusion

We have presented four new identification schemes based on pairings, and proved their security
given various computational assumptions. Each of our schemes is at least as efficient and/or secure
as any scheme currently in the literature. Our main contribution is Protocol 6.2, a scheme which
is secure if the pairing in question is a one-way function; this assumption is weaker than that made
for any other pairing-based scheme currently in the literature.

For another of our schemes, Protocol 4.1, we introduced an assumption called the “one-more-
CDH” assumption, analogous to the “one-more-discrete-log” and “one-more-RSA-inversion” as-
sumptions, and proved our scheme secure under this assumption. An important open question is
what relation this assumption has to other computational assumptions in the literature.

References

[1] M. Bellare, C. Namprempre, D. Pointcheval, M. Semanko, “The one-more-RSA-inversion problems and the
security of Chaum’s blind signature scheme,” Journal of Cryptology 16:3 (2003), 185-215.

[2] M. Bellare, A. Palacio, “GQ and Schnorr identification schemes: proofs of security against impersonation
under active and concurrent attacks,” in CRYPTO ’02, ed. M. Yung, Springer LNCS 2442 (2002), 162-177.

[3] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography, LMS Lecture Note Series 265, Cambridge
University Press, 1999.

[4] I. Blake, G. Seroussi, N. Smart, eds., Advances in Elliptic Curve Cryptography, LMS Lecture Note Series
317, Cambridge Unviersity Press, 2005.

[5] D. Boneh, X. Boyen, “Short signatures without random oracles,” in EUROCRYPT ’04, ed. C. Cachin, J.
Camenisch, Springer LNCS 3027, 2004, 56-73.

[6] D. Boneh, B. Lynn, H. Shacham, “Short signatures from the Weil pairing,” in ASIACRYPT ’01, ed. C.
Boyd, Springer LNCS 2248 (2001), 514-532.

[7] U. Feige, A. Fiat, A. Shamir, “Zero knowledge proofs of identity,” Journal of Cryptology 1:2 (1988), 77-94.
[8] O. Goldreich, Foundations of Cryptography, Vol. 1, Cambridge University Press, Cambridge, 2001.

12

[9] L. S. Guillou, J. J. Quisquater, “A ‘paradoxical’ identity-based signature scheme resulting from zero-
knowledge,” in CRYPTO ’88, ed. S. Goldwasser, Springer LNCS 403 (1990), 216-231.

[10] E. Hufschmitt, D. Lefranc, H. Sibert, “A zero-knowledge identification scheme in Gap Diffie-Hellman groups,”
in Western European Workshop on Research in Cryptology, 2005 (conference records available online at
http://www.weworc.org), 8-12.

[11] M. Kim, K. Kim, “A new identification scheme based on the Bilinear Diffie-Hellman problem,” in ACISP

’02, Springer LNCS 2384 (2002), 362-378.
[12] A. Joux, K. Nguyen, “Separating Decision Diffie-Hellman from Computational Diffie-Hellman in crypto-

graphic groups,” Journal of Cryptology 16:4 (2003), 239-247.
[13] K. Ohta, T. Okamoto, “On concrete security treatment of signatures derived from identification,” in

CRYPTO ’98, ed. H. Krawczek, Springer LNCS 1462 (1998), 354-370.
[14] T. Okamoto, “Provably secure and practical identification schemes and corresponding signature schemes,”

in CRYPTO ’92, ed. E. F. Brickell, Springer LNCS 740 (1993), 31-53.
[15] C. P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology 4:3 (1991), 161-174.
[16] J. Shao, R. Lu, Z. Cao, “A new efficient identification scheme based on the Strong Diffie-Hellman assump-

tion,” in International Symposium on Future Software Technology, 2004.
[17] G. Yao, G. Wang, Y. Wang, “An improved identification scheme,” in Coding, Cryptography, and Combina-

torics, Berkhäuser-Verlag Progress in Computer Science and Applied Logic 23 (2004), 397-405.

Appendix A. Pairing-based signature schemes

In this appendix, we describe the pairing-based signature schemes that are the basis for the
identification schemes defined in Protocols 3.1 and 5.2. We give a definition of security for signature
schemes and state the security theorems for the two protocols in question.

We first describe the pairing-based short signature scheme devised by Boneh, Lynn, and Shacham
[6], on which our Protocol 3.1 is based. We describe the scheme in terms of a pairing, but the
scheme is in fact valid in any group in which the Decision Diffie-Hellman problem is easy and the
Computational Diffie-Hellman problem is hard; such a group is called a Gap Diffie-Hellman group.

Protocol A.1 ([6]). Let G1, G2 be cyclic groups of prime order p, and let e : G1 × G1 → G2 be
a cryptographic pairing. Let g be a generator of G1. Let H : {0, 1}∗ → G1 be a full-domain hash
function.

Key generation: Pick random x ← Zp, and compute v ← gx. The public key is v, and the
secret key is x.

Signing: Given a secret key x ∈ Zp and a message M ∈ {0, 1}∗, compute h ← H(M) and
σ ← hx. The signature is σ ∈ G.

Verification: Given a public key v ∈ G, a message M ∈ {0, 1}∗, and a signature σ ∈ G,
compute e(g, σ) and e(v, h). If the two are equal, output valid; if not, output invalid.

Boneh, Lynn, and Shacham prove the security of their scheme using the following game between
a challenger and an adversary A.

Setup: The challenger runs algorithm KeyGen to optain a public key PK and a private key
SK. The adversary A is given PK.

Queries: Proceeding adaptively, A requests signatures with PK on at most qS messages of
his choice, M1, . . . ,Mqs ∈ {0, 1}∗. The challenger responds to each query with a signature
σi = Sign(SK,Mi).

Output: Eventually, A outputs a pair (M,σ) and wins the game if (1) M is not any of
M1, . . . ,MqS

, and (2) V erify(PK,M, σ) = valid.

The advantage of A, denoted Adv(A), is the probability that A wins the above game, taken over
the coin tosses of KeyGen and of A itself. We are now ready to define the security of a signature
scheme.

Definition A.2 ([6, Definition 3.1]). A forger A (t, qS , qH , ǫ)-breaks a signature scheme if A runs in
time at most t, makes at most qS signature queries and at most qH queries to a hash function, and

13

http://www.weworc.org

Adv(A) > ǫ. A signature scheme is (t, qS , qH , ǫ)-existentially unforgeable under adaptive chosen-
message attack if no forger (t, qS , qH , ǫ)-breaks it.

The security of the BLS signature scheme is based on the Computational Diffie-Hellman assump-
tion in the group G1 (Defintion 2.2).

Theorem A.3 ([6, Theorem 3.2]). Suppose the (t′, ǫ′)-Computational Diffie-Hellman assumption
holds in G1. Then the signature scheme defined in Protocol A.1 is (t, qS , qH , ǫ)-secure against
existential forgery under an adaptive chosen-message attack (in the random oracle model) for all t
and ǫ satisfying

ǫ ≥ e(qS + 1) · ǫ′ and t ≤ t′ − c(qH + 2qS),

where c is a constant that depends on G1, and e is the base of the natural logarithm.

The second signature scheme we describe was devised by Boneh and Boyen [5]; our identification
scheme 5.2 is based on this scheme.

Protocol A.4 ([5]). Let G1, G2 be cyclic groups of prime order p, and let e : G1 ×G1 → G2 be a
cryptographic pairing. Let g be a generator of G1.

Key generation: Pick random x, y ← Z
∗
p, and compute u ← gx, v ← gy, and z ← e(g, g).

The public key is (u, v, z), and the secret key is (x, y).
Signing: Given a secret key (x, y) ∈ (Z∗

p)
2, and a message m ∈ Z

∗
p, pick a random r ∈ Z

∗
p

and compute σ ← g1/(x+m+yr) ∈ G1, where 1/(x + m + yr) is computed modulo p. In the
(unlikely) event that x + m + yr = 0 (mod p), try again with a different random r. The
signature is (σ, r) .

Verification: Given a public key (u, v, z) ∈ G
2
1 × G2, a message m ∈ Z

∗
p, and a signature

(σ, r) ∈ G1 × Z
∗
p, compute e(σ, u · gm · vr). If the result is equal to z output valid; if not,

output invalid.

The security of the Boneh-Boyen scheme is based on the Strong Diffie-Hellman assumption
(Definition 5.1). The relevant fact about the proof of security is that it gives a tight reduction
without using the random oracle model.

Theorem A.5 ([5, Theorem 3.1]). Suppose the (q, t′, ǫ′)-SDH assumption holds in G1. Then the
signature scheme defined by Protocol A.4 is (t, qs, ǫ)-secure against existential forgery under adaptive
chosen message attack, provided that

qs ≤ q, ǫ ≤ 2 (ǫ′ + qS/p) ≈ 2ǫ′ and t ≤ t′ −Θ(q2T),

where T is the maximum time for an exponentiation in G1.

Appendix B. Security of Protocol 3.1

Proof of Theorem 3.2. If Peggy and Victor follow the protocol, then Protocol 3.1 satisfies the
viability condition of Definition 2.1, since

e(g, σ) = e(g, hx) = e(g, h)x = e(gx, h) = e(v, h)

by bilinearity of e.
To show the security condition, it suffices to show that if the BLS signature scheme (Protocol

A.1) is (t′, q, r, ǫ′)-secure against existential forgery under an adaptive chosen-message attack, then
Protocol 3.1 is a (t, q, r, ǫ) identification scheme, provided that

ǫ ≥
(

2n

2n − q

)

· ǫ′ and t ≤ t′ − c

14

for some constant c depending on the groups and pairing used. If we give a reduction from the
identification scheme to the signature scheme with these bounds, then the security theorem for
the BLS signature scheme (Theorem A.3) implies that there is a reduction from the identification
scheme to the CDH problem in G1 with the stated bounds.

To construct the specified reduction, we now suppose that (A,B) is a pair of algorithms that
(t, q, r, ǫ)-breaks the scheme (in the sense of Definition 2.1) for a given public/private-key pair.
Define an attacker C on the BLS scheme with the same public and private keys, as follows:

(1) For each Mi that the cheating verifier B sends to the honest prover P, have C request a
signature on Mi. Run B on the output.

(2) Simulate the honest verifier V by choosing a random M and sending M as input to the
cheating prover A.

(3) Output the pair (M, τ), where τ ∈ G1 is the element that the cheating prover A sends to
V.

If (A,V) outputs 1, then the output of algorithm C is a valid BLS message-signature pair. Thus
if M is distinct from all of the queries Mi, then (M, τ) is a valid forgery. Since the probability of
(A,B) simulating the prover P is at least ǫ and the probability that M is equal to one of the Mi

is q/2n, the probability of forging a signature is at least (1 − q/2n) · ǫ. We thus have broken the
BLS scheme with an attacker that runs in time t + c for some constant c. The attacker makes q
signature queries and h hash queries. �

Appendix C. Hardness of inverting a one-way pairing

In Section 6 we stated that the assumption that e : G1×G1 → G2 is a one-way pairing is weaker
than both the Computational Diffie-Hellman assumption in G1 and the Decision Diffie-Hellman
assumption in G2. We now give precise statements and proofs of these facts.

Proposition C.1. Let e : G1 × G1 → G2 be a cryptographic pairing between groups of order p.
Suppose the (t, ǫ) Computational Diffie-Hellman assumption holds in G1. Then e is a (t−O(1), ǫ)-
one-way pairing.

Proof. Let A(g, x) be an algorithm that runs in time t and inverts the pairing with probability
at least ǫ. Given a triple (h, ha, hb) of elements in G1, let y = e(ha, hb), and run A(h, y). Then A
outputs hab with probability at least ǫ. �

Proposition C.2. Let e : G1 × G1 → G2 be a cryptographic pairing between groups of order p.
Suppose the (t, ǫ)-Decision Diffie-Hellman assumption holds in G2. Then e is a (t/ǫ − O(1), 4

√
ǫ)-

one-way pairing.

Proof. Let A(g, x) be an algorithm that runs in time t and inverts the pairing with probability at
least ǫ. We are given a quadruple {y, ya, yb, yc} of elements of G2 and asked to determine if c = ab
(mod p). Define algorithm B as follows.

(1) Choose a random g ∈ G1, and compute

h1 = A(g, y), h2 = A(g, ya),
h3 = A(g, yb), h4 = A(g, yc).

(2) Compute e(h1, h4) and e(h2, h3). If the two are equal output 1; else output 0.

Suppose all four outputs of algorithm A are correct. Then h2 = ha
1, h3 = hb

1, and h4 = hc
1. We

therefore have e(h1, h4) = e(h1, h1)
c and e(h2, h3) = e(h1, h1)

ab. The two are equal if and only
if c = ab (mod p). Thus if all four outputs are correct B gives a correct output to the Decision
Diffie-Hellman problem. The probability that all four outputs are correct is at least ǫ4, which gives
the stated security bound. Furthermore, B runs in time 4t + O(1). �

15

Remark C.3. We can increase the probability of success of B by iterating the algorithm. Per-
forming each computation of hi ǫ−4 times increases the probability of success to a constant; fewer
repetitions lead to different time/success ratios.

Appendix D. Security of Protocol 6.2

In this appendix, we show that Protocol 6.2 is secure if we assume that e is a one-way pairing.
The proof adapts Okamoto’s arguments for proving security of his two identification schemes [14].
We begin the detailed proof by defining a “heavy row” and proving some useful lemmas.

Definition D.1. Let (A,B) be an algorithm attacking Protocol 6.2. Let RAB denote the random
coins consumed by (A,B). Let M be a matrix summarizing all of the possible outcomes of the
cheating prover A interacting with an honest verifier V, as follows: the rows of M are indexed
by the possible choices of RAB, the columns of M are indexed by all the possible choices e of the
verifier V in step (2), and the entries are 1 if V accepts A’s proof, and 0 otherwise.

Suppose the probability of success of (A,B) (i.e. the fraction of 1’s in M) is ǫ. A row of M is a
heavy row if its fraction of 1’s is at least ǫ/2.

Lemma D.2. Suppose the success probability of (A,B) in attacking Protocol 6.2 is at least 2/p.
Then at least half of the 1’s in M are located in heavy rows.

Proof. Assume the contrary, i.e. at least half the 1’s in M are located in non-heavy rows. Then
the fraction of 1’s in all of the non-heavy rows combined is at least 1/p. On the other hand, in each
non-heavy row the fraction of 1’s is by definition less than 1/p, a contradiction. �

Lemma D.3. Let (A,B) be an algorithm attacking Protocol 6.2 that runs in time t and has success
probability ǫ > 2/p. Then there is a algorithm that runs in expected time O(t/ǫ) and, with probability
at least 1

2(1 − 1
e)2 outputs the history of two accepted interactions (x,m, T, a) and (x,m′, T ′, a′) of

the cheating prover A with an honest verifier V, where m 6= m′.

Proof. We adopt the following two-step “probing strategy” (cf. [13], [14]) to find two 1’s in the
same row of M .

Step 1: Probe random entries in M to find an entry a0 that is a 1. Denote the row in which
a0 is located by M0.

Step 2: Probe random entries along M0 to find another entry a1 with 1.

Let p1 be the success probability of Step 1 after probing 1/ǫ random entries of M . Since the fraction
of 1’s in M is ǫ, we have

p1 ≥ 1− (1− ǫ)1/ǫ > 1− 1

e
.

Let p2 be the success probability of Step 2 after probing 2/ǫ random entries of M0. If M0 is a heavy
row, then the fraction of 1’s in M0 is at least ǫ/2, and thus the probability of success is at least

1−
(

1− ǫ

2

)2/ǫ
> 1− 1

e
.

By Lemma D.2, the probability that M0 is a heavy row is at least 1/2, and thus p2 > 1
2(1 − 1

e).

Therefore the overall success probability of our strategy is at least 1
2 (1− 1

e)2, and the total running
time is approximately 3t/ǫ.

If the strategy finds two entries a0, a1 in the same row of M , we output the transcripts (x, e, T, a)
and (x, e′, T ′, a′) of the interaction between A and V when given the random coins corresponding
to a0 and a1 respectively. Since the entries are in the same row, the random coins of (A,B) are the
same for the two interactions, and thus the first output x is the same for the two interactions. Since
the entries are in different columns, the random coins of V are different for the two interactions,
and thus m 6= m′. �

16

With this setup, we may now prove the security of our identification scheme.

Proof of Theorem 6.4. In Remark 6.3 we demonstrated the viability condition of Definition 2.1,
so we need only show the security condition. Suppose (A,B) is an algorithm that runs in time t
and attacks Protocol 6.2 with success probability ǫ > 2/p. Define an algorithm C that attempts to
invert the pairing, as follows:

(1) Given input P ∈ G1 and y ∈ G2, choose random Q∗ ∈ G1 and s∗ ∈ Zp, and compute
v = e(P,Q∗)−1y−s.

(2) Simulate Protocol 6.2 with (P, y, v) as the public key and (Q∗, s∗) as the private key.
(3) Run (A,B) on the simulated protocol 1/ǫ times. If the attack succeeds, record RAB (the

random coins of (A,B)) and the transcript (x,m, T, a).
(4) Run (A,B) on the simulated protocol 2/ǫ times, using RAB as the random coins. If the

attack succeeds, record the transcript (x,m′, T ′, a′).

(5) Let Q = (T/T ′)1/(m−m′) ∈ G1 and s = (a− a′)/(m−m′) ∈ Zp. Output

Z = (Q/Q∗)1/(s∗−s) .

We now analyze the algorithm C. By Lemma D.3, the probability that steps (3) and (4) both
succeed and output valid transcripts with m 6= m′ is at least 1

2 (1 − 1
e)2. We now claim that if

steps (3) and (4) both succeed, then (Q, s) 6= (Q∗, s∗) with probability almost 1. To prove this,
we show that if (Q, s) and (Q∗, s∗) are both valid private keys for the public key (P, y, v), then
even an infinitely powerful cheater B cannot distinguish the two solely from his interaction with
an honest prover P. The condition (Q, s) and (Q∗, s∗) both being valid private keys for the public
key (P, y, v) implies that

(D.1) e(P,Q) · ys = e(P,Q∗) · ys∗.

Let R∗ = R + (Q−Q∗)m ∈ G1 and r∗ = r + m(s− s∗) ∈ Zp. Then the following relations hold:

e(P,R) · yr = x = e(P,R∗) · yr∗

R + Qm = T = R∗ + Q∗m

r + ms = a = r∗ + ms∗

Furthermore, for given (Q,Q∗, s, s∗,m), the distribution of (R, r) is identical to that of (R∗, r∗).
Since the cheating verifier B receives only (x, T, a) from the honest prover P, we see that there
is no way for B to determine which private key was used. Since there are p possible pairs (Q, s)
satisfying e(P,Q)−1y−s = v, the probability that (Q, s) 6= (Q∗, s∗) is (p− 1)/p, or nearly 1.

We now show that if steps (3) and (4) succeed and (Q, s) 6= (Q∗, s∗), then step (5) outputs a
Z such that e(P,Z) = y. We first note that if (Q, s) 6= (Q∗, s∗), then equation (D.1) implies that
Q 6= Q∗ and s 6= s∗, so Z is well-defined. Since x is the same in both transcripts, we have

e(P, T) · ya · vm = e(P, T ′) · ya′ · vm′

.

By the bilinearity of the pairing, this implies that

e(P, T/T ′) · ya−a′

= vm′−m,

so by definition of Q and s we have

e(P,Qm−m′

) · ys(m−m′) = vm′−m

Raising the whole equation to the power 1/(m−m′) and applying the definition v = e(P,Q∗)−1 ·y−s

gives

e(P,Q) · ys = e(P,Q∗)ys∗ .
17

Again using the bilinearity of the pairing, this gives us

e(P,Q/Q∗) = ys∗−s,

and raising both sides to the power 1/(s∗ − s) gives

e(P,Z) = y,

as desired.
Finally, we analyze the running time and success probability of C. If cs is the time taken to

simulate the protocol with the private key (Q∗, s∗), then each iteration of steps (3) and (4) takes
time t + csq, so those two steps take time 3(t + csq)/ǫ. Steps (1) and (5) take a constant amount of
time, say c0, so the total running time is c0 + 3(t + csq)/ǫ. By Lemma D.3 and our computations
above, if steps (3) and (4) succeed and (Q, s) 6= (Q∗, s∗), then step (5) outputs a valid Z. The
probability of the former is at least 1

2(1 − 1
e), while the probability of the latter is (p − 1)/p. If

p ≥ 17 then the simultaneous probability of the two events is at least 3/16. Thus our reduction
gives the stated bounds. �

Finally, we give the detailed proof of Corollary 6.5, a security theorem for Protocol 6.2 that does
not require any assumptions on the security parameter ǫ′ for the one-way pairing or the size of p,
the order of G1 and G2.

Proof of Corollary 6.5. The reduction is the same as in the proof of Theorem 6.4, except we
don’t iterate steps (3) and (4) of algorithm C. Then the success probability of step (3) is ǫ. By
Lemma D.2 the entry of the summary matrix M corresponding to the output of step (3) is in a
heavy row with probability at least 1/2, and if this is the case then the success probability of step
(4) is at least ǫ/2. The success probability of step (5) is still (p − 1)/p, which is at least 1/2 since
p ≥ 2. Thus the total success probability π of the algorithm satisfies

π ≥ ǫ · 1
2
· ǫ
2
· 1
2

>
ǫ2

9
.

The algorithm takes time 2(t + csq) + 2c0, where cs is the time taken to simulate the protocol and
2c0 is the time taken to perform the computations in steps (1) and (5). Thus our reduction gives
the stated bounds. �

University of California, Berkeley

E-mail address: dfreeman@math.berkeley.edu

18

	1. Introduction
	1.1. Acknowledgments

	2. Preliminaries
	2.1. Identification schemes
	2.2. Computational assumptions
	2.3. Bilinear maps and pairings

	3. Identification scheme based on BLS signatures
	4. Identification schemes based on the one-more-CDH assumption
	5. Identification scheme based on the Strong Diffie-Hellman assumption
	6. Identification scheme based on pairing as a one-way function
	7. Other identification schemes
	8. Comparison of identification schemes
	9. Conclusion
	References
	Appendix A. Pairing-based signature schemes
	Appendix B. Security of Protocol ??
	Appendix C. Hardness of inverting a one-way pairing
	Appendix D. Security of Protocol ??

