
Binary GCD algorithm for computing error
locator polynomials in Reed-Solomon
decoding

F. Argüello

The binary GCD algorithm, discovered by Stein, is an alternative to

the Euclidean algorithm for computing the greatest common divisor of

two integers. In this work, the binary GCD algorithm is applied to

Reed-Solomon decoding and a novel iterative algorithm for computing

error locator polynomials is proposed. Compared to Euclidean-based

algorithms, this algorithm exhibits some speed and area advantages.

Introduction: The most popular Reed-Solomon (RS) decoder archi-

tecture today can be summarised in four steps: 1. calculating the

syndromes from the received codeword; 2. computing the error

locator polynomial; 3. finding the error locations; and 4. computing

the error values. The second step in the four-step procedure involves

solving the key equation, which is

SðxÞLðxÞ ¼ OðxÞmod x2t ð1Þ

where S(x) is the syndrome polynomial, L(x) is the error locator

polynomial and O(x) is the error evaluator polynomial. The techniques

more frequently used to solve the key equation are the Berlekamp-

Massey algorithm and the Euclidean algorithm [1, 2].

Most of the iterative greatest common divisor (GCD) algorithms can

be categorised as the derivatives of two basic algorithms proposed by

Euclid and Stein, respectively, around 250 BC and in the 1960s [3, 4].

The binary GCD algorithm (Stein’s algorithm) uses the following

observations:

– If a and b are both even, gcd(a, b)¼ 2gcd(a=2, b=2).

– If a is even and b is odd, gcd(a, b)¼ gcd(a=2, b).

– Otherwise both are odd, and gcd(a, b)¼ gcd(ja� bj=2, b).

The binary GCD algorithm has been used as an alternative to the

Euclidean algorithm in several applications. In [5], Takagi successfully

extended Stein’s algorithm and developed a set of modular division

algorithms over Zp for odd prime p. Recently, Watanabe, Takagi and

Takagi [6] successively applied Stein’s algorithm to GF(2m) and Wu et

al. [7] developed a set of modular division algorithms with guaranteed

convergence in 2m� 1 iterations. In this Letter we propose a binary

GCD-based algorithm for obtaining the error location polynomial in RS

decoding with convergence in 2t iterations.

Derivation of algorithm: A minimum-degree error locator polyno-

mial L(x) is defined for the second step in decoding RS codes. The

binary GCD algorithm in its original form is especially efficient for

operations on binary representations. Moreover, it can be extended to

apply to polynomial representations.

Let a(x) be a polynomial over the finite field GF(2m):

aðxÞ ¼
Pn�1

i¼0

aix
i; ai 2 GFð2mÞ ð2Þ

and its associated vector representation is denoted by a¼ [an�1; . . . a1,

a0]. We can use the following observations:

– If a(x) and b(x) are both ‘even’, gcd(a, b)¼ xgcd(a=x, b=x).

– If a(x) is ‘even’ and b(x) is ‘odd’, gcd(a, b)¼ gcd(a=x, b).

– Otherwise both are ‘odd’, and gcd(a, b)–gcd([aþ (a0=b0)b]¼ x, b).

By abuse of terminology, we say that a polynomial a(x) is ‘even’ when

a0¼ 0 and ‘odd’ otherwise.

Using the above observations we can apply the binary GCD method

developed in [6, 7] to the RS decoding. The method is based on the

application of successive linear transformations in two pairs of

polynomials: [r(x), s(x)] and [u(x), v(x)], starting with [r(x), s(x)]¼

[S(x), x2t] (S(x) is the syndrome polynomial) and [u(x), v(x)]¼ [1, 0]. As

in the binary algorithm for modular inversion in GF(2m) [7], two

iterative steps are computed in each linear transformation. The first

iterative step is a bit-wise XOR operation of pairs and a reassignment

(an Euclidean-based algorithm would have an additional step of

alignment of the polynomials r(x) and s(x)). In the second iterative

step, we remove powers of x from r(x) and u(x). These two iterative

steps can be easily obtained from the above observations. This recursive

computation is performed through exactly 2t iterations (an Euclidean-

based algorithm would stop when degree(r) < t). It is similar to that of the

binary GCD algorithm for computing multiplicative inverses in GF(2m),

which requires exactly 2m� 1 iterations. When the algorithm terminates,

we obtain the error locator polynomial from the variable u(x).

Algorithm: Binary GCD-based Reed-Solomon decoder

Input: S(x) (Syndrome polynomial)

Output: L(x)¼ u(x) (Error locator polynomial)

1. Initialise [r(x), s(x)]¼ [S(x), x2t]; [u(x), v(x)]¼ [1, 0]; d¼�1;

2. For (i–1; i� 2t; iþ þ)

3. { If (r(x), is ‘odd’)

4. { If(s(x) is ‘odd’) r¼ r0=s0; Else r¼ 1;

5. If (d� 0) { r(x)¼ r(x)þ rs(x); u(x)¼ u(x)þ rv(x), }

6. Else {[r(x), s(x)]¼ [r(x)þ rs(x), r(x)];

[u(x), v(x)]¼ [u(x)þ rv(x), u(x)];

7. d¼�d;}

}

8. u2t¼ u0; =* u(x)¼ u(x)þ u0x2t *=
9. r(x)¼ r(x)� 1; u(x)¼ u(x)� 1;

10. d¼ d� 1;}

Example: The algorithm will be illustrated for the simple example of

a (7, 3) RS code over GF(23) using the primitive polynomial

a3
þ aþ 1. In this case, n¼ 7, k¼ 3, t¼ 2 and the generator poly-

nomial is G(x)¼ [1, 3, 1, 2, 3] (the first one is the high order

coefficient). Assume T(x)þE(x)¼ [6, 7, 4, 7, 7, 0, 4] be the received

sequence (with errors) which generates the syndrome polynomial

S(x)¼ [3, 5, 3, 2]. Next, this syndrome is used as input to the algorithm.

Table 1 shows the values of the variables in the successive iterations

during the execution of the algorithm. When the algorithm terminates we

obtain the error locator polynomial, L(x)¼ u(x)¼ [5, 5, 1]. Additionally,

we can compute the error evaluator polynomial L(x)¼ [2, 2], the error

polynomial E(x)¼ [0, 2, 0, 0, 0, 6, 0], and the transmitted sequence

T(x)¼ [6, 5, 4, 7, 7, 6, 4] (the data sequence is [6, 5, 4]).

Table 1: Example of execution of algorithm

i r(x) s(x) u(x) v(x) d

[0, 3, 5, 3, 2] [1, 0, 0, 0, 0] [0, 0, 0, 0, 1] [0, 0, 0, 0, 0] �1

1 [0, 1, 3, 5, 3] [0, 3, 5, 3, 2] [0, 1, 0, 0, 0] [0, 0, 0, 0, 1] 0

2 [0, 0, 6, 1, 2] [0, 3, 5, 3, 2] [0, 4, 1, 0, 0] [0, 0, 0, 0, 1] �1

3 [0, 0, 3, 3, 2] [0, 0, 6, 1, 2] [0, 1, 4, 1, 0] [0, 4, 1, 0, 0] 0

4 [0, 0, 0, 5, 2] [0, 0, 6, 1, 2] [0, 0, 5, 5, 1] [0, 4, 1, 0, 0] �1

Evaluation: Compared to the computation of error locator polyno-

mials based on Euclid’s algorithm [1, 2], the binary GCD-based one

requires a similar number of AND and XOR operations for updating

r(x), s(x), u(x) and v(x), but exhibits the following advantages. Compu-

tation of degrees of polynomials is not necessary because all multi-

plicative factors are polynomial coefficients of degree zero (in

Euclidean-based algorithms they are leading polynomial coefficients)

and there are not comparisons of polynomials (in Euclidean-based

algorithms there are polynomial degree comparisons between r(x) and

s(x)). The binary GCD-based algorithm stops in a fixed number of

stages (Euclidean-based algorithms stop when degree(r) < t). And it is

not necessary to perform alignments of polynomials.

By eliminating these complicated operations, important area and time

savings can be achieved. Moreover, the algorithm can easily be

modified to be inversion-free (defining [r, Z]¼ [r0, s0] if s(x) is ‘odd’

or [r, Z]¼ [1, 1] if s(x) is ‘even’, and writing r(x)¼ Zr(x)þ rs(x);

u(x)¼ Zu(x)þ rv(x)).

Conclusions: We have developed a binary GCD-based algorithm for

computing the error locator polynomials in Reed-Solomon decoding

with convergence in 2t iterations. The presented algorithm exhibits the

following advantages. Computation of degrees of polynomials is not

necessary (multiplicative factors are polynomial coefficients of degree

zero), the algorithm stops in a fixed number of stages (not based on

polynomials’degrees), and it is not necessary to perform alignments of

polynomials. Also, it can be formulated to be inversion-free.

ELECTRONICS LETTERS 23rd June 2005 Vol. 41 No. 13

Acknowledgments: This work was supported in part by the Xunta de

Galicia under contract PGIDIT03TIC10502PR and by MCYT under

contract TIN2004-07797-C02.

IEE 2005 2 March 2005

Electronics Letters online no: 20050769

doi: 10.1049/el:20050769

F. Argüello (Department of Electronics and Computer Science,

University of Santiago, 15782 Santiago de Compostela, Spain)

E-mail: arguello@dec.usc.es

References

1 Lee, H.: ‘High-speed VLSI architecture for parallel Reed-Solomon
decoder’, IEEE Trans. VLSI Syst., 2003, 11, (2), pp. 288–295

2 Lee, S.S., and Song, M.K.: ‘An efficient recursive cell architecture of
modified Euclid’s algorithm for decoding Reed-Solomon codes’, IEEE
Trans. Consum. Electron., 2002, 48, (4), pp. 845–849

3 Stein, J.: ‘Computational problems associated with Racah algebra’,
J. Comput. Phys., 1967, 1, pp. 397–405

4 Knuth, D.E.: ‘The art of the computer programming: seminumerical
algorithms’ (Addison-Wesley, Reading, MA, 1981)

5 Takagi, N.: ‘A VLSI algorithm for modular division based on the binary
GCD algorithm’, IEICE Trans. Fundam., 1998, E81-A, (5), pp. 724–728

6 Watanabe, Y., Takagi, N., and Takagi, K.: ‘AVLSI algorithm for division
in GF(2m) based on extended binary GCD algorithm’, IEICE Trans.
Fundam., 2002, E85-A, (5), pp. 994–999

7 Wu, C.-H., Wu, C.-M., Shieh, M.-D., and Hwang, Y.-T.: ‘High-speed,
low-complexity systolic designs of novel iterative division algorithms in
GF(2m)’, IEEE Trans. Comput., 2004, 53, (3), pp. 375–380

ELECTRONICS LETTERS 23rd June 2005 Vol. 41 No. 13

