Suggested "tweaks" for the MARS ci pher

We suggest the following two "tweaks" to the key expansion procedure
of the MARS ci pher.

1

In the procedure for nodification of the multiplication keys,
(Lines 20-32 in the pseudocode on Page 22) we would like to handle
the nost significant bit of the mask Mdifferently than what is
currently done.

Specifically, in the nodified code we al ways reset the npbst significant
bit of the mask Mto zero. Nanely, we replace Lines 25-26 of the
pseudocode with

25. MI=1iff wl belongs to a sequence of 10 consecutive 0's or 1's
26. inw and also 2 <= | <= 30 and w {Il-1} = wl = w{l+1}

Thi s change has no effect on either the efficiency or the security
of the cipher, and it is only neant to nake the specification easier
to read and under st and:

In the English description of this procedure, we explain that after
initializing the mask M we reset to O those bits in Mthat correspond
to the "end of runs of 1's or 0's in the key word w'. However, the way
this step was inplenented, the nost significant bit of Mwas reset to 0O
only if the corresponding bit of wwas 1

Since the highest bit of w always "correspond to the end of a run",
the spec will be nore intuitive if we always reset the highest bit
of Mto 0.

(We thank Brian G adman for suggesting that we make this change.)

The second change is nmeant nainly to sinmplify inplementation of
t he key expansion procedure in extrenely | ow nenory environnments:

During the first round of the AES, much di scussion revolved around the
suitability of inplementing the AES candi dates on | ow nmenory smart cards.
We recommend that the | ownenory smart card not be used as a criterion in
the judgi ng of the AES candi dates. W have provided supporting reasons
for this position in our official comments (available on NI ST's AES page).
Sone of the reasons include the fact that | owend snmart cards are not
secure, 16 and 32 bit smart cards with over 1KB of RAM are already
avail abl e, and new smart cards have built in hardware countermeasures
agai nst power attacks. Therefore, the selection of the AES al gorithm
shoul d not be influenced by | owend smart cards. In spite of these
facts, many still insist on analyzing the AES candi dates in constrained



envi ronnents and consider this to be an issue.

To address this point, we are proposing the follow ng sinple change
to the MARS key expansion routine, which will enable inplenentation
in severely limted environnments. Instead of cal culating the 40 words
"in one shot", we use essentially the sane procedure to calculate 10
words at a tine, and run it four tinmes. More details follow

In the current procedure, we nanipulate a tenporary array T[] for
sone tinme, and then take the resulting array as the words of the
expanded key. Nanely, currently the process of conputing the key
consi sts of

a. Apply linear transformation to fill a tenporary array T[]
b. Stir the array T[] for several rounds (currently, 7 rounds)
c. Reorder the words in T[] into K[]

and t hen
d. nodify the key words used for nultiplication

I nst ead, we propose to repeat the same process four times, each
time computing a quarter of the expanded key array. Namely we propose
the foll ow ng:

1. Repeat four tines
a. Do linear transformation (using the sane formula as before)
b. Stir the array T[] for several rounds (using the sane
formula as before, we propose 4 rounds)
c. Reorder the words in T[] into the next ten words in K[]

2. nodify the multiplication keys

The advantage is that T[] can be a |ot snaller than 40 words,

and so this new procedure runs faster and takes up | ess nenory than
the current one. Moreover, we propose to keep T[] larger than 10
words (specifically, we propose that T be 15-word |ong), and we
beli eve that this al so nakes the new procedure cryptographically
stronger than the current one.

To see why, note that the new process resenbles the way nost
pseudor andom generators are built. Namely, you keep a state, and
each tinme you use part of the state to output words, and then
re-shuffle it so that you can output nore words. In a sense, we

are building an "al nost pseudorandom generator", using the previous
key expansion procedure as our "re-shuffling" operation

| mpl enentation of this idea requires a m nor change to the linear
transformation formula. (The reasoning for this is provided |ater
in this note.) Specifically, the previous formula was

T[i] = ((T[i-7] xor T[i-2]) <<< 3) xor k[i mpd n] xor

where T[] is the tenporary array, k[] is the original key and n is
t he nunber of words in that key. In the new routine, we instead
initialize T[] with the words of k[] at the very beginning (so
there is no need for the "xor k[i mod n]" part) and then do in



the j'"th iteration (j=0..3)

T[i] = T[i] xor ((T[i-7] xor T[i-2]) <<< 3) xor (4i+j)
The stirring formula renmai ns unchanged,

T[i] = (T[i] + § low9 bits of T[i-1] ]) <<< 9

A pseudocode for this new procedure is provided, followed by a nore
conpr ehensi ve di scussi on

Key- Expansi on(i nput: k[], n; output: K[])

1. nis the nunber of words in the original key buffer k[], (4 <= n <= 14)
2. K[] is the expanded key array, consisting of 40 words

3. T[] is a tenporary array, consisting of 15 words, T[O0] .. T[14]

4. B[] is a fixed table of four words

5. // Initialize B[]
6. B[]= {Oxa4a8d57b, 0x5b5d193b, 0xc8a8309b, 0x73f9a978}

7. I/ Initialize T[] with the key data
8. T[0..n-1] = k[0..n-1], T[n] =n, T[n+tl..14] =0

9. for j=0 to 3 do /1 conpute 10 words of K[] in each iteration
10. /1 Do linear transformation

11. for i=0 to 14 do

12. T[i]= T[i] xor ((T[i-7 mod 15] xor T[i-2 npd 15])<<<3) xor (4i+j)
13. /1 Do four rounds of stirring

14. repeat four tinmes

15. for i =0to 14 do

16. T[i] = (T[i] + S[low 9 bits of T[i-1 mod 15]]) <<< 9

17. end- r epeat

18. /1 Store next 10 key words into K[]

19. for i =0to 9

20. K[10*j +i] = T[4*i nod 15]

21. end-for

22. /1 Mdify multiplication key-words

23. for i =5, 7, ... 35 do

24, j = least two bits of K[i]

25. w=Ki] with both of the least two bits set to 1

26. /1 Generate a bit-mask M (if K[i] should not be nodified then M=0)
27. MI=1iff wl belongs to a sequence of 10 consecutive 0's or 1's
28. inw and also 2 <= | <= 30 and w {I-1} = wl = w{l+1}
29. /1 Select a pattern fromthe fixed table and rotate it

30. r = least five bits of K[i-1] /1 rotation anpunt
31. p =B[j] <<<r

32. /1 Modify K[i] with p under the control of the nask M

33. K[i] = wxor (p and M

34. end-for



We stress that the main consideration in the design of the key expansion
was and remai ns cryptographic strength. Hence we use essentially the sane
design for the nodified procedure. Indeed we believe that the change al so
nmakes the procedure cryptographically stronger than the current version
Incidentally, this change al so i nproves the perfornmance of the key setup
procedure in high-nenmory environments.

The advant ages of this new procedure over the current one (in order
of inportance) are:

a. It is nore "one way" than the current one. Wth the current MARS

key setup, knowing only 12 "properly sel ected" words of the expanded
key enabl es you to reconstruct the original key and subsequently derive
all the other words of the expanded key. Wth the new procedure, even
knowi ng all the words of the expanded key, it is not clear howto
efficiently reconstruct the original key. Mreover, it seenms that
knowi ng only part of the expanded key words still does not inply an
efficient way to derive the other words.

b. It is much easier to inplenment it in a limted-nmenory environment.
specifically, all you need is the 15-word "tenporary" array
T[] (which is 60 bytes of nenory), and a few "scratch" words.

c. It is faster than current procedure. W estinmate that this is about
15% f ast er.

The drawback of the new procedure with respect to the current one

is that the user-supplied key cannot be |longer than 14 words (448 bits).
Thi s does not seemto be a nmajor concern, though, since |onger keys

can al ways be hashed (say, using SHA) before they are used in the

ci pher. (Doing this will also elinnate the "equival ent keys" that

can be shown when using long keys with the current procedure.)

The reasoning for the changes that we nmade to the linear transformation
formula are as foll ows:

1. The reason that we initialize T[] with k[] instead of incorporating
the words of k[] to the fornula, is to avoid having to store the
original key, in addition to the tenmporary array T[].

2. The reason that we replaced the "xor i" with "xor (4i+)" is to

avoid the renpte possibility of having a "fixed point" in this

procedure: If we viewthe "linear transformation + stirring" as

a "random permutation", then there is some probability that it

has a fixed point. Moreover, there is a small probability that

this fixed point can actually result fromsone key (nost likely,

a 1l4-word key. This has probability of about 27{-32}). If this

is true, then this fixed point key inplies an extended key where

K[0..9] = K[10..19] = K[20..29] = K[30..39]

This does not seemto be a big deal. In particular, we don't see why
such key woul d be "weak" for encryption, it is only renotely likely
to exist with very long keys (14 words) and the probability of such



"weak keys" is then about 27{-450}.

Still, whenever a repeated function is used, it is a good idea to
make sone tweaks in it fromiteration to iteration, to overcome the
possibility of fixed points. A sinple such tweak would be to use
different xor values in different iterations, thus the "xor (4i+)"
term

3. O her change that we nmde are:

- Elimnated the initialization of T[] with seven constants from
the S-box. This is just not needed.

- Changed the reordering fornula, to interact better with
the size of T[].

- In the nodification of the multiplication key words, the new
procedure uses K[i-1] when nodifying Kli] (see Line 32 in the
pseudocode above), while the old one uses K[i+3]. The reason
for this is to nmake sure that these two words belong to the
sane "batch" of 10 words.



