
Suggested "tweaks" for the MARS cipher
======================================

We suggest the following two "tweaks" to the key expansion procedure
of the MARS cipher.

==

1. In the procedure for modification of the multiplication keys,
 (Lines 20-32 in the pseudocode on Page 22) we would like to handle
 the most significant bit of the mask M differently than what is
 currently done.

 Specifically, in the modified code we always reset the most significant
 bit of the mask M to zero. Namely, we replace Lines 25-26 of the
 pseudocode with

 25. M_l=1 iff w_l belongs to a sequence of 10 consecutive 0's or 1's
 26. in w, and also 2 <= l <= 30 and w_{l-1} = w_l = w_{l+1}

 This change has no effect on either the efficiency or the security
 of the cipher, and it is only meant to make the specification easier
 to read and understand:

 In the English description of this procedure, we explain that after
 initializing the mask M, we reset to 0 those bits in M that correspond
 to the "end of runs of 1's or 0's in the key word w". However, the way
 this step was implemented, the most significant bit of M was reset to 0
 only if the corresponding bit of w was 1.

 Since the highest bit of w always "correspond to the end of a run",
 the spec will be more intuitive if we always reset the highest bit
 of M to 0.

 (We thank Brian Gladman for suggesting that we make this change.)

==

2. The second change is meant mainly to simplify implementation of
 the key expansion procedure in extremely low-memory environments:

 During the first round of the AES, much discussion revolved around the
 suitability of implementing the AES candidates on low-memory smart cards.
 We recommend that the low-memory smart card not be used as a criterion in
 the judging of the AES candidates. We have provided supporting reasons
 for this position in our official comments (available on NIST's AES page).
 Some of the reasons include the fact that low-end smart cards are not
 secure, 16 and 32 bit smart cards with over 1KB of RAM are already
 available, and new smart cards have built in hardware countermeasures
 against power attacks. Therefore, the selection of the AES algorithm
 should not be influenced by low-end smart cards. In spite of these
 facts, many still insist on analyzing the AES candidates in constrained

 environments and consider this to be an issue.

 To address this point, we are proposing the following simple change
 to the MARS key expansion routine, which will enable implementation
 in severely limited environments. Instead of calculating the 40 words
 "in one shot", we use essentially the same procedure to calculate 10
 words at a time, and run it four times. More details follow:

 In the current procedure, we manipulate a temporary array T[] for
 some time, and then take the resulting array as the words of the
 expanded key. Namely, currently the process of computing the key
 consists of

 a. Apply linear transformation to fill a temporary array T[]
 b. Stir the array T[] for several rounds (currently, 7 rounds)
 c. Reorder the words in T[] into K[]

 and then

 d. modify the key words used for multiplication

 Instead, we propose to repeat the same process four times, each
 time computing a quarter of the expanded key array. Namely we propose
 the following:

 1. Repeat four times
 a. Do linear transformation (using the same formula as before)
 b. Stir the array T[] for several rounds (using the same
 formula as before, we propose 4 rounds)
 c. Reorder the words in T[] into the next ten words in K[]

 2. modify the multiplication keys

 The advantage is that T[] can be a lot smaller than 40 words,
 and so this new procedure runs faster and takes up less memory than
 the current one. Moreover, we propose to keep T[] larger than 10
 words (specifically, we propose that T be 15-word long), and we
 believe that this also makes the new procedure cryptographically
 stronger than the current one.

 To see why, note that the new process resembles the way most
 pseudorandom-generators are built. Namely, you keep a state, and
 each time you use part of the state to output words, and then
 re-shuffle it so that you can output more words. In a sense, we
 are building an "almost pseudorandom-generator", using the previous
 key expansion procedure as our "re-shuffling" operation.

 Implementation of this idea requires a minor change to the linear
 transformation formula. (The reasoning for this is provided later
 in this note.) Specifically, the previous formula was

 T[i] = ((T[i-7] xor T[i-2]) <<< 3) xor k[i mod n] xor i

 where T[] is the temporary array, k[] is the original key and n is
 the number of words in that key. In the new routine, we instead
 initialize T[] with the words of k[] at the very beginning (so
 there is no need for the "xor k[i mod n]" part) and then do in

 the j'th iteration (j=0..3)

 T[i] = T[i] xor ((T[i-7] xor T[i-2]) <<< 3) xor (4i+j)

 The stirring formula remains unchanged,

 T[i] = (T[i] + S[low 9 bits of T[i-1]]) <<< 9

 A pseudocode for this new procedure is provided, followed by a more
 comprehensive discussion.

 Key-Expansion(input: k[], n; output: K[])

 1. n is the number of words in the original key buffer k[], (4 <= n <= 14)
 2. K[] is the expanded key array, consisting of 40 words
 3. T[] is a temporary array, consisting of 15 words, T[0] .. T[14]
 4. B[] is a fixed table of four words

 5. // Initialize B[]
 6. B[]= {0xa4a8d57b, 0x5b5d193b, 0xc8a8309b, 0x73f9a978}

 7. // Initialize T[] with the key data
 8. T[0..n-1] = k[0..n-1], T[n] = n, T[n+1..14] = 0

 9. for j=0 to 3 do // compute 10 words of K[] in each iteration
 10. // Do linear transformation
 11. for i=0 to 14 do
 12. T[i]= T[i] xor ((T[i-7 mod 15] xor T[i-2 mod 15])<<<3) xor (4i+j)

 13. // Do four rounds of stirring
 14. repeat four times
 15. for i = 0 to 14 do
 16. T[i] = (T[i] + S[low 9 bits of T[i-1 mod 15]]) <<< 9
 17. end-repeat

 18. // Store next 10 key words into K[]
 19. for i = 0 to 9
 20. K[10*j+i] = T[4*i mod 15]
 21. end-for

 22. // Modify multiplication key-words
 23. for i = 5, 7, ... 35 do
 24. j = least two bits of K[i]
 25. w = K[i] with both of the least two bits set to 1

 26. // Generate a bit-mask M (if K[i] should not be modified then M=0)
 27. M_l=1 iff w_l belongs to a sequence of 10 consecutive 0's or 1's
 28. in w, and also 2 <= l <= 30 and w_{l-1} = w_l = w_{l+1}

 29. // Select a pattern from the fixed table and rotate it
 30. r = least five bits of K[i-1] // rotation amount
 31. p = B[j] <<< r

 32. // Modify K[i] with p under the control of the mask M
 33. K[i] = w xor (p and M)
 34. end-for

 We stress that the main consideration in the design of the key expansion
 was and remains cryptographic strength. Hence we use essentially the same
 design for the modified procedure. Indeed we believe that the change also
 makes the procedure cryptographically stronger than the current version.
 Incidentally, this change also improves the performance of the key setup
 procedure in high-memory environments.

 The advantages of this new procedure over the current one (in order
 of importance) are:

 a. It is more "one way" than the current one. With the current MARS
 key setup, knowing only 12 "properly selected" words of the expanded
 key enables you to reconstruct the original key and subsequently derive
 all the other words of the expanded key. With the new procedure, even
 knowing all the words of the expanded key, it is not clear how to
 efficiently reconstruct the original key. Moreover, it seems that
 knowing only part of the expanded key words still does not imply an
 efficient way to derive the other words.

 b. It is much easier to implement it in a limited-memory environment.
 specifically, all you need is the 15-word "temporary" array
 T[] (which is 60 bytes of memory), and a few "scratch" words.

 c. It is faster than current procedure. We estimate that this is about
 15% faster.

 The drawback of the new procedure with respect to the current one
 is that the user-supplied key cannot be longer than 14 words (448 bits).
 This does not seem to be a major concern, though, since longer keys
 can always be hashed (say, using SHA) before they are used in the
 cipher. (Doing this will also eliminate the "equivalent keys" that
 can be shown when using long keys with the current procedure.)

 The reasoning for the changes that we made to the linear transformation
 formula are as follows:

 1. The reason that we initialize T[] with k[] instead of incorporating
 the words of k[] to the formula, is to avoid having to store the
 original key, in addition to the temporary array T[].

 2. The reason that we replaced the "xor i" with "xor (4i+j)" is to
 avoid the remote possibility of having a "fixed point" in this
 procedure: If we view the "linear transformation + stirring" as
 a "random permutation", then there is some probability that it
 has a fixed point. Moreover, there is a small probability that
 this fixed point can actually result from some key (most likely,
 a 14-word key. This has probability of about 2^{-32}). If this
 is true, then this fixed point key implies an extended key where
 K[0..9] = K[10..19] = K[20..29] = K[30..39]

 This does not seem to be a big deal. In particular, we don't see why
 such key would be "weak" for encryption, it is only remotely likely
 to exist with very long keys (14 words) and the probability of such

 "weak keys" is then about 2^{-450}.

 Still, whenever a repeated function is used, it is a good idea to
 make some tweaks in it from iteration to iteration, to overcome the
 possibility of fixed points. A simple such tweak would be to use
 different xor values in different iterations, thus the "xor (4i+j)"
 term.

 3. Other change that we made are:

 - Eliminated the initialization of T[] with seven constants from
 the S-box. This is just not needed.

 - Changed the reordering formula, to interact better with
 the size of T[].

 - In the modification of the multiplication key words, the new
 procedure uses K[i-1] when modifying K[i] (see Line 32 in the
 pseudocode above), while the old one uses K[i+3]. The reason
 for this is to make sure that these two words belong to the
 same "batch" of 10 words.

