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Images of mod p Galois Representations
Associated to Elliptic Curves
Amadeu Reverter and Núria Vila

Abstract. We give an explicit recipe for the determination of the images associated to the Galois ac-
tion on p-torsion points of elliptic curves. We present a table listing the image for all the elliptic curves
defined over Q without complex multiplication with conductor less than 200 and for each prime num-
ber p.

Introduction

Let E be an elliptic curve defined over a number field K. Let K be an algebraic closure
of K. Let p be a prime number and let E[p] denote the group of p-torsion points of
E. The action of the absolute Galois group GK = Gal(K/K) of K on the group E[p]
defines a mod p Galois representation

ρE,p : GK −→ Aut(E[p]) ∼= GL2(Fp).

As is well known, Serre [4] has shown that whenever E is an elliptic curve without
complex multiplication this representation is surjective for all but finitely many prime
numbers p.

Let K(E[p]) denote the number field generated by the coordinates of the p-torsion
points of E. The Galois extension K(E[p])/K has Galois group

Gal
(

K(E[p])/K
)
∼= ρE,p(GK ) ⊆ GL2(Fp).

In this paper we study the Galois groups of K(E[p])/K, i.e., the images of the
mod p Galois representation associated to E. We analyze the relationship between
the image ρE,p(GK ), the existence of isogenies for E of degree p defined over K and of
non-trivial p-torsion points of E defined over K. We determine the image ρE,p(GK )
for a large family of elliptic curves having an isogeny defined over K of degree p. For
p = 3 we describe the images of ρE,3(GQ ) in terms of explicit conditions on the poly-
nomial ΨE

3 whose roots are the x-coordinates of the 3-torsion points of an elliptic
curve E/Q . Our main concern is to compute the Galois group Gal

(
Q(E[p])/Q

)
for

each prime p and for each elliptic curve E defined over Q without complex multi-
plication and with conductor N ≤ 200, Theorem 3.2 of Section 3 summarizes the
results obtained.
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1 Images and Isogenies

Let E/K be an elliptic curve defined over a field K of characteristic 0. Let p be a
prime number and let χp be the mod p cyclotomic character. Let ρE,p be the mod
p Galois representation associated to the p-torsion points E[p] of the elliptic curve
E. By the Weil pairing we have that det ρE,p(σ) = χp(σ), for all σ ∈ GK . Observe
that the elliptic curve E/K admits an isogeny of degree p defined over K if and only
if the image ρE,p(GK ) is contained in a Borel subgroup. If E1/K and E2/K are re-
lated by an isogeny defined over K of degree prime to p, then this isogeny induces
a GK -module isomorphism from E1[p] to E2[p] and the subgroups ρE1,p(GK ) and
ρE2,p(GK ) of GL2(Fp) are conjugate for all primes p not dividing the degree of the
isogeny.

Moreover, we have:

Lemma 1.1 Let E1/K, E2/K be two elliptic curves and φ : E1 → E2 be a K-isogeny of
degree p. Then the following conditions are equivalent:

(i) There exists a one-dimensional GK -stable subspace of E1[p] not annihilated by φ.
(ii) ρE1,p(GK ) is contained in a split Cartan subgroup of GL2(E1[p]).
(iii) There exists an elliptic curve E3/K non-K-isomorphic to E2 and a K-isogeny φ ′ :

E1 → E3 of degree p.

Proposition 1.2 Let E/K be an elliptic curve with non-trivial p-torsion points defined
over K. Then there exists a basis of E[p] such that

ρE,p(GK ) =



(
1 ∗

0 χp(GK )

)
, if E has only one K-isogeny of degree p(

1 0

0 χp(GK )

)
, otherwise.

Proof We can take a basis such that the image satisfies(
1 0
0 χp(GK )

)
⊆ ρE,p(GK ) ⊆

(
1 ∗
0 χp(GK )

)
.

Proposition 1.3 Let E1/K, E2/K be two elliptic curves and φ : E1 → E2 be a K-isogeny
of degree p. Assume that

(i) χp(GK ) �= {1}.
(ii) E1 and E2 have non-trivial K-rational p-torsion points.
(iii) The image ρE1,p(GK ) is conjugate to

( 1 ∗
0 χp(GK )

)
.

Then the image ρE2,p(GK ) is conjugate to
( 1 0

0 χp(GK )

)
.

Proof φ(E1[p]) is a GK -stable line in E2[p] on which GK acts via χp, and E2[p] also
contains a GK -stable line on which GK acts trivially, by assumption (ii). The result
follows from (i).

Proposition 1.4 Let E1/K, E2/K be two elliptic curves and φ : E1 → E2 be a K-isogeny
of degree p. Assume that E2(K)[p] = {0}. Then, the curve E1 has non-trivial K-
rational p-torsion points if and only if ρE2,p(GK ) is conjugate to

(
χp(GK ) ∗

0 1

)
.
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Proof Assume that E1(K)[p] �= {0}. By Proposition 1.2 there exists a Fp-basis
{P,Q} of E1[p], such that

ρE1,p(GK ) =

(
1 ∗
0 χp(GK )

)
or

(
1 0
0 χp(GK )

)
.

Since E2(K)[p] = {0}, we have kerφ = 〈P〉 and φ(Q) �= 0. Let P ′ ∈ E2[p] be such
that {φ(Q), P ′} is a Fp-basis of E2[p].

Then it is easy to see that ρE2,p(GK ) =
(
χp(GK ) ∗

0 1

)
. Conversely, let {P,Q} be a

Fp-basis of E2[p] such that ρE2,p(GK ) =
(
χp(GK ) ∗

0 1

)
. Consider φ̂ : E2 → E1 the dual

isogeny to φ. By Lemma 1.1, φ̂(P) = 0, hence φ̂(Q) �= 0 is a K-rational p-torsion
point of E1.

Definition Let E/K be an elliptic curve and let p ≥ 3 be a prime number. We will say
that E is a p-exceptional elliptic curve over K if it satisfies the following conditions:

(i) The elliptic curve E has no non-trivial K-rational p-torsion points.
(ii) There exists an elliptic curve E ′/K and a K-isogeny φ : E→ E ′ of degree p.
(iii) Every elliptic curve E ′ K-isogenous to E with isogeny of degree p has no non-

trivial K-rational p-torsion points.

Remark From the 722 elliptic curves without complex multiplication with conduc-
tor ≤ 200, listed in the Antwerp tables [1], only 39 are 3-exceptional over Q , 27 are
5-exceptional over Q , 8 are 7-exceptional over Q , 4 are 11-exceptional over Q and 4
are 13-exceptional over Q ; if p > 13 all elliptic curves are non-p-exceptional over Q .

The image of the mod p Galois representation attached to p-exceptional elliptic
curves must be studied individually. Using Propositions 1.2 and 1.4 we can give the
images of the mod p Galois representation attached to non-p-exceptional elliptic
curves which admit a K-isogeny of degree p.

Theorem 1.5 Let E/K be a non-p-exceptional elliptic curve over K. Assume that E
admits a K-isogeny of degree p.

(i) If E(K)[p] �= {0} and E admits only one K-isogeny of degree p, then there exists
a basis of E[p] such that

ρE,p(GK ) =

(
1 ∗
0 χp(GK )

)
.

(ii) If E(K)[p] �= {0} and E admits more than one K-isogeny of degree p, then there
exists a basis of E[p] such that

ρE,p(GK ) =

(
1 0
0 χp(GK )

)
.
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(iii) If E(K)[p] = {0}, then there exists a basis of E[p] such that

ρE,p(GK ) =

(
χp(GK ) ∗

0 1

)
.

Remark Professor Gerhard Frey has pointed out to us that if E is a non-p-exception-
al elliptic curve over K having a K-isogeny of degree p, the twisted curves ED by
the quadratic character χD are, in fact, p-exceptional over K, but we can determine
the image of the attached mod p Galois representation in this case, since ρED,p =
ρE,p ⊗ χD (cf. Theorem 3.2).

2 ρE,p(GQ ), for p ≤ 3

For p = 2 it is known that the image of the mod 2 Galois representation associated to
an elliptic curve can be determined in terms of the discriminant and the K-rational
two-torsion points of E (cf. [4, 5.3]). We note that the non-split Cartan subgroup
of GL2(F2) is

{(
1 0
0 1

)
,
(

0 1
1 1

)
,
(

1 1
1 0

)}
, the cyclic subgroup of order 3, and the cyclic

subgroups of order 2 are the conjugated Borel subgroups
(

1 ∗
0 1

)
of GL2(F2).

Proposition 2.1 Let E/K be an elliptic curve. Then

ρE,2(GK ) =


GL2(F2), if E(K)[2] = {0} and∆E /∈ K2

C3, if E(K)[2] = {0} and∆E ∈ K2

C2, if E(K)[2] �= {0} and∆E /∈ K2

{id}, if E(K)[2] �= {0} and∆E ∈ K2.

In the case p = 3, we will describe the image ρE,3(GQ ) through the polynomialΨE
3

whose roots are the x-coordinates of the 3-torsion points of an elliptic curve E/Q .

Proposition 2.2 Let E/Q be an elliptic curve given by the equation Y 2 = 4X3− g2X−
g3. Let x0, x1 ∈ Q be two different roots of the polynomialΨE

3 = 3X4− 3
2 g2X2−3g3X−

1
16 g2

2 . Then

Q(E[3]) =

{
Q(x0, x1,

√
−x0,

√
−x1), if g2 �= 0

Q( 3
√

g3,
√
−g3,

√
3g3), if g2 = 0.

Proof Assume g2 �= 0. Let P, Q ∈ E[3] be such that x0 = x(P), x1 = x(Q). We can
consider {P,Q} as a F3-basis of E[3]. Let ΨE

3 = 3(X − x0)q(X). Since q(x1) = 0, we
have that

y1 = y(Q) = ±2

(
x1 +

4x2
0 − g2

8x0

)
√
−x0,

and
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y0 = y(P) = ±2

(
x0 +

4x2
1 − g2

8x1

)
√
−x1.

Using addition formulae we can explicitely compute x2 = x(P + Q), x3 = x(P − Q),
y2 = y(P+Q) and y3 = y(P−Q). We verify that x2, x3, y2, y3 ∈ Q(x0, x1, y0,

√
−x0).

In the case g2 = 0, we have ΨE
3 = 3X(X3 − g3), Y 2 = 4X3 − g3 and Q(E[3]) =

Q( 3
√

g3,
√
−g3,

√
3g3).

Theorem 2.3 Let E/Q be an elliptic curve given by the equation Y 2 = 4X3− g2X− g3

and letΨE
3 = 3X4 − 3

2 g2X2 − 3g3X − 1
16 g2

2 .

(a) Assume that g2 �= 0.

(i) IfΨE
3 has two rational roots x0, x1, then there exists a basis of E[3] such that

ρE,3(GQ ) =



(
1 0

0 ∗

)
, if−x0 ∈ Q∗

2

or−x1 ∈ Q∗
2

(
∗ 0

0 ∗

)
, otherwise.

(ii) If ΨE
3 has only one rational root x0, let x1 �= x0 be a root of ΨE

3 , then there
exists a basis of E[3] such that

ρE,3(GQ ) =



(
∗ ∗

0 ∗

)
, if E(Q)[3] = {0} and

√
−x0 /∈ Q(x1, y0)(

1 ∗

0 ∗

)
, if E(Q)[3] �= {0}(

∗ ∗

0 1

)
, otherwise.

(iii) IfΨE
3 has no rational roots then

(1) If∆E /∈ Q∗
3

then ρE,3(GQ ) = GL2(F3).

(2) If ∆E ∈ Q∗
3

and ΨE
3 splits as a product of two irreducible polynomials

of degree 2 over Q , then there exists a basis of E[3] such that ρE,3(GQ ) ={(
±1 0
0 ±1

)
,
(

0 ±1
±1 0

)}
.

(3) If ∆E ∈ Q3 and ΨE
3 is irreducible, then ρE,3(GQ ) is contained in the

normalizer of a non-split Cartan subgroup.
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(b) Assume that g2 = 0. Then there exists a basis of E[3] such that

ρE,3(GQ ) =



(
1 ∗

0 ∗

)
, if g3 /∈ Q∗

3

,−g3 ∈ Q∗
2

(
∗ ∗

0 1

)
, if g3 /∈ Q∗

3
, 3g3 ∈ Q∗

2

(
∗ 0

0 ∗

)
, if g3 ∈ Q∗

3

,−g3 /∈ Q∗
2

, 3g3 /∈ Q∗
2

(
∗ ∗

0 ∗

)
, if g3 /∈ Q∗

3
,−g3 /∈ Q∗

2
, 3g3 /∈ Q∗

2

(
1 0

0 ∗

)
, if g3 ∈ Q∗

3

,−g3 or 3g3 ∈ Q∗
2

.

Proof First we note that if ρE,3(GQ ) is a subgroup of GL2(F3) of order 2 it is conjugate
to
(

1 0
0 ∗

)
, if ρE,3(GQ ) is a subgroup of GL2(F3) of order 4 it is conjugate to

(
∗ 0
0 ∗

)
and

if ρE,3(GQ ) is a subgroup of GL2(F3) of order 6 it is conjugate to
(

1 ∗
0 ∗

)
or to

(
∗ ∗
0 1

)
.

(a) Assume g2 �= 0.

(i) If−x0 ∈ Q∗
2

, then by Proposition 2.2 Q(E[3]) = Q(
√
−x1), hence−x1 /∈

Q∗
2
, since the determinant is surjective. If −x0 and −x1 /∈ Q∗

2
, then

E(Q)[3] = {0} and [Q(
√
−x0,

√
−x1) : Q] = 4.

(ii) Assume thatΨE
3 has only one rational root x0. If E(Q)[3] = {0} and−x0 ∈

Q∗
2

then Q(E[3]) = Q(x1,
√
−x1) has degree 6 over Q and ρE,3(GQ ) is

conjugate to
(
∗ ∗
0 1

)
. If−x0 /∈ Q∗

2

and
√
−x0 ∈ Q(x1, y0) = Q(x1,

√
−x1),

we obtain the same, Q(E[3]) = Q(x1,
√
−x1) and ρE,3(GQ ) is conjugate

to
(
∗ ∗
0 1

)
. If E(Q)[3] = {0}, −x0 /∈ Q∗

2
and
√
−x0 /∈ Q(x1, y0), then

Q(E[3]) has degree 12 over Q and ρE,3(GQ ) is conjugate to
(
∗ ∗
0 ∗

)
. If

E(Q)[3] �= {0} then y0 ∈ Q and Q(E[3]) = Q(x1,
√
−x0). Since(

Q(E[3]) : Q
)
�= 3, −x0 /∈ Q∗

2
and

(
Q(E[3]) : Q

)
= 6. Then ρE,3(GQ )

is conjugate to
(

1 ∗
0 ∗

)
.

(iii) Assume that ΨE
3 has no rational roots. ThenΨE

3 is irreducible or factors as
a product of two irreducible polynomials of degree two.

Using the identification between Aut(E[3])/{±1} � PGL2(F3) and the sym-

metric group S4, we have that ∆E ∈ Q∗
3

if and only if 3 � #ρE,3(GQ ). As a

consequence, if ∆E /∈ Q∗
3

we have that ρE,3(GQ ) must be GL2(F3), since it is
not contained in a Borel subgroup. If∆E ∈ Q3 then 3 � #ρE,3(GQ ) and we have
that ρE,3(GQ ) is contained in the normalizer of a Cartan subgroup, taking into
account the complex conjugation and cardinality arguments. The polynomial
ΨE

3 factors as a product of two irreducible polynomials of degree two if and only
if the Cartan subgroup is split.
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(b) Assume g2 = 0. By Proposition 2.2, Q(E[3]) = Q( 3
√

g3,
√
−g3,

√
3g3), in each

case we compute the degree of Q(E[3]) over Q and we obtain the result.

3 Determination of ρE,p(GQ), NE ≤ 200

We recall some conditions for obtaining surjectivity for the mod p Galois representa-
tion attached to elliptic curves, which we will use to determine the image ρE,p(GQ ) ⊆
GL2(Fp), for p ≥ 5 prime.

Let E/Q be an elliptic curve. It is well known, that if the order of ρE,p(GQ ) is
divisible by p then ρE,p(GQ ) = GL2(Fp) or ρE,p(GQ ) is contained in a Borel subgroup
of GL2(Fp). Then, if E does not have any Q-isogeny of degree p, ρE,p is surjective.
On the other hand, by Mazur’s results [2], ρE,p is surjective or ρE,p(GQ ) is contained
in the normalizer of a Cartan subgroup of GL2(Fp) or p ≤ 19 or p = 37, 43, 67, or
163.

If the invariant jE is not an integer and p � v	( jE) < 0, for some prime 	, the
action of the inertia group on the Tate curve gives an element in ρE,p(GQ ) of order p
(cf. [3, IV, A.1.5]). Then we have:

Proposition 3.1 Let E/Q be an elliptic curve without Q-isogenies of degree p > 2 and
p � v	( jE) < 0, for some prime 	. Then ρE,p(GQ ) = GL2(Fp).

If E/Q has semistable reduction at p �= 5, then ρE,p is surjective or the image of
ρE,p is contained in the normalizer of a Cartan subgroup or in a Borel subgroup. For
p = 5 we obtain the same result if there exists an element s ∈ ρE,p(GQ ) such that
tr(s)2/ det(s) = 3 (cf. [4, 2.7, 2.8]). Moreover, if E/Q is semistable ρE,p is surjective
for p ≥ 11 (cf. [2, Th. 4]).

If the invariant jE is an integer we will use Serre-Tate’s results (cf. [5]) concerning
the subgroups Φ	, for some prime 	 �= p. The action of the inertia group I	 on E[p]
factors through the finite quotient Φ	 and it is injective. Moreover, they prove that
the groupΦ	 is isomorphic to a subgroup of the automorphism group of the reduced
curve Ẽ	/F	. Then we have the following three cases:

(a) If 	 �= 2, 3 then the group Φ	 is the cyclic group of order 2, 3, 4, or 6, depending
on the reduction of the special fiber of the Neron model at 	:

(i) #Φ	 = 2 if and only if v	(∆E) ≡ 6 (mod 12).

(ii) #Φ	 = 3 if and only if v	(∆E) ≡ 4 or 8 (mod 12).

(iii) #Φ	 = 4 if and only if v	(∆E) ≡ 3 or 9 (mod 12).

(iv) #Φ	 = 6 if and only if v	(∆E) ≡ 2 or 10 (mod 12).

(b) If 	 = 2 then Φ2 is isomorphic to a subgroup of SL2(F3), of order 2, 3, 4, 6, 8 or
24 and #Φ2 · v2(∆E) ≡ 0 (mod 12).

(c) If 	 = 3 then Φ3 is cyclic of order 2, 3, 4 or 6 or a semidirect product of a cyclic
group of order 4 and a normal subgroup of order 3.

Now, we can add a new column to the Antwerp tables [1] with the following infor-
mation: For each elliptic curve E without complex multiplication and for each prime
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p, the image ρE,p(GQ ) ⊆ GL2(Fp), of the attached Galois representation, i.e., the Ga-
lois groups of Q(E[p])/Q , for all primes p, and all elliptic curves without complex
multiplication with conductor N ≤ 200. We summarize:

Theorem 3.2 If E/Q is an elliptic curve without complex multiplication with conductor
N ≤ 200, then:

(i) The image ρE,p(GQ ) is GL2(Fp), for all prime numbers p > 13.
(ii) The image ρE,13(GQ ) is GL2(F13), except for the curves 147A, 147B, 147I and

147J, whose image is contained in a Borel subgroup.
(iii) The image ρE,11(GQ ) is GL2(F11), except for the curves 121F, 121G, 121H and

121I, whose image is contained in a Borel subgroup.
(iv) The image ρE,7(GQ ) is GL2(F7), except for the curves 26D, 26E, 162A, 162B, 162C,

162D, 162G, 162H, 162I, 162J, 174G and 174H.
The image ρE,7(GQ ) is conjugate to

(
∗ ∗
0 ∗

)
⊂ GL2(F7), for the curves 162A, 162B,

162C, 162D, 162G, 162H, 162I and 162J.
The image ρE,7(GQ ) is conjugate to

(
1 ∗
0 ∗

)
⊂ GL2(F7), for 26D and 174G.

The image ρE,7(GQ ) is conjugate to
(
∗ ∗
0 1

)
⊂ GL2(F7), for 26E and 174H.

(v) The image ρE,5(GQ ) is conjugate to
(

1 ∗
0 ∗

)
⊂ GL2(F5), for the curves 11A, 38A,

38C, 50A, 50B, 57F, 58B, 75C, 110C, 123A, 155D and 175A.
The image ρE,5(GQ ) is conjugate to

(
∗ ∗
0 1

)
⊂ GL2(F5), for the curves 11C, 38B,

38E, 50C, 50D, 57G, 58C, 66K, 66L, 75D, 110D, 118C, 123B, 155E and 175B.
The image ρE,5(GQ ) is conjugate to

(
1 0
0 ∗

)
⊂ GL2(F5), for the curves 11B and

38D.
The image ρE,5(GQ ) is conjugate to

(
±1 0
0 ∗

)
⊂ GL2(F5), for the curves 99D, 121B

and 176E.
The image ρE,5(GQ ) is conjugate to

(
±1 ∗
0 ∗

)
⊂ GL2(F5), for the curves 99C, 121A,

171I and 176D.
The image ρE,5(GQ ) is conjugate to

(
∗ ∗
0 ±1

)
⊂ GL2(F5), for the curves 99E, 121C,

171 J and 176F.
The image ρE,5(GQ ) is conjugate to

{(
±1 ∗
0 1

)
,
(
±2 ∗
0 −1

)}
, for the curves 50E, 50F,

75A, 150G, 150H and 175F.
The image ρE,5(GQ ) is conjugate to

{(
1 ∗
0 ±1

)
,
(
−1 ∗
0 ±2

)}
, for the curves 50G,

50H, 75B, 150E, 150F and 175G.
The image ρE,5(GQ ) is GL2(F5) otherwise.

(vi) The image ρE,3(GQ ) is conjugate to
(

1 0
0 ∗

)
⊂ GL2(F3), for the curves 14C, 14D,

19B, 26B, 35B, 37C, 54A, 54E, 77D, 91C, 126C, 126D, 158B, 171B, 182B, 189D
and 189F.
The image ρE,3(GQ ) is conjugate to

(
1 ∗
0 ∗

)
⊂ GL2(F3), for the curves 14A, 14B,

19A, 20A, 20B, 26A, 30A, 30B, 30D, 30E, 34A, 34B, 35A, 37B, 44A, 50E, 50G,
51A, 54B, 54D, 66A, 66B, 77C, 84C, 84D, 90A, 90B, 90G, 90 J, 90K, 90L, 90M,
90N, 91B, 92A, 102A, 102B, 106B, 106E, 110A, 110E, 114A, 114B, 116A, 124B,
126E, 126F, 130E, 130F, 138G, 138H, 140A, 142C, 153B, 156A, 156B, 158A,
158H, 162A, 162D, 162E, 162G, 162I, 162 J, 162K, 170D, 170F, 170H, 170I,
171C, 172A, 174I, 178A, 180C, 180D, 182A, 186B, 187A, 189A, 189H, 190A,
196C, 198A, 198B, 198G, 198H, 198M and 198N.
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The image ρE,3(GQ ) is conjugate to
(
∗ ∗
0 1

)
⊂ GL2(F3), for the curves 14E, 14F,

19C, 20C, 20D, 26C, 30C, 30F, 30G, 30H, 34C, 34D, 35C, 37D, 44B, 50F, 50H,
51B, 54C, 54F, 66C, 66D, 77E, 84E, 84F, 90C, 90D, 90E, 90F, 90H, 90I, 90O,
90P, 91D, 92B, 102C, 102D, 106C, 106F, 110B, 110F, 114C, 114D, 116B, 124C,
126A, 126B, 130G, 130H, 138I, 138 J, 140B, 142D, 153A, 156C, 156D, 158C,
158I, 162B, 162C, 162F, 162H, 162L, 170E, 170G, 170 J, 170K, 171A, 172B,
174 J, 178B, 180A, 180B, 182C, 186C, 187B, 189E, 189G, 190B, 196D, 198C,
198D, 198E, 198F, 198O and 198P.
The image ρE,3(GQ ) is conjugate to

(
∗ 0
0 ∗

)
⊂ GL2(F3), for the curves 98C, 98D,

112G, 112H and 175D.
The image ρE,3(GQ ) is conjugate to

(
∗ ∗
0 ∗

)
⊂ GL2(F3), for the curves 50A, 50B,

50C, 50D, 80A, 80B, 80C, 80D, 98A, 98B, 98E, 98F, 100A, 100B, 100C, 100D,
112E, 112F, 112I, 112 J, 150I, 150 J, 150K, 150L, 150M, 150N, 150O, 150P,
175C, 175E, 176A, 176B, 196A and 196B.
The image ρE,3(GQ ) is GL2(F3) otherwise.

(vii) The image ρE,2(GQ ) is {id} for the curves 15B, 15C, 15E, 17B, 17C, 21B, 21D,
24B, 24C, 30B, 30F, 33B, 39B, 40B, 42B, 42C, 45B, 45C, 45E, 48B, 48C, 55B,
56D, 57B, 62B, 63B, 63D, 66F, 70B, 72B, 75F, 75G, 75I, 78B, 80F, 90F, 90 J,
96A, 96E, 98F, 99I, 102H, 102 J, 105B, 112B, 114H, 117B, 120B, 120F, 120H,
126H, 126I, 129B, 130B, 130F, 138B, 141B, 144F, 144G, 147D, 147F, 150 J,
150N, 153F, 154F, 161B, 168A, 168F, 171E, 174B, 182F, 192B, 192F, 192G,
192L, 192M, 192R, 195B, 195D, 195E, 198 J and 200H.
The image ρE,2(GQ ) is C3 for the elliptic curves of conductor 196.
The image ρE,2(GQ ) is GL2(F2) for the elliptic curves of conductor 11, 19, 26, 35,
37, 38, 43, 44, 50, 51, 54, 58, 61, 67, 76, 79, 83, 88, 89, 91, 92, 100, 101, 104, 106,
109, 110, 115, 118, 121, 122, 123, 124, 131, 135, 139, 140, 143, 149, 152, 162,
163, 166, 172, 175, 176, 179, 186, 187, 189, 190, 197 and for the elliptic curves
57E, 57F, 57G, 75A, 75B, 75C, 75D, 77C, 77D, 77E, 77F, 99C, 99D, 99E, 116A,
116B, 116E, 129E, 141E, 141H, 141I, 142C, 142D, 142E, 142F, 142G, 147A,
147B, 147I, 147 J, 153A, 153B, 153C, 153D, 155C, 155D, 155E, 158A, 158B,
158C, 158D, 158E, 158H, 158I, 170C, 170D, 170E, 170F, 170G, 171A, 171B,
171C, 171H, 171I, 171 J, 174E, 174F, 174G, 174H, 174I, 174 J, 178A, 178B,
182A, 182B, 182C, 182D, 182I, 182 J, 184A, 184B, 184C, 185A, 185D, 195I,
195 J, 195K, 200A and 200B.
The image ρE,2(GQ ) is C2 otherwise.

For p = 2 or 3, we use the results of Section 2. For p ≥ 5, we use the results
of Section 1 if E has a Q-isogeny of degree p and is non-p-exceptional, otherwise
we use the results of the beginning of this section. In the case of 5-exceptional and
7-exceptional elliptic curves it is necessary to study each curve individually. As an
example we will examine the images of the mod p Galois representation attached to
the 5-exceptional curve 50E, for all prime p.

50E: Y 2 + XY + Y = X3 − X − 2. ∆E = −2 · 54. Since 	 = 2 is a multiplicative
reduction prime and v2( jE) = −1 < 0, then ρ50E,p is surjective, or the image is
contained in a Borel subgroup, for all primes p. On the other hand, 50E only has
Q-isogenies of degree 3 and 5. Then ρ50E,p is surjective, for all primes p �= 3, 5. For
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p = 3, since 50E(Q)[3] = {0, (2, 1), (2,−4)} and 50E admits only one Q-isogeny of
degree 3, we have, by Theorem 1.5, that ρ50E,3(GQ ) is conjugate to

(
1 ∗
0 ∗

)
.

For p = 5, the elliptic curve 50E is 5-exceptional. Let K = Q(
√

5), we have K ⊆
Q(ζ5) ⊆ Q(E[5]), for all elliptic curves E. So, the index

(
ρE,5(GQ ) : ρE,5(GK )

)
= 2

and χ5(GK ) = det ρE,5(GK ) = F∗5
2 = {±1}. By Theorem 1.5 there exists a basis

{P,Q} of 50A[5] such that ρ50A,5(GQ ) =
(

1 ∗
0 ∗

)
and ρ50A,5(GK ) =

(
1 ∗
0 ±1

)
. Let φ

the Q-isogeny of degree 5 between 50A and 50C , there exists a basis {φ(Q), P ′}, such
that ρ50C,5(GQ ) =

(
∗ ∗
0 1

)
. Computations on the polynomialΨ50C

5 of 5-torsion points
give that 50C[5](K) = {0}. Then in the basis {φ(Q), P ′},(

±1 ∗
0 1

)
= ρ50C,5(GK ) ⊆ ρ50C,5(GQ ) =

(
∗ ∗
0 1

)
.

Since 50C and 50E are twisted curves over K, we can consider the K-isomorphism h :
50C → 50E. Then,

{
h
(
φ(Q)

)
, h(P ′)

}
is a F5-basis of 50E[5]. Let σ ∈ GQ , since

hσ ◦ h−1 ∈ Aut(50E) = {± id}, we have that ρ50E,5(GQ ) is a group of order 20 and(
±1 ∗
0 1

)
= ρ50E,5(GK ) ⊆ ρ50E,5(GQ ) ⊆

(
∗ ∗
0 ±1

)
.

By Proposition 1.4, ρ50E,5(GQ ) �⊆
(
∗ ∗
0 1

)
. Since

(
±1 ∗
0 1

)
⊆ ρ50E,5(GQ ), we have that

there exists a ∈ F∗5 such that
(
±a ∗
0 −1

)
⊆ ρ50E,5(GQ ). But det ρ50E,5(GQ ) = F∗5 , so

a = ±2. Consequently,

ρ50E,5(GQ ) =

{(
±1 ∗
0 1

)
,

(
±2 ∗
0 −1

)}
.
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