
Efficient Divisor Class Halving on
Genus Two Curves

Peter Birkner ?

Department of Mathematics, Technical University of Denmark (DTU)
Matematiktorvet, Building 303, DK-2800 Kongens Lyngby, Denmark

peter@mat.dtu.dk

Abstract. Efficient halving of divisor classes offers the possibility to improve scalar multiplication on
hyperelliptic curves and is also a step towards giving hyperelliptic curve cryptosystems all the features
that elliptic curve systems have. We present a halving algorithm for divisor classes of genus 2 curves
over finite fields of characteristic 2. We derive explicit halving formulae from a doubling algorithm by
reversing this process. A family of binary curves, that are not known to be weak, is covered by the
proposed algorithm. Compared to previous known halving algorithms, we achieve a noticeable speed-up
for this family of curves.

Keywords. hyperelliptic curve, divisor class halving, binary fields.

1 Introduction

Since hyperelliptic curve cryptosystems (HECC) gain similar attention as their elliptic counterparts,
it is very interesting to investigate, whether ideas and methods can be transferred from the elliptic
to the hyperelliptic case. The most important operation used by elliptic curve cryptosystems (ECC)
is scalar multiplication which is composed of point addition and doubling (when using an double-
and-add algorithm) or point addition and halving (when using an half-and-add algorithm [7,11]).
These operations are well investigated and it is likely that the present formulae are the most efficient
ones. For HECC explicit formulae for addition, doubling and hence scalar multiplication of divisor
classes are also known [1,8].

Efficient halving of divisor classes offers the possibility to improve scalar multiplication on
hyperelliptic curves and is also a step towards giving HECC all the features that ECC have. Halving
a divisor class of a hyperelliptic curve is the reverse operation to doubling, i. e. given a divisor class
D one computes another divisor class E such that 2E = D or written in slightly informal notation:
1
2 D = E.

In this paper we present an efficient divisor class halving algorithm for hyperelliptic curves of
genus 2 over finite fields of characteristic 2. Covering a large family of curves, that are of crypto-
graphic interest, the complexity of our algorithm (1I, 8M, 5SR, 2S, 1HT, 1TR)1 is only less higher
than the complexity of the fastest doubling algorithm (1I, 5M, 6S) for divisor classes [9]. The pro-
posed halving method is based on explicit doubling formulae [9] that we use to develop the halving
formulae.

The first divisor class halving algorithm for binary curves was proposed by Kitamura, Katagi
and Takagi [5,6]. To our knowledge this is the only result on halving of divisor classes so far. Their
method covers the general case as well as some exceptional cases which do occur with very low

? Supported by the Danish Research Council for Technology and Production Sciences, grant no. 274-05-0151.
1 To describe the complexity of an algorithm we use the following abbreviations: I – Inversion, M – Multiplication, S –

Squaring, SR – Square Root, TR – Trace, HT – Half Trace.

1

probability. In the general case their complexity is 1I, 18M, 2SR, 2S, 2HT, 2TR in the best case and
1I, 21M, 3SR, 2S, 2HT, 2TR in the worst case.

The special class of curves considered in Appendix D of [6] is covered by our study. However,
instead of having a one-parameter family our curves has two free parameters. In the worst case our
complexity is 1I, 8M, 5SR, 2S, 1HT, 1TR which is significantly faster even than their formulae.

The remainder of this paper is structured as follows: In the next section we recall some important
notions and make a classification of genus 2 curves. In Section 3 we show how we developed the
halving formulae by reversing the doubling formulae. The following section contains the actual
halving algorithm.

2 Basic Notations and Preliminaries

In this section we briefly recall the definitions of hyperelliptic curves, divisor class groups and the
Mumford representation. We also make a classification of hyperelliptic curves over finite fields of
characteristic 2 because we focus on a family of curves in this paper. Within the halving algorithm
we need to solve a quadratic equation in a finite field of even characteristic. So we will explain how
to compute solutions for this at the end of this section.

A comprehensive source for the mathematics of finite fields is [10]. For background on hyperel-
liptic curves we refer the interested reader to [1], from which the following definitions and notations
are taken.

Definition 1 (Hyperelliptic curve). Let K be a field and let K be the algebraic closure of K. A
curve C, given by an equation of the form

C : y2 +h(x)y = f (x), (1)

where h ∈ K[x] is a polynomial of degree at most g and f ∈ K[x] is a monic polynomial of degree
2g + 1, is called a hyperelliptic curve of genus g over K if no point on the curve over K satisfies
both partial derivatives 2y+h = 0 and f ′−h′y = 0.

The last condition ensures that the curve is nonsingular. In this paper we concentrate on hyper-
elliptic curves of genus 2 over finite fields of characteristic 2. In this case we need a non-zero
polynomial h in the curve equation as will be shown now according to [1, p. 309].

Assuming h = 0, the partial derivative for y is equal to zero and the one for x is equal to f ′(x) = 0,
which has 2g roots in K. Let x1 be one of them. Then we can find an element y1 ∈ K such that
f (x1) = y2

1 which leads to a singular point P = (x1,y1) satisfying the curve equation and both partial
derivatives. Hence, there is no hyperelliptic curve with h = 0 over a field of characteristic 2.

Definition 2 (Divisor class group). Let C be a hyperelliptic curve of genus g over a field K. The
group of degree zero divisors of C is denoted by Div0

C. The quotient group of Div0
C by the group of

principal divisors of C is called the divisor class group of C and is denoted by Pic0
C. It is also called

the Picard group of C.

Theorem 1 (Mumford). Let C be a hyperelliptic curve of genus g over an arbitrary field K. Each
nontrivial divisor class of C over K can be represented by a unique pair of polynomials u,v ∈ K[x],
where

1. u is monic,
2. degv < degu≤ g,

2

3. u |v2 + vh− f .

Our proposed halving algorithm in Section 4 expects the input divisor class to be in Mumford
representation and works directly on the coefficients of the polynomials u and v. The resulting
divisor class is also given in the Mumford form.

2.1 Classification of Genus Two Curves

In this paper we deal with hyperelliptic curves of genus 2 over F2d . To avoid Weil descent attacks
[4] one usually restricts to prime degree field extensions for cryptographic applications. So in the
following we particularly assume d to be odd.

The genus 2 curves over F2d can be sorted into three different categories depending on the 2-
rank of the divisor class group of the curve (see [3]). All points P in the support of a divisor class
of order 2 satisfy P = ι(P), where ι is the hyperelliptic involution. If P = (x,y) is not the point at
infinity, its coordinates must satisfy y = h(x)+y. So, x is a root of h(x) and we have that the degree
of h equals the 2-rank of Pic0

C. In this paper we focus on curves whose divisor class group has 2-rank
equal to one, i. e. in the curve equation we have degh = 1. In [2,1] these curves are called curves of
Type II. Over a field F2d with d odd, one can perform the following transformations

x 7→ µ
2x′+λ and y 7→ µ

5y′+ µ
4
αx′2 + µ

2
βx′+ γ,

where µ is such that µ3 = h1, λ = h0h−1
1 , α =

√
λ + f4, β a root of x2 + h1x + f2 + f3λ + εh2

1
with ε = Tr

(
(f2 + f3λ)h−2

1

)
and γ = (λ 2 f3 +λ 4 + f1)h−1

1 , to obtain a unique representative of each
isomorphism class given by

C : y2 + xy = x5 + f3x3 + f2x2 + f0, (2)

where f2 ∈F2 and f0, f3 ∈F2d [1, Proposition 14.37]. So, for the remainder of this paper we consider
(2) as a Type II curve.

Since f2 ∈ F2, we have 2 · 2d · 2d = 22d+1 different choices for the right-hand side of (2), i. e.
Type II covers (up to isomorphism) 22d+1 different curves of genus 2 where our halving algorithm
can be applied.

2.2 Quadratic Equations in F2d

In the halving algorithm we need to solve a quadratic equation in F2d . Provided a solution exists,
we can use a simple formula to compute it.

Consider the quadratic equation X2 +aX +b = 0 over the finite field F2d . By substituting X by
X/a, one gets the simpler equation

T 2 +T = c, with c = b/a2, (3)

which has a solution in the field F2d if and only if the trace of c is equal to zero [1, Section 11.2.6].
If d is odd, then a solution of (3) is given by

t =
(d−3)/2

∑
i=0

c22i+1
. (4)

When t is one solution of the quadratic equation (3), then t + 1 is the other one. See [1, Section
11.2.6] for details.

3

2.3 Choice of the Field Representation

Like in the doubling formulae we have to compute inversions, multiplications and squarings to
halve a divisor class. Additionally we need to be able to efficiently compute square roots, traces
and half-traces. In order to speed these operations up, one can use a normal basis representation.
Having this we can compute the square of a field element simply by shifting the representing vector.
Computing a square root works the same way but shifting to the opposite direction. Because traces
and half-traces are sums of powers of squares, they can be calculated very efficiently, too. In a
hardware implementation, multiplications and inversions in the field can be hard-coded in order to
get best performance.

Software libraries like NTL work with a polynomial basis representation and do not provide
efficient square root computations in characteristic two. So, we implemented our own square root
function for the finite field F283 and present some timings for field operations. We used the Number
Theory Library (NTL 5.4) together with the GNU Multiple Precision Arithmetic Library (GMP
4.2.1) and the GNU Compiler Collection (GCC 4.0.1) on an Apple MacBook with a 2,0 GHz Intel
Dual Core CPU to compute the benchmarks. The multiplication, inversion and squaring functions
are taken from NTL, the square root function is our own implementation for that particular finite
field. We measured the time for 100,000 operations each.

Operation Time [sec.] # of Multiplications

M 0.065966 1.00

I 0.52136 7.90

SR 0.3775 5.72

S 0.045714 0.69

Table 1. Timings of field operations in F283

3 From Doubling to Halving

In this section we derive the halving formulae from the doubling formulae. Therefore, we present
first how to double a divisor class given in Mumford representation using explicit formulae. Then
we explain how we found the halving formulae by reversing the doubling algorithm.

In the entire section we assume C to be a Type II hyperelliptic curve of genus 2 over F2d , where
d is odd, given by equation (2). In the following we also need to assume that the group order of
Pic0

C(F2d) is 2r, where r is odd.2 For cryptographic applications one wants to work in a cyclic
subgroup of prime order l. So we denote the order l-subgroup of Pic0

C(F2d) by S. Note, however,
that the following considerations also hold muta mutandis in the subgroup of order r.

3.1 Doubling of Divisor Classes

Let E = [x2 +u′1x+u′0, v′1x+v′0] be a divisor class in the order l-subgroup S of Pic0
C(F2d). Because l

is prime, there exists no proper subgroup of S and hence it is cyclic. So, each divisor class contained
in S is the double of another divisor class in the same subgroup, i. e. each divisor class in S can be

2 This ensures that there is no element of order 4.

4

doubled and hence also be halved. In [5] the elements of this subgroup are called proper divisor
classes.

We can compute the doubled divisor class D = 2E = [x2 +u1x +u0, v1x + v0] using Lange and
Steven’s explicit formulae (see [9]):

u1 =

(
u′0

2

f0 + v′0
2

)2

, (5)

u0 =

((
u′1

2 + f3

)(u′0
2

f0 + v′0
2

)
+u′1

)2

+

(
u′0

2

f0 + v′0
2

)
, (6)

v0 =

(
u′0

2

f0 + v′0
2 +u′1

2 + f3

)
u0 +u′0

2
, (7)

v1 =

(
u′0

2

f0 + v′0
2 +u′1

2 + f3

)(
u′1

2 + f3

)(u′0
2

f0 + v′0
2

)

+

(
u′0

2

f0 + v′0
2

)
u1 + f2 + v′1

2
. (8)

Notice that we are considering a curve of form (2), i. e. h(x) = x. Hence, the coefficient h1 occurring
in Lange and Steven’s formulae equals one and does not appear here.

3.2 Halving of Divisor Classes

Now, we turn around and compute the half of a divisor class by applying the doubling formulae in
reverse order. Given a divisor class D = [x2 +u1x+u0, v1x+v0], we show how to compute a divisor
class E = [x2 + u′1x + u′0, v′1x + v′0] such that D = 2E. Therefore, we need again to say that D must
be contained in the order l-subgroup S of Pic0

C(F2d) in order to ensure that the double and the half
of each divisor class does exist in this particular subgroup.

Taking
√

u1 from (5), we can write u0 using (6) as

u0 =
(
(u′1

2 + f3)
√

u1 +u′1
)2

+
√

u1. (9)

Now, using the fact that we are in characteristic 2 we can expand the quadratic expression and
arrange the terms such that we get a quartic equation in u′1 on the right-hand side:

u0 = u′1
4u1 +u′1

2 +
(

f 2
3 u1 +

√
u1
)
. (10)

Substituting U = u′1
2 yields a quadratic equation in the variable U :

U2u1 +U = u0 + f 2
3 u1 +

√
u1. (11)

Multiplying both sides by u1 and substituting T = U · u1 afterwards yields a quadratic equation
T 2 +T = c where c = u1u0 + f 2

3 u2
1 +u1

√
u1 like (3).

Because D is an element of the subgroup S, there exists an element E ∈ S with D = 2E. So
u1,u0,v1 and v0 can be written as in (5), (6), (7) and (8). Hence, we know that there exists a solution
of T 2 +T = c (because this equation holds if and only if (6) holds). Due to Section 2.2 this implies

5

that the trace of c is equal to zero. We also know that there exist two solutions t and t +1 which can
be computed using (4). After adjusting these two solutions by dividing by u1 we have two solutions
of (11). Re-substituting u′1 =

√
t/u1 or u′1 =

√
(t +1)/u1 respectively yields two possible values

for u′1 in (10). We will show how to figure out which of these two solutions is the right one at the
end of this section. For now let us suppose that we already know the correct u′1.

Taking v0 from (7) and writing again u′0
2

f0+v′0
2 as
√

u1, we obtain:

v0 =
(√

u1 +u′1
2 + f3

)
u0 +u′0

2
, (12)

which leads us to a new expression for u′0 using the already known value u′1:

u′0 =
√

v0 +
(√

u1 +u′1
2 + f3

)
u0. (13)

Now we are able to compute v′0 using u′0 and (5):

v′0 =

√
u′0

2

√
u1

+ f0. (14)

The last step is to compute v′1 using (8):

v′1 =
√

v1 +
√

u1

(
(
√

u1 +u′1
2 + f3)(u′1

2 + f3)+u1

)
+ f2. (15)

Let us now come back to figuring out which of the two solutions of the quadratic equation T 2 +
T = c is the right one. In order to do that, we use the first solution t and continue computing
the halved divisor class as explained above. If this choice was correct, then the halved divisor
class is a proper one, i. e. it is contained in the subgroup S. So we have to check this. As we have
seen above, the trace of c = u2

1

(
u0
u1

+ f 2
3 +

√
u1

u1

)
= u1

(
u0 +u1 f 2

3 +
√

u1
)

is zero if and only if the
divisor class is contained in S. We now check if the obtained divisor class can be halved, i. e.
whether Tr

(
u′1(u

′
0 +u′1 f 2

3 +
√

u′1)
)

= 0. If this holds, then the first solution t was correct and we
have computed the correct halved divisor class. If the trace is not zero, we use the other solution
t + 1 of the quadratic equation. So the trace serves as a criteria to determine the right solution of
(11). Note, that this test involves computing u′1 and u′0. So it should be performed as soon as they
are computed. If the other solution turns out to be the correct one, we have to redo the computation
of u′1 and u′0 using t +1 instead of t.

After computing u′1,u
′
0,v
′
1 and v′0 we can write the halved divisor class in Mumford representa-

tion: E = [x2 +u′1x+u′0, v′1x+ v′0].

3.3 The Case u1 = 0

The formulae presented in the previous section hold in the generic case, i. e. if both the input and
output have u and v of full degree and no zero coefficients. To complete the above study we now
consider how to compute the half of a divisor class with u1 = 0.

The other cases appear with very low probability and do not belong to the main algorithm.
Implementers going for an implementation of all possible cases should consult [9] and [8] for a
complete case study.

6

We now consider the divisor class D = [x2 +u0, v1x+v0], where u1 equals zero. From equation
(5) follows directly u′0 = 0. Using this and equation (6) we get u0 = u′21 and hence, u′1 =

√
u0. This

shrinks (8) to v1 = f2 + v′21 and we have v′1 =
√

v1 + f2. Having u′0 = 0, one can see that the four
equations (5), (6), (7) and (8) do not depend on v′0 any longer, so this value becomes arbitrary. So,
(14) should not be performed.

The complete procedure explained above leads to the actual halving algorithm presented in the
next section.

4 The Divisor Class Halving Algorithm

We present an efficient divisor class halving algorithm for genus 2 curves of Type II (cf. Section
2.1) over F2d , where d is odd, based on the formulae derived in the previous section. We do not
follow the steps literally but change them to allow more efficient computations.

We shortly repeat the prerequisites: The curve parameters must be chosen such that the order of
Pic0

C(F2d) is equal to 2r for an odd number r. The input divisor class must be contained in the order
l-subgroup of Pic0

C(F2d), where l is prime.

Algorithm 1 Divisor Class Halving (HLV)
INPUT: Divisor class D = [u, v], where u = x2 +u1x+u0, v = v1x+ v0 and the

pre-computed values f 2
3 ,
√

f0
OUTPUT: Halved divisor class E = [u′, v′] such that D = 2E

1: q1←
√

u1, q2← 1/q1, q3← q2
2, q4← u0q3, q5←

√
q2 . 1I, 1M, 2SR, 1S

2: q6←
√

q4, c← u1(q6 +q5 + f3) . 1SR, 1M

3: t ′←
(d−3)/2

∑
i=0

c2(2i+1)
. 1HT

4: u′1← t ′q2, t← u′21 , s1← v0 +(q1 + t + f3)u0 . 2M, 1S
5: u′0←

√
s1, b← Trace(u′1(u

′
0 + t + f3)) . 1M, 1SR, 1TR

6: if b = 0 then
7: v′0← q5u′0 +

√
f0 . 1M

8: else
9: t← t +q3, u′1← u′1 +q2

10: u′0← u′0 +q6, v′0← q5u′0 +
√

f0 . 1M
11: end if

12: v′1←
√

v1 +q1

(
(q1 + t + f3)(t + f3)+u1

)
+ f2 . 2M, 1SR

13: return [x2 +u′1x+u′0, v′1x+ v′0] . Total: 1I, 8M, 5SR, 2S, 1HT, 1TR

We now explain the steps of the algorithm according to the formulae derived in the previous
section.

Some expressions in the halving formulae do occur more than once. To avoid recomputations,
we replace them by q1, . . . ,q6 in Step 1 and 2. To solve the quadratic equation (11) we have to
compute u1(u0 +u1 f 2

3 +
√

u1). What we actually do in the algorithm is computing u1(q6 + f3 +q5)
which is the square root of u1(u0 + u1 f 2

3 +
√

u1) and use that Tr(a2) = Tr(a) for any a ∈ F2d . The
reason for this is that we can save 1SR since u′1 is root of the (via multiplication by q2) adjusted
solution t ′. In Step 3 the solution of the quadratic equation is computed as in (4) and then adjusted
in Step 4. In Step 5 the value u′0 is computed according to (13).

7

According to the explanation at the end of the previous section, we now have to compute the
trace of u′1(u

′
0 +
√

u′1 +u′1 f 2
3) in order to perform the check whether we calculated the right solution

of the quadratic equation or not. To reduce the number of operations we compute the trace of
u′1(u

′
0 + t + f3) instead. Doing this saves 1M, 1SR and 1S. To see that these two traces are equal, we

point out that Tr(u′1
√

u′1) = Tr(u′1t), Tr(u′1
2 f 2

3) = Tr(u′1 f3) and that the trace is a linear map.
In Steps 6 to 11 we compute v′0 depending on the trace b. If this trace is equal to zero, we

continue by computing v′0 using (14). For b = 1 we use t ′+1 instead of t ′ in Step 3. Hence, we have
to adjust x by adding q3, u′1 by adding q2 and u′0 by adding q6 in Steps 9 and 10. After that we can
compute v′0 in the same way as in Step 7.

The last thing to do is computing v′1 using (15) in Step 12. Finally the algorithm returns the
desired halved divisor class in Mumford representation. The steps, considered so far, have a total
complexity of 1I, 8M, 5SR, 2S, 1HT, 1TR in both cases b = 1 and b = 0.

5 Conclusion and Outlook

In this paper we presented an efficient halving algorithm for divisor classes of a family of hyper-
elliptic curves of genus 2 over binary fields. Compared to the previous result by Kitamura, Katagi
and Takagi [5,6] we gained a notable speed-up for this family (see Table 2).

In Appendix D of [6] the authors consider curves of form

y2 + xy = x5 + f1x+ f0.

The transformation y 7→ ỹ + f1 maps to the isomorphic curve ỹ2 + xỹ = x5 + f̃0, which is a Type II
curve. This equation shows that their family of curves has only one parameter that can be chosen
freely while our family achieves full generality for Type II curves needing far less operations (cf.
Table 2).

Type II curve Special curve
(see Section 2.1) (see [6], Appendix D)

y2 + xy = x5 + f3x3 + f2x2 + f0 y2 + xy = x5 + f0
Kitamura, Katagi, Takagi [5,6] 1I, 15M, 3SR, 3S, 2HT, 2TR 1I, 12M, 5SR, 2S, 1HT, 1TR

This work 1I, 8M, 5SR, 2S, 1HT, 1TR 1I, 8M, 5SR, 2S, 1HT, 1TR

Table 2. Complexity of halving algorithms in worst case

We would like to point out that we can improve the efficiency of our algorithm as well as that of
doubling by leaving out the computation of v1 in a Montgomery like scalar multiplication, since the
new values u0,u1 and v0 do not depend on it. We are investigating the required addition formulae.

References

1. Roberto Avanzi, Henri Cohen, Christophe Doche, Gerhard Frey, Tanja Lange, Kim Nguyen, and Frederik Ver-
cauteren. The Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, 2005.

2. Bertrand Byramjee and Sylvain Duqesne. Classification of genus 2 curves over F2n and optimization of their arith-
metic. Cryptology ePrint Archive of IACR, Report 2004/107, 2004.

8

3. YoungJu Choie and Dong Kyun Yun. Isomorphism Classes of Hyperelliptic Curves of Genus 2 over Fq. In Infor-
mation Security and Privacy – ACISP 2002, volume 2384 of Lecture Notes in Computer Science, pages 190–202.
Springer-Verlag, 2002.

4. Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and destructive facets of Weil descent on elliptic
curves. Journal of Cryptology, 15(1):19–46, 2002.

5. Izuru Kitamura, Masanobu Katagi, and Tsuyoshi Takagi. A Complete Divisor Class Halving Algorithm for Hyper-
elliptic Curve Cryptosystems of Genus Two. In Information Security and Privacy – ACISP 2005, volume 3574 of
Lecture Notes in Computer Science, pages 146–157. Springer-Verlag, 2005. (for a full version see [6]).

6. Izuru Kitamura, Masanobu Katagi, and Tsuyoshi Takagi. A Complete Divisor Class Halving Algorithm for Hyper-
elliptic Curve Cryptosystems of Genus Two. Cryptology ePrint Archive of IACR, Report 2004/255, 2005.

7. Erik Woodward Knudsen. Elliptic Scalar Multiplication Using Point Halving. In ASIACRYPT’99, volume 1716 of
Lecture Notes in Computer Science, pages 135–149. Springer-Verlag, 1999.

8. Tanja Lange. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves. Applicable Algebra in Engineering,
Communication and Computing, 15(5):295–328, 2005.

9. Tanja Lange and Marc Stevens. Efficient Doubling for Genus Two Curves over Binary Fields. In Selected Areas in
Cryptography – SAC 2004, volume 3357 of Lecture Notes in Computer Science, pages 170–181. Springer-Verlag,
2005.

10. Rudolf Lidl and Harald Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathematics and its Applications.
Addison-Wesley, 1983.

11. Richard Schroeppel. Elliptic curve point halving wins big. 2nd Midwest Arithmetical Geometry in Cryptography
Workshop, Urbana, Illinois, November 2000.

A Magma Implementation of the HLV Algorithm

Here is a sample Magma implementation of the HLV algorithm for the finite field F27 .

GF2 := FiniteField(2);

R_GF2<z> := PolynomialRing(GF2);

F := ext < GF2 | z^7 + z + 1 >; // Define the extension field F_{2^7}

R<x> := PolynomialRing(F);

f0 := F.1^41; // Setup the curve parameters

f2 := 1; //

f3 := F.1^32; //

f := x^5 + f3*x^3 + f2*x^2 + f0; // Curve equation: y^2 + h(x)y = f(x)

h := x; //

C := HyperellipticCurve(f, h);

J := Jacobian(C);

r := #J; // Compute the order of the Jacobian

halving := function(D)

u0 := Coefficient(D[1], 0);

u1 := Coefficient(D[1], 1);

v0 := Coefficient(D[2], 0);

v1 := Coefficient(D[2], 1);

q1 := Sqrt(u1);

q2 := 1 / q1;

q3 := q2^2;

q4 := u0 * q3;

q5 := Sqrt(q2);

q6 := Sqrt(q4);

c := u1 * (q6 + q5 + f3);

xp := &+[c^2^(2*i + 1) : i in [0..2]];

u1p := xp*q2;

x := u1p^2;

s1 := v0 + (q1 + x + f3) * u0;

u0p := Sqrt(s1);

9

t := Trace(u1p * (u0p + x + f3));

if (t eq 0) then

v0p := q5 * u0p + Sqrt(f0);

else

x := x + q3;

u1p := u1p + q2;

u0p := u0p + q6;

v0p := q5 * u0p + Sqrt(f0);

end if;

v1p := Sqrt(v1 + q1 * ((q1 + x + f3) * (x + f3) + u1) + f2);

return [u1p, u0p, v1p, v0p];

end function;

// Now define a sample divisor class and compare D, 2D and the half of 2D

D := J ! [x^2 + F.1^18*x + F.1^80, F.1^17*x + F.1^117];

print "D: ", D;

print "2*D: ", 2*D;

halving(2*D);

10

