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1 Introduction

Consider the problem of contract bidding: Municipality M has voted to construct a new
elementary school, has chosen a design, and advertises in the appropriate trade journals,
inviting construction companies to bid for the contract. The advertisement contains a
public-key E to be used for encrypting bids, and a FAX number to which encrypted bids
should be sent. Company A places its bid of $1,500,000 by FAXing £(1,500,000) to the
published number over an insecure line. Intuitively, the public-key cryptosystem is malleable
if, having access to £(1,500,000), Company B is more likely to generate a bid £(3) such
that 8 < 1,500,000 than Company B would be able to do without the ciphertext. Note that
Company B need not be able to decrypt the bid of Company A in order to consistently just
underbid. In this paper we describe a non-malleable public-key cryptosystem that prevents
such underbidding. Our system does not even require Company A to know of the existence
of Company B.

In another scenario, suppose Researcher A has obtained a proof that P # N P and wishes
to communicate this fact to Professor B. Clearly A will initially do this in a zero-knowledge
fashion, but is zero-knowledge sufficient? Professor B may try to steal credit for this result
by calling eminent Professor E and acting as a transparent prover. Any questions posed by
Professor E to Professor B are relayed by the latter to A, and A’s answers to Professor B
are then relayed in turn to Professor F. We solve this problem with a non-malleable zero-
knowledge proof of knowledge. Researcher A will get proper credit even without knowing of
the existence of Professor E, and even if Professor E is unaware of Researcher A.

Goldwasser and Micali define a cryptosystem to be semantically secure if anything com-
putable about the cleartext from the ciphertext is computable without the ciphertext [17].
This powerful type of security may be inadequate in the context of a distributed system,
in which the mutual independence of messages sent by distinct parties often plays a critical
role. In particular, a semantically secure cryptosystem may not solve the contract bid-
ding problem. Informally, a cryptosystem is non-malleable if the ciphertext doesn’t help:
given the ciphertext it is no easier to generate a different ciphertext so that the respective
plaintexts are related than it is to do so without access to the ciphertext. In other words,
a system is non-malleable if, for every relation R, given a ciphertext E(a), one cannot
generate a different ciphertext F(f3) such that R(a, ) holds any more easily than can be
done without access to E(a)!. We present a non-malleable public-key cryptosystem. Our
cryptosystem does not assume a trusted center, nor does it assume that any given collection
of users knows the identities of other users in the system. In contrast, all other research
touching on this problem of which we are aware requires at least one of these assumptions
(e.g., [6, 7, 27]).

To further motivate non-malleable public key cryptography, in Section 3.4 we discuss
an extremely simple protocol for public key authentication, a relaxation of digital signatures
that permits an authenticator A to authenticate messages m, but in which the authenti-
cation needn’t be verifiable by a third party. The protocol requires a non-malleable public
key cryptosystem, and is simply incorrect if the cryptosystem is malleable.

!Clearly, there are certain kinds of relations R that we cannot rule out. For example, if R(a, $) holds
precisely when 8 € E(a) then from E(«a) it is trivial to compute 3, and hence E(f), such that R(a, ) is
satisfied. For formal definitions and specifications see 2.



A second important scenario for non-malleability is in string commitment. Let A and
B run a string commitment protocol. Assume that A is non-faulty, and that A commits to
the string a. Assume that, concurrently, C' and D are also running a commitment protocol
in which C' commits to a string 8. If B and C' are both faulty, then even though neither of
these players know a, it is conceivable that § may depend on a. The goal of a non-malleable
string commitment scheme is to prevent this.

We present a non-malleable string commitment scheme with the property that if the
players have names (from a possibly unbounded universe), then for all relations R our
scheme ensures that C' is no more likely to be able to arrange that R(a, ) holds than it
could do without access to the (A, B) interaction. Again, the scheme works even if A is
unaware of the existence of C' and D. If the players are anonymous, or the names they
claim cannot be verified, then again if 3 # a then the two strings are no more likely to be
related by R.

Intuitively, it is sufficient that C' know the value to which it is committing in order to
guarantee that a and 3 are unrelated. To see this, suppose C' knows 8 and C' also knows that
R(a, ) holds. Then C knows “something about” a, thus violating the semantic security
of string commitment. Proving possession of knowledge requires specifying a knowledge
extractor, which, given the internal state of C', outputs 8. In our case, the extractor has
access to the (A, B) interaction, but it cannot rewind A. Otherwise it would only be a proof
that someone knows 3, but not necessarily that C' does.

In the scenario we have been describing, there are (at least) two protocol executions
involved: the (A, B) interaction and the (C, D) interaction. Even if both pairs of players
are running string commitment protocols, the protocols need not be the same. Similar ob-
servations apply to the cases of non-malleable public-key cryptosystems and non-malleable
zero-knowledge proofs of knowledge. Thus non-malleability of a protocol really only makes
sense with respect to another protocol. All our non-malleable protocols are non-malleable
with respect to themselves. A more general result is mentioned briefly in Section 5.

Using non-malleable string commitment as a building block, we obtain non-malleable
zero-knowledge proofs of possession of knowledge, in the sense of Feige, Fiat, and Shamir [11].
Zero-knowledge protocols [18], may compose in an unexpectedly malleable fashion. A clas-
sic example is the so-called “Mafia scam” [8] attack on an identification scheme, similar in
spirit to the transparent intermediary problem described above. Let A and D be non-faulty
parties, and let B and C be cooperating faulty parties (they could even be the same party).
Consider two zero-knowledge interactive proof systems, in one of which A is proving to B
knowledge of some string a, and in the other C' is proving to D knowledge of some string
3. The two proof systems may be operating concurrently; since B and C' are cooperating
the executions of the (A, B) and (C, D) proof systems may not be independent. Intuitively,
non-malleability says that if C' can prove knowledge of 3 to D while A proves knowledge of
a to B, then C could prove knowledge of § without access to the (A, B) interaction. We
present a non-malleable scheme for zero-knowledge proof of possession of knowledge.

One delicate issue is the question of identities. Let a and § be as above. If the players
have names, then our protocol guarantees that 3 is independent of a. The names may come
from an unbounded universe. Note that there are many possibilities for names: timestamps,
locations, message histories, and so on. If the players are anonymous, or the names they
claim cannot be verified, then it is impossible to solve the transparent prover problem



described earlier. However, the faulty prover must be completely transparent: if § # «
then the two strings are unrelated by any relation R. In particular, recall the scenario
described above in which (relatively unknown) Researcher A seeks credit for the P # NP
result and at the same time needs protection against the transparent prover attack. Instead
of proving knowledge of a witness s that P # N P, Researcher A can prove knowledge of
a statement @ = A - s. In this case the only dependent statement provable by Professor B
is a, which contains the name A.

We assume the existence of trapdoor functions in constructing our public-key cryptosys-
tems. The string commitment protocols and zero-knowledge proofs require only one-way
functions.

2 Definitions and System Model

Since non-malleability is a concept of interest in at least the three contexts of public key
encryption, bit/string commitment, and zero-knowledge proofs, we give a single general
definition that applies to all of these. Thus, when we speak of a primitive P we can
instantiate any of these three primitives. For completeness, we give full definitions of each
of these primitives in Section 2.2.

2.1 Definitions Specific to Non-Malleability

An interactive protocol (A, B)[c,a,b] is an ordered pair of polynomial time probabilistic
algorithms A and B to be run on a pair of interactive Turing machines with common input
¢ and with private inputs a and b, respectively, where any of a, b, ¢ might be null.

We distinguish between the algorithm A and the agent 1(A) that executes it. We also
use ¥(A) to denote a faulty agent that is “supposed” to be running A (that is, that the
non-faulty participants expect it to be running A), but has deviated from the protocol.

In any interactive protocol (A, B) for primitive P, party A has an intended value. In
the case of encryption it is the value encrypted in ¢(B)’s public key; in string commitment
it is the string to which ¢(A) commits; in a zero-knowledge proof it is the theorem being
proved interactively. We sometimes refer to the intended value as an input to A. We also
sometimes refer to ¥(A) as the Sender and to ¥ (B) as the Receiver. We use the verb to
send to mean, as appropriate, to send an encrypted message, to commit to, and to prove
knowledge of. Intuitively, in each of these cases information is being transmitted, or sent,
from the Sender to the Receiver.

Interactive protocols (A, B), including the simple sending of an encrypted message,
are executed in a context, and the participants have access to the history preceding the
protocol execution. When (A) has intended value «, we assume both parties have access
to hist(a), intuitively, information about the history that leads to ¥( A) running the protocol
with intended value a.

In some cases we also assume an underlying probability distribution D on intended
values, to which both parties have access (that is, from which they can sample in polynomial
time).

An adversarially coordinated system of interactive protocols

((A,B),(C, D), A:¢(B) < ¥(C))



consists of two interactive protocols (A, B) and (C, D), an adversary A controlling the
agents ¢(B) and ¢(C'), the communication between these agents, and the times at which
these controlled agents take steps.

Generally, we are interested in the situation in which A = C' and B = D, for example,
when both interactive protocols are the same bit commitment protocol. Thus, for the re-
mainder of the paper, unless otherwise specified, (A, B) = (C, D), but ¥(A),¥(B),¥(C), (D)
are all distinct.

Consider the adversarially coordinated system ((A, B),(C, D), A:¢¥(B) < ¢¥(C)). In
an execution of this system, 1/(A) sends an intended value a €g D in its conversation with
¥(B), and ¥(C) sends an intended value § in its conversation with (D). If 4(C) fails to
do so we take 8 to be all zeros. Similarly, in the case of non-malleable encryption, we let «
denote the plaintext of an encrypted message sent by ¥(A) to ¢(B), and we let 3 denote
the plaintext of an encrypted message sent by ¥(C) to (B). While we cannot prevent
exact copying in any of the primitives we consider, the goal of non-malleability is to ensure
that 8 be “unrelated” to @ when a # (.

A relation approzimator R is a probabilistic polynomial time Turing machine taking
two inputs? and producing as output either zero or ome. The purpose of the relation
approximator is to measure the correlation between a and 3. That is, R measures how well
the adversary manages to make 3 depend on a. We restrict our attention to the special class
of relation approximators which on input pairs of the form (z,z) or (z,0") always output
zero. The intuition here is that we cannot rule out exact copying or the case in which ¥(C')
refuses to send an intended value (or gets caught cheating), but intuitively these are not
the cases in which the adversary “succeeds.”

When we discuss composition we will extend the definition so that the first input is
actually a vector V of length k. The intuition here is that ' may have access to sev-
eral interactions with, and intended values sent by, non-faulty players. In that case, the
approximator must output zero on inputs (V,y) in which y is either a component of V,
corresponding to the case in which ¥(C') exactly copies one of the non-faulty players, or is
of the form 0", again corresponding to the case in which ¥(C') refuses to send an intended
value.

Given a probability distribution on the pair of inputs, there is an a priori probability,
taken over the choice of intended values and the coin flips of R, that R will output one. In
order to measure the correlation between a and § we must compare R’s behavior on input
pairs (a, 3) generated as described above to its behavior on pairs (a,7), where v is sent
without access to the sending of o (although as always we assume that ¢(C') has access to
D and hist(a)).

An adversary simulator for a commitment (zero-knowledge proof of knowledge) scheme
S with input distribution D and polynomial time computable function hist, is a probabilistic
polynomial time algorithm that, given hist, hist(«), and D, produces an intended value 7.

Given an adversarially coordinated system of interactive protocols ((4, B),(C, D), A :
P(B) < (C)) where (A, B) and (C, D) are both instances of S, and given a relation
approximator R, let (A, R) denote the probability, taken over all choices of ¥(A), ¥(D),
A, and R, that R(a, ) outputs 1, where a is sent by ¥(A) and 3 is sent by ¥(C'). Similarly,

2Sometime we will need R to take three inputs, the third being in plaintext



for an adversary simulator A’ we let 7'(A’, R) denote the probability, taken over the choice
of a € D, the choices of A’ in generating 7, and the choices of R, that R(a,v) = 1.

A scheme S for a primitive P is non-malleable with respect to itself if for all relation
approximators R and all adversarially coordinated systems of interactive proof systems
((A,B),(C,D), A:9(B) < (C)) where (A, B) = (C,D) = S, there exists an adversary
simulator A’ such that |7(A, R)— 7'(A’, R)| is subpolynomial.

The definition of a non-malleable cryptosystem is in exactly the same spirit as the
definition for non-malleable interactive protocols. The details are postponed until Section 3.

2.2 Definitions of Primitives

In this section we review the definitions from the literature of probabilistic public key
cryptosystems, string commitment, and non-interactive zero-knowledge proof systems, all
of which are used as primitives in our constructions.

Probabilistic Public Key Encryption
A probabilistic public key encryption scheme (see [17]) consists of:

e GGP, the key generator. A probabilistic machine that on input n, the security param-
eter, outputs a pair of strings (e,d) (e is the public key and d is the secret key)

e F, the encryption function, gets three inputs: the public key e, b € {0,1}, and a
random string r of length p(n), for some polynomial p. F.(b,r) is computable in
polynomial time.

e D, the decryption function, gets two inputs: ¢ which is a ciphertext and the private
key d which was produced by GP. Dgy(c) is computable in expected polynomial time.

e if GP outputs (e, d), then

Vb e {0,1} Vr € {0,137 Dy(E.(b, 7)) =b

e The system has the property of indistinguishability: for all polynomial time machines

M
1

poly(n)
where the probability is taken over the coin flips of GP, M and the choice of r.

| Prob[M (e, E(0,7)) = 1] — Prob[M(e, E.(1,7)) =1]| <

For implementations of probabilistic encryption see [1, 5, 15, 22, 30]. In particular, such
schemes can be constructed from trapdoor permutations.

Our version of semantic security is the following: Let R be a relation. We define two
probabilities. Let A be an adversary that gets a key e and produces a distribution M on
messages of length {(n) (by producing a description of a polynomial time machine that
generates M). A is then given a challenge consisting of a ciphertext ¢ €gp E.(m), where
m €r M. In addition, A receives a “hint” about m in the form of hist(m), where hist is a
polynomially computable function. A then produces a value 3 (3 can be a single element
of M or a vector of elements in M). A is considered to have succeeded with respect to

R if R(m,(3). Let m(A, R) be the probability that A succeeds with respect to BR. The



probability is over the choice of e, the flips of A, and the choice of m, so in particular it is
also over the choice of M.

For the second probability, we have an adversary simulator A’ who will not have access
to the encryption, but has, however, the same computational power as A. On input e, A’
chooses a distribution M’.  Choose an m €r M/’ and give hist(m) to A’. A’ produces (3.
As above, A’ is considered to have succeeded with respect to R if R(m,(). Let n'( A", R)
be the probability that A’ succeeds.

A scheme S for public-key cryptosystems is semantically secure with respect to relalions
if for every relation R(a, ) and function hist(m) computable in probabilistic polynomial
time and all probabilistic polynomial time adversaries A as above there exists a probabilistic
polynomial time adversary simulator A’ such that |7(A, R)—7'(A’, R)| is subpolynomial.

Theorem 2.1 A public key cryptosystem is semantically secure with respect to relations if
and only if it has the indistinguishability property.

Proof. Consider the following three experiments. Choose an encryption key e using G P.
Given the public-key e, A produces a distribution M. Sample a1, a9 € M.
In the first experiment, A is given hist(o;) and E.(a;) and produces ;. Note that

Pr[R(aq, 1) holds] = n( A, R).
In the second experiment, A is given hist(a;) and E.(az) and produces f;. Let
x = Pr[R(aq, f2) holds].

Note that if 7(A, R) and x differ polynomially, then we have a distinguisher for encryp-
tions of ay and ay (which may be converted via a hybrid argument into a distinguisher for
encryptions of 0 and 1).

For the third experiment, consider an A’ that generates an e using G P and simulates A
on e to get a distribution M. It gives M as the distribution on which it should be tested.
A’ is then given hist(«) for an @ € M. A’ generates o’ €g M and gives to the simulated A
the hint hist(a) and the encryption E.(a'). A responds with some 3, which is then output
by A’. Note that 7'(A’, R) = x. Thus, if the cryptosystem has the indistinguishability
property then |7(A, R)—7'(A’, R)| is subpolynomial, so the cryptosystem is semantically
secure with respect to relations.

We now argue that if a cryptosystem does not have the indistinguishability property
then it is not semantically secure with respect to relations. If a system does not have the
indistinguishability property then there exists a polynomial time machine M that distin-
guishes encryptions of 0 from encryptions of 1 on a polynomial fraction of the encryption
keys. Given a key e, define a machine A that chooses M = {0,1}, where each of 0 and 1
has probability 1/2, as the message distribution on which it is to be tested. The function
hist is the trivial hist(z) = 1 for all . Given an encryption v €g E.(m), where m €p M,
A uses M to guess the value of m and outputs 3, the resulting guess. The relation R that
witnesses the fact that the cryptosystem is not semantically secure with respect to relations
is equality. Since M is by assumption a distinguisher, having access to the ciphertext gives
A a polynomial advantage at succeeding with respect to R over any A’ that does not have
access to the ciphertext. O



Thus, a scheme is semantically secure with respect to relations if and only if it has the
indistinguishability property. It follows from the results in [17, 13, 23] that the notions of
of semantic security, indistinguishability and semantically secure with respect to relations
are all equivalent.

String Commitment
A string commitment protocol between sender A and receiver B consists of two stages:

e The commit stage: A has a string o to which she wishes to commit to B. She and B
exchange messages. At the end of the stage B has some information that represents
a.

e The reveal stage: at the end of this stage B knows a. There should be only one string
that A can reveal.

The input « is drawn from a polynomial time sampleable distribution D. The distribution
D, a polynomial time computable function hist, and the value hist(a) are known to both
players. The function hist models information about the Sender’s input to which the re-
ceiver may have access. At the end of the commit stage the representation of a should be
semantically secure (see [13] for exact definition).

Non-Interactive Zero-Knowledge Proof Systems

The following explanation is taken almost verbatim from [26]: A (single theorem) non-
interactive proof system for a language L allows one party P to prove membership in L to
another party V for any = € L. P and V initially share a string U of length polynomial in
the security parameter n. To prove membership of a string z in L, = L N {0,1}", P sends
a message p as a proof of membership. V decides whether to accept or to reject the proof.
Non-interactive zero knowledge proof systems were introduced in [3, 4]. A scheme for any
language in NP and may be based on any trapdoor permutation is given in [12]. Recently,
Kilian and Petrank [20, 21] found more efficient implementations of such schemes. Their
scheme is for the circuit satisfiability problem. Assuming a trapdoor permutation on k bits,
the length of a proof of a satisfiable circuit of size L (and the size of the shared random
string) is O(Lk?).

The shared string U is generated according to some distribution #(n) that can be
generated by a probabilistic polynomial time machine. (In all the examples we know of it
is the uniform distribution, although this is not required for our scheme.)

Let L be in NP. For any z € L let WL(z) = {z| z is a witness for z} be the set of
strings that witness the membership of z in L. For the proof system to be of any use, P
must be able to operate in polynomial time if it is given a witness z € WL(z). We call
this the tractabilily assumption for P. In general z is not available to V.

Let P(z,z,U) be the distribution of the proofs generated by P on input z, witness z,
and shared string U. Suppose that P sends V a proof p when the shared random string is
U. Then the pair (U,p) is called the conversation. Any = € L and z € W L(z) induces a
probability distribution CONV(x, z) on conversations (U, p) where U € U is a shared string
and p € P(z,z,U)is a proof.

For the system to be zero-knowledge, there must exist a simulator S¢m which, on input
x, generates a conversation (U,p). Let Sim(z) be the distribution on the conversations



that Sim generates on input z, let Simy(z) = Simy be the distribution on the U part
of the conversation, and let Simp(z) be the distribution on the proof component. In the
definitions of [4, 12] the simulator has two steps: it first outputs Simy without knowing z,
and then, given z it outputs Simp(z). (This requirement, that the simulator not know the
theorem when producing U, is not essential for our purposes, however, for convenience our
proof in Section 3.3 does assume that the simulator is of this nature.)
Let
ACCEPT(U,z)= {p|V accepts on input R, z,p}

and let
REJECT(U,z) = {p|V rejects on input U, z, p}.

The following is the definition of non-interactive proof systems of [3], modified to in-
corporate the tractability of P. The uniformity conditions of the system are adopted from

Goldreich [13].

Definition 2.1 A triple (P,V,U), where P is a probabilistic machine, V is a polynomial
time machine, and U is a polynomial lime sampleable probability distribution is a non-
interactive zero-knowledge proof system for the language L € N P if:

1. Completeness (if x € L then P generates a proof that V accepts): For all x € L,,, for
all z € WL(z), with overwhelming probability for U €r U(n) and p €r P(z,z,U),
p € ACCEPT(U,x). The probability is over the choice of the shared string U and the
internal coin flips of P.

2. Soundness (if y € L then no prover can generate a proof that V accepts): Forally ¢ L,
with overwhelming probability over U €p U(n) forallp € {0,1}*, pe REJECT(U,y).
The probability is over the choices of the shared string U.

3. Zero-knowledge (there is a probabilistic polynomial time machine Sim which is a
stmulator for the system): For all probabilistic polynomial time machines C, if C
generates © € L and z € W L(z) then,

| Prob[C(w) = 1|lw €r Sim(z)] — ProblC(w) = 1|lw €r CONV(z, 2)]| < ]ﬁ

for all polynomials p and sufficiently large n.

2.3 System Model

We do not assume the usual model of a fixed number of mutually aware processors. Rather,
we assume a more general model in which a given party does not know which other parties
are currently using the system. For example, consider a number of interconnected comput-
ers. A user (“agent”) can log into any machine and communicate with a user on an adjacent
machine, without knowing whether a given third machine is actually in use at all, or if the
second and third machines are currently in communication with each other. In addition,
the user does not know the set of potential other users, nor need it know anything about
the network topology.



Thus, we do not assume a given user knows the identities of the other users of the
system. On the other hand, our protocols may make heavy use of user identities. One
difficulty is that in general, one user may be able to impersonate another. There are several
ways of avoiding this. For example, Rackoff and Simon [27] propose a model in which each
sender possesses a secret associated with a publicly known identifying key.

In the scenario of interconnected computers described above, an identity could be com-
posed of the computer serial number and a timestamp, possibly with the addition of the
claimed name of the user. In the absence of some way of verifying claimed identities, ezact
copying of the pair, claimed identity and text, cannot be avoided, but we rule out essentially
all other types of dependence between intended values.

We can therefore assume that the intended value a sent by ?(A) contains as its first
component a user identity, which may or may not be verifiable. Fix a scheme § and an
adversarially coordinated system of interactive protocols ((A, B), (C, D), A : ¢(B) < ¥(C))
where (A, B) and (C, D) are both instances of S, and let o and  be sent by ¥(A) and
P(C'), respectively. Then, whether or not the identities can be checked, if a # § then §’s
dependence on a is limited to dependence on hist(a). In addition, if the identities can be
checked then o # .

In order to avoid assumptions about the lengths of intended values sent, we assume the
space of legal values is prefix-free.

3 Non-Malleable Public Key Cryptosystems

A public-key cryptosystem allows one participant, the owner, to publish a public key, keep-
ing secret a corresponding secret key. Any user that knows the public key can use it to send
messages to the owner; no one but the owner should be able to read them. In this section
we show how to construct non-malleable public key cryptosystems. The definitions apply,
mutalis mulandi, to private key cryptosystems. When defining the security of a cryptosys-
tem one must specify (a) the type of attack considered and (b) what it means to break the
cryptosystem. For technical reasons we extend the relations R to have three components,
one of which is itself a vector.

The cryptosystem we construct is secure against chosen ciphertext attacks. In fact it
is secure against a more severe attack suggested by Rackoff and Simon [27]: The attacker
knows the ciphertext she wishes to crack while she is allowed to experiment with the de-
cryption mechanism. She is allowed to feed it with any ciphertext she wishes, except for
the exact one she is interested in. Thus the attacker is like a student who steals a test and
can ask the professor any question, except the ones on the test. This is the first public key
cryptosystem to be provably secure against such attacks. In contrast, RSA [28] and the im-
plementation of probabilistic encryption based on quadratic residuousity [17] are malleable
(i.e., not non-malleable).

Malleability specifies what it means to “break” the cryptosystem. Informally, given a
relation R (restricted as in Section 2.1) and a ciphertext of a message «, the attacker A is
considered successful if it creates a ciphertext of § such that R(«, 3) = 1. The cryptosystem
is non-malleable if for every A there is an A’ that, without access to the ciphertext of «
succeeds with similar probability as A in creating a ciphertext of v such that R(a,v) = 1.
Non-malleability is clearly an extension of semantic security.



We now define precisely the power of the adversary A. Let R be a polynomial time
computable relation. Let n be the security parameter. A receives the public key e € GP(n)
and can adaptively choose a sequence of ciphertexts c¢i,cy,.... On each of them A gets
the corresponding plaintext. It then produces a distribution M on messages of length
{(n), for some polynomial ¢, by giving the polynomial time machine that can generate
this distribution. A then receives as a challenge a ciphertext ¢ €r e(m) where m €p M,
together with some “side-information” about m in the form of hist(m), where hist is some
polynomially computable function. A then engages in a second sequence of adaptively
choosing ciphertexts ¢}, c),.... The only restriction is that A cannot ask on ¢ itself. At
the end of the process, A produces a polynomial bounded length vector of ciphertexts
(f1,f2,--.), with each f; € e(8;), and a cleartext string o3. Let 8 = (01,02,...). Ais
considered to have succeeded with respect to R if R(m, 3,0). Let (A, R) be the probability
that A succeeds.

Let A’ be an adversary simulator that does not have access to the encryptions or to
the decryptions, but has, however, the same computational power as A and can pick the
distribution M. On input e, and additional information hist(m), but without the benefit
of the chosen ciphertext attack, A’ produces a vector of ciphertexts (f1, f2,...), where each
fi € e(B;), and astring 0. Let § = (81, f2,...). As above, A’ is considered to have succeeded
with respect to R if R(m, 3,0). Let 7/(A’, R) be the probability that A" succeeds.

A scheme S for public-key cryptosystems is non-malleable if for all relations R(a, 3, 0)
computable in probabilistic polynomial time and all probabilistic polynomial time adver-
saries A as above there exists a probabilistic polynomial time adversary simulator A’ such

that |7(A, R) — 7'(A’, R)| is subpolynomial.

Overview of the scheme

The process of encryption consists of 4 parts. An “identity” is chosen for the message
by creating a public signature key. The message is encrypted under several encryption
keys chosen from a set of such keys as a function of the public signature key chosen in the
first step. A (non-interactive zero-knowledge) proof of consistency is provided; i.e, that the
encryption under all keys is the same. Finally the encryptions plus the proof are signed
using the private key of the signature chosen in the first step.

Thus, the public key consists of 3 parts: a collection of n pairs of keys (e, €;), a
random string U for providing zero-knowledge proofs of consistency in a non-interactive
proof system, and a universal one-way hash function providing a mapping that defines a
choice of a subset of the encryption keys. When a message is decrypted it must first be
verified that the encryptions are consistent, and only then is the (now well defined) plaintext
extracted.

0 1

Non-malleability comes from the fact that the choice of the subsets and the signature
each authenticate the other. Moreover, as in [26], anyone can decide whether a ciphertext is
legitimate, ¢.e., decrypts to some meaningful message. Finally, whenever deciding whether
or not a string represents a legitimate ciphertext is easy, non-malleability implies security
against a Rackoff-Simon attack. The intuition is that given F(a) an attacker with access

°In the public key context o serves no purpose, as in this situation from o it is always possible to compute
an encryption of o, so we could always add an additional f; € e(o) to our vector of ciphertexts. However,
we introduce o so that the definition can apply to symmetric, or private key, encryption.
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to a decryption mechanism can generate a legal ciphertext F(f) and learn §, but non-
malleability implies that an adversary simulator can generate y without access to E(a)
that is distributed essentially as § is distributed.

3.1 The Tools

We require a probabilistic public key cryptosystem as described in Section 2.2. Recall that
G P denotes the key generator, e and d denote the public and private keys, respectively, and
FE and D denote, respectively, the encryption and decryption algorithms.

For public keys ey, €3, ..., a consislent encryption is a string w that is equal to

Ee (b,r1), Ee,(byr2), ..., Ee, (b,ry)

for some b € {0,1} and ry,7q,...,7, € {0, 1}p(”), for some polynomial p. The language
of consistent encryptions L = {eq,eq,...€,, w|w is a consistent encryption} is in NP. For a
given word w = E.,(b,71), £, (b,73), ..., E., (b,r,) the sequence 1, r3,...,7, is a witness
for its membership in L. In order to prove consistency we need a non-interactive zero-
knowledge proof system for L, as defined in Section 2.2. Recall that the system consists
of a prover, a verifier, and a common random string U known to both the prover and the
verifier.

The cryptosystem uses a universal family of one-way hash functions as defined in [25].
This is a family of functions H such that for any z and a randomly chosen h € H the
problem of finding y # z such that h(y) = h(z) is intractable. The family we need should
compress from any polynomial in n bits to n bits. In [29] such families are constructed from
any one-way function.

Finally we need a one-time signature scheme, which consists of G5, the scheme generator
that outputs F, the public-key of the signature scheme, and P the private key. Using the
private key P any message can be signed in such a way that anyone knowing F can verify the
signature and no one who does not know the private key P can generate a valid signature
on any message except the one signed. For exact definition and history see [2, 19, 25].

3.2 The Non-Malleable Public Key Encryption Scheme

We are now ready to present the scheme S.

Key generation:

1. Run GP(n), the probabilistic encryption key generator, 2n times. Denote the output
by
(€5, d1), (e1, dy), (€3, d3), (eg, d3), - . (e, dy), (e, dy).

2. Generate random U.

3. Generate h €g H.

4. The public encryption key is (h, €9, el, €9, ek, ... €Y el U). The corresponding private
decryption key is (d,d},dS, d3,...d%, dL).

11



Encryption: To encrypt a message m = by, by, ...bg:

1. Run GS(n), the signature key generator. Let F' be the public signature key and P be
the private signature key.

2. Compute h(F'). Denote the output by vivz...v,.
3. Foreach 1 <1<k

(a) For1<j<n

i. generate random r;; €g {0,1}7(")

1 JR— .o 3 . 3 Yy
li. generate ¢;; = E v, (bi,745), an encryption of b; using e;.
J

(b) Run P on ¢; = e]*,e3?,...,ex", i1, Cia, . . . Ciny, With witness r;1,749,..., 7, and
string U to get a proof p; that ¢; € L.

4. Create a signature s of the sequence (c1,p1), (¢2,p2), ..., (ck, pr) using the private
signature key P.

The encrypted message is
(F,s,(c1,p1), (2, p2) - - (ks Pr))-
Decryption: to decrypt a ciphertext (F,s,(c1,p1), (¢2,p2)5 - -, (Cky PE)):
1. Verify that s is a signature of (¢, p1),(c2, p2),- - -, (¢k, px) with public signature key F.
2. For all 1 < ¢ < k verify that ¢; is consistent by running the verifier V on ¢;, p;, U.
3. Compute h(F'). Denote the output by vivz...v,.

4. If V accepts in all k£ cases, then for all 1 < ¢ < k retrieve b; by decrypting using any
one of (di*,d3?,...,dY). Otherwise the output is null.

Note that, by the proof of consistency, the decryptions according to the different keys in
Step 4 are identical with overwhelming probability.

From this description it is clear that the generator and the encryption and decryption
mechanisms can be operated in polynomial time. Also if the decryption mechanism is given
a legitimate ciphertext and the right key it produces the message encrypted.

3.3 Non-Malleable Security

We now prove the non-malleability of the public key encryption scheme §. The security of
the system rests on the semantic security against chosen plaintext attacks of the following
cryptosystem S’ (this corresponds to system S’ in Section 4).

The Cryptosystem S':

1. Run GP(n), the probabilistic encryption key generator, n times. Denote the output
by
(617 d1)7 (627 d2)7 .. '(env dn)

The public key is the n-tuple (eq,...,e,); the private key is the n-tuple (dy,...,d,).
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2. To encrypt a message m = by, by, ...bg
3. For1 <5<

o For1 <:¢<k

(a) generate random r;; € {0,1}7(")

(b) generate c;; = E. (bi,r;;), an encryption of b; under public key e; using
random string r;;.
o Let ¢; = ¢y, ¢95,...,¢k; (c; is the jth encryption of m).
4. The encryption is the n-tuple (¢1,¢z,...,¢p).
5. To decrypt an encryption (ai,...,ay), compute m; = Dy, (a;) for 1 < j < n. If
mi = mg = ... = m, then output mq; otherwise output “invalid encryption.”

Lemma 3.1 The public key encryption scheme S' is semantically secure with respect to
relations under chosen plaintext attack. |

We will prove non-malleability of S by reduction to the semantic security of S§’. To this
end, we define an adversary A’ that, on being given an encryption under &', generates an
encryption under §. We abuse notation slightly: given a public key F in § (respectively,
E’"in §'), we let E(m) (respectively, E’(m)) denote the set of encryptions of m obtained
using the encryption algorithm for S (respectively, for §’) with public key E (respectively,
E.

Procedure for A’: Given a public key E' = (ey,...,¢e,) in §":
Preprocessing Phase:

1. Generate n new (e, d) pairs.

2. Run the simulator for the non-interactive zero-knowledge proof of consistency to gen-
erate a random string U (the simulator should be able to produce polynomially many
proofs of consistency for sets of n encryptions that will be given to it later on).

3. Choose a random hash function h € H.

4. Run G'S(n) to obtain a signature scheme (F, P), where F' is the public verification
key.

5. Compute h(F). Arrange the original n keys and the n new keys so that the keys
“chosen” by h(F’) are the original n. Let E denote the resulting public key (instance
of §).

Simulation Phase:

1. Run A oninput F. A adaptively produces a polynomial length sequence of encryptions
T1,T3,.... For each z; produced by A, A’ verifies the signatures and the proofs of
consistency. If these verifications succeed, A’ decrypts x; by using one of the new
decryption keys generated in Step 1, and returns the plaintext to A.
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2. A produces a description of M, the distribution of messages it would like to attack.
A’ outputs M. We will show that if S is malleable then &’ is not semantically secure
with respect to relations on M.

3. A'is given ¢’ €g E'(m) and hist(m) for m €g M. It produces a ciphertext ¢ € E(m)
using the simulator of Step 2 of the preprocessing phase to obtain a proof of consistency
and the private key P generated at step 5 to obtain the signature.

4. Give A the ciphertext ¢ and hist(m). Asin Step 1, A adaptively produces a sequence of
encryptions z/, 2}, ... and A’ verifies their validity, decrypts and returns the plaintext

to A.

Extraction Phase:
A produces the vector of encryptions (E(3y), E(32),...). A" produces § = (51, 2,...) by
decrypting each F(f;) as in the simulation phase. A’ outputs § and o.

This concludes the description of A’.

The next lemma shows that the simulation phase runs smoothly.

Lemma 3.2 Let A be an adversary altacking the original scheme S. On input ¢’ €p E'(m),
let E be generated by A" as above, and let ¢ be the encryption of m under E. Lel ( # ¢
be any ciphertext under E, generated by A. If the signatures in ¢ are valid (can be verified
with the public signature key in (), then A" can decrypt (.

Proof. Let F' be the public signature key in (. If F' # F then, by the security of the
universal one-way hash functions, h(F") # h(F') (otherwise using A one could break H).
Thus, at least one of the encryption keys generated in Step 1 of the procedure for A" will
be used in (. Since A’ generated this encryption key and its corresponding decryption key,
A’ can decrypt.

If F' = F then by the security of the signature scheme, only the original ciphertext ¢
and the proof of consistency of Step 2 can be signed. (Otherwise A could be used to break
the signature scheme.) O

Lemma 3.3 For any relation approximator R (restricted as in Section 2.1), let 7'( A, R)
denote the probability that A in the simulation breaks the generated instance of S with
respect to R; i.e., that A (interacting with A’', as described in the Simulation Phase of the
Procedure for A') generates a vector of encryptions (E(B1), E(B2),...) and a string o such
that R(m, 3,0) holds, where 5 = (1,02, ...)-

Similarly, let 71(A, R) denote the probability that A breaks a random instance of S with
respect to R. Then ©'(A’', R) and n(A, R) are subpolynomially close.

Proof. The only difference between the instance of S generated by A’ and the instance of S
generated at random is in the proofs of consistency: in the former case these are produced
by the simulator and in the latter case they are authentic. The lemma therefore follows
immediately from the definition of non-interactive zero knowledge: any difference between
the two probabilities can be translated via a hybrid argument into an ability to distinguish
a simulated proof from a true proof. O
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Theorem 3.4 The scheme S is a non-malleable public key encryption scheme.

Proof. Let R be any relation approximator, restricted as in Section 2.1, and let A be any
polynomially bounded adversary.

Beginning with an encryption key E’ in 8" and a ciphertext ¢’ = E'(m), A’ generates
an encryption key £ in § and a ciphertext ¢ = F(m) and presents £ and ¢ to A. If A
produces valid encryptions E(f;) such that E(8;) # E(m), then by Lemma 3.2, A" can
extract the §;. Let § = (01,02,...). By Lemma 3.3, the probability that R(m, 3, 0)
holds is subpolynomially close to (A, R). Moreover, from the semantic security of &’ we
know there exists a procedure A" that, without access to E'(m), produces 5" such that
the probability of R(m, 3", o) is subpolynomially close to the probability of R(m,3,0), and
hence to (A, R). Therefore (A, R) cannot witness the non-malleability of S. O

3.4 Public Key Authentication

In this section we informally describe a method for obtaining a public key authentication
scheme based on any non-malleable public key cryptosystem. Our goal is to demonstrate a
protocol that allows cheating in case the public-key cryptosystem used is malleable.

In a public key authentication scheme, an authenticator A chooses a public key £. The
scheme permits A to authenticate a message m of her choice to a second party B. Similar
to a digital signature scheme, an authentication scheme can convince B that A is willing to
authenticate m. However, unlike the case with digital signatures, an authentication scheme
need not permit B to convince a third party that A has authenticated m.

Our notion of security is analogous to that of ezxistential unforgeabililty under an adaptive
chosen plaintext attack for signature schemes [19], where we must make sure to take care of
“man-in-the-middle” attacks. Let ((A,B),(C,D), A : ¥(B) < ¥(C)) be an adversarially
coordinated system in which (A, B) = (C, D) is a public key authentication protocol. We
assume that A is willing to authenticate any number of messages my, mo, ..., which may
be chosen adaptively by A. We say that A successfully attacks the scheme if ¥(C') (under
control of A and pretending to have A’s identity) succeeds in authenticating to D a message
m#Emi,t=1,2,...

Protocol for A to authenticate message m to B; A’s public key is &, chosen according
to a non-malleable public key cryptosystem S.

1. A sends to B: “A wishes to authenticate m.” (This step is unnecessary if m has
previously been determined.)

2. B chooses r €g {0,1}" and computes and sends the query v €g E(m,r) to A.

3. A decrypts v and retrieves r and m. If the decryption is of the right format (i.e.
the first component of the decrypted pair corresponds to the message that is to be
authenticated), then A sends r to B.

Lemma 3.5 Given an adversary A that can break the above authentication protocol with

probability p, one can construct an adversary A’ for breaking the non-malleable encryption
scheme with probability at least p/p(n) — 27" for some polynomial p.
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Proof. The procedure for A’ to attack the cryptosystem is as follows. Assume A’s pub-
lic key is F and that the adversary A’ has access to a decryption box for F. There-
fore A’ can simulate the system ((A4,B),(C,D), A : (B) < ¥(C)). Run the system
((A,B),(C,D), A :¢(B) < ¥(C)) until ¥(C), under control of A, is about to authen-
ticate to D a message m # m;, ¢ = 1,2... not authenticated by A. (In case it is not
clear whether D accepts or not, then we just guess when this occurs, therefore the polyno-
mial degradation of p.) The distribution M on messages that A’ will attempt to maul is
M, = {(m,r)|r €r {0,1}"}. Given v as the challenge ciphertext, A’ lets ¥(D) send it as
the query. Let 7’ be ¢(C)’s reply. Output 0 €r E(m,r’).

The distribution that A sees is exactly his usual, therefore the probability of success in
authenticating m is p and with probability p the value 7’ is the correct one. The relation
that is violated is equality: € and v encrypt the same string, whereas given the distribution
M, the probability of producing the correct ris 27", O

Remark 3.6 If the cryptosystem S is malleable and in particular if given an encryption
of a message with prefix \ it is easy to generate an encryption of a message with prefix
A (many cryptosystems have this property), then there is a simple attack on the protocol
proposed: as before 1(C') is pretending to be A. To forge a message m, when D sends query
v (which by definition has m as the prefiz of the corresponding plaintext) (B) asks A to
authenticate a message m' and produce as a query v’ with the prefix changed to m’'. When
A replies with r, {(C') sends v to D, who accepls.

Remark 3.7 As mentioned above, this protocol provides a weaker form of authentication
than digital signatures (no third parties verification). However, this can be viewed as a fea-
ture: there may be situations in which a user does not wish to leave trace of the messages
the user authenticated (“plausible deniability”). We do not know whether the protocol pre-
sented is indeed zero-knowledge in this sense, i.e. that the receiver could have simulated the
conversation alone. However, it seems that by adding a (malleable) proof of knowledge to
the string r this is remedied.

This solution will be of practical use as soon as the current constructions of non-malleable
cryptosystems are improved to be more practical.

4 A Non-Malleable Scheme for String Commitment

In this section we present a non-malleable scheme § for string commitment. We first present
S and show some properties of § important in proving its security. We then describe a
knowledge extractor algorithm that works not on § but on &’ which is a (malleable) string
commitment protocol with a very special relation to §: we show that knowledge extraction
for &’ implies non-malleability of §. Thus, in this section &’ plays a role analogous to the
role of 8§’ in Section 3.

Our non-malleable scheme for string commitment requires as a building block a (possibly
malleable) string commitment scheme. Such a scheme, based on pseudo-random generators,
is presented in [24]. The protocol described there is interactive and requires two phases:
first the receiver sends a string and then the sender actually commits. However, the first
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step of the protocol can be shared by all subsequent commitments. Thus, following the first
commitment, we consider string commitment to be a one-phase procedure. In the sequel,
when we refer to the string commitment in [24], we consider only the second stage of that
protocol there.

We also require zero-knowledge proofs obeying the security requirements in [13]. These
can be constructed from any bit commitment protocol.

Before we continue it would be instructive to consider the protocol of Chor and Rabin
[7]. They considered the “usual” scenario, where all n parties know of one another and the
communication is synchronous and proceeds in rounds. Their goal was for each party to
prove to all other parties possession of knowledge of a decryption key. Every participant
engages in a sequence of proofs of possession of knowledge. In some rounds the participant
acts as a prover, proving the possession of knowledge of the decryption key, and in others
it acts as a verifier. The sequence is arranged so that every pair of participants A, C is
separated at least once, in the sense that there exists a round in which C is proving while
A is not. This assures that C’s proof is independent of A’s proof.

Running this protocol in our scenario is impossible; for example, (1) we make no as-
sumptions about synchrony of the different parties, and (2) in our scenario the parties
involved do not know of one another. However, we achieve a similar effect to the technique
of Chor and Rabin by designing a carefully ordered sequence of actions a player must make,
as a function of an identifier composed of its external identity, if one exists, and some other
information described below.

4.1 The Scheme S

Protocol S consists of two general stages. The first is a string commitment as in [24]. The

second stage, called Basic Commit with Knowledge, consists of the application of many

instances of a new protocol, called BCK, to the string committed to in the first stage.
Following the commit stage of two string commitment protocols, deciding whether they

encode the same string is in NP. Therefore there exists a zero-knowledge proof for equality

of two committed values. This will be done repeatedly during each execution of BCK,

which we now describe. In all the following protocols n is a security parameter.

Protocol BCK(a):

Concurrently run n instances of the following three steps. All instances of each step are

performed at once.

¢ BCK1: Committer selects random zg,z; € {0,1}*, where k = | a|, and commits to
both of them using the protocol in [24].

e BCK2: Receiver sends Committer a random bit r € {0,1}.

e BCK3: Committer reveals z, and z1_, @ «a, and engages in a proof of consistency of
Z1—, @ a with the initial commitment to @ and the commitment to z;_, in BCK1.

Note that given z,, x1_,, and the proof of consistency, one can obtain a.

In the rest of the paper we consider each BCK: as single operation, thus it can be
viewed as an operation on an n-dimensional vector or array. We frequently refer to an
instance of BCK as a triple.
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(A, B) interaction (C, D) interaction

BCKI1(a)
BCK1(5)
BCK2(5)
BCK2(a)
BCK3(a)
BCK3(j3)

Figure 1: BCK(a) is useful to BCK(j)

In the Basic Commit with Knowledge stage of & we apply BCK repeatedly for the
same string, a. However, BCK may itself be malleable. To see this, conceptually label
the three steps of BCK as commitment, challenge, and response, respectively. Consider
an ((A,B),(C,D), A:¢(B) < (C))in which (4, B) = (C, D) = BCK. Then #(C) can
make its commitment depend on the commitment of ¥(A); ¥(B) can make its challenge
to ©(A) depend on the challenge that ¥ (D) poses to ¥(C'), and ¥(C') can respond to the
challenge with the “help” of ¢/( A)’s response to ¥(B) (see Figure 1 for the timing of events).
In this case the triple between 1(A) and (B) is, intuitively, useful to ¢(C'). The Basic
Commit with Knowledge stage of § interleaves executions of BCK so as to ensure that in
every execution there is some triple that is ezposed (defined precisely below) — that is, for
which no other triple is useful.

The next two protocols perform a pair of distinct instances of BCK(a) in two different
interleaved orders. To distinguish between the two instances we will refer to the operation
taking place at each stage and the associated variables. Thus «a; and a;y1 are two distinct
applications of These Sixplet protocols will be used to ensure the existence of an exposed
triple in the Basic Commit with Knowledge. The spacing of the presentation intends to
clarify the difference between the protocols. It has no meaning with respect to the execution
of the protocols.

0-sixplet 1-sixplet

BCKl1(a;) BCKl1(a;)

BCK2(a;)

BCK3(a;) BCKl1(a;41)
BCK2(a;41)

BCKI1(a;41) BCK3(a;41)

BCK2(a;41)

BCK3(a;41) BCK2(a;)
BCK3(a;)

The difference between the two protocols is the order in which we interleave the stages
of the two distinct instances of the BCK protocol.
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Using these sixplets we can present the scheme §. The identifier I used in the scheme
is the concatenation of the original identity with the commitment for o at stage 1 (by the
“commitment” we mean a transcript of the conversation). I; denotes the jth bit of 1. To
force an exposed triple we will use the fact that every two identifiers differ in at least one
bit. This fact was exploited by Chor and Rabin in [7].

S: Non-Malleable Commitment to String a:

e Commit to a using the protocol in [24].

o Forj=1to ||
Execute an [;-sixplet
Execute a (1 — I;)-sixplet
End

For simplicity we will assume that all identifiers I are n bits long. Each I;—sixplet and
each (1 — I;)—sixplet involves two executions of BCK, and each of these in turn requires n
concurrent executions of BCKI1, followed by n concurrent executions of BCK2 and then
of BCK3. Thus, a non-malleable string commitment requires invoking each BCKZ: a total
of 4n? times.

We now show some properties of § that allow us to prove its non-malleability. Suppose
that two pairs of sender and receiver (A, B) and (C, D) are conducting S and suppose
further that adversary A controls B and C. Let z be the identifier used by (A) and y
that used by ¥(C'). If the original identities of 1)(A) and (C') are different or if the strings
to which they commit are different, then z # y. (Thus the only case not covered is exact
copying, for which nothing can be done.)

Fach run of the two interactions determines specific times at which the two pairs of
machines exchange messages. The adversary can influence these times, but the time at
which an interaction takes place is well defined. Let o, and o, be the respective schedules.
For 1 <1< 2n, let

e 7} be the time at which BCK1 begins in the ith instance of BCK in o,;
e 7} be the time at which BCK1 ends in the ith instance of BCK in o,.
In contradistinction, let
e & be the time at which BCK1 ends in the ith instance of BCK in o,;
e & be the time at which BCK2 begins in the ith instance of BCK?2 in o,.
Finally, let

o 74 and &4 denote the times at which BCK3 ends in the ith instances of BCK in o,
and o, respectively.

These values are well defined because each BCKz< involves sequential operations of a single
processor.

We can now formalize the intuition, described above, of what it means for a triple in o,
to be useful to a triple in o,. Formally, the ith triple in o, is useful to the jth triple in o
if three conditions hold: (1) 70 < 6%; (2) & < 74; and (3) & > 74
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Let T®) = {5 (5{ > 7 A (5% <7 A (5:]); > 75}, ') is the set of indices of triples between
(C') and (D) for which the ¢th triple between ¢(A) and 1(B) can be useful. We say that
a triple j is exposedif j ¢ '@ for all 7. Our goal is to show that there is at least one exposed
triple in any schedule. Intuitively, exposed triples are important because the committer is
forced to act on its own, without help from any other concurrent interaction. Technically,
exposed triples are important because they allow the knowledge extractor to explore the
adversary’s response to two different queries, without the cooperation of ¥(A).

Claim 4.1 Vi |[TO| < 1.

Proof. By inspection of the possible interleavings, there exists at most one j for which
6y <rtiand 6 > 713 O

Claim 4.2 If j; € T() and j, € T2) and j; < jo, then sixplet(iy) < sizplet(iy), where
sizplel(i) denotes the index of the sizplet containing the ith triple.

Proof. Assume to the contrary that sizplet(iy) < sizplet(iy). This implies that 7’52 < T,
By definition, j; € T'() implies 7' < §{'. Similarly, j» € T(2) implies ;> < 732. Thus,
67 < é{*. This contradicts the assumption that j; < j,. O

Claim 4.3 Let triples 2k — 1,2k form a 0-sizplet in 0., and let triples 20 — 1,2( form a
1-sizplet in 0,. Then there exists a j € {20 —1,2(} such that neither 2k — 1 nor 2k is useful
to triple j in oy.

Proof. Assume to the contrary that the claim does not hold. Thus, both triples have a
useful triple in {2k —1,2k}. By Claim 4.1 |T(?*~1| <1, and |T'?¥)| < 1. Therefore, each
of the two triples should be useful. A simple look at the time scale implies that for either

matching between the pairs, it should be the case that 7% < §*. Thus, 7'22]“_1 < 62" and
7'22]“_1 < (5g£_1. This implies that 2k — 1 is not useful to either of the triples, a contradiction.

O
Notice that the reverse claim does not hold.

Lemma 4.1 For any x # y and for any two sequences o, and oy, there exisls an exposed
triple in o).

Proof. From Claims 4.1 and 4.2, if none of triples 1 through j are exposed and j € @,
then sizplet(i) > sizplet(j). Since z # y, there exists a bit, say the jth one, at which their
ID’s differ. Since the scheme uses both an I;-sixplet and 1 — I;-sixplet, there exists some k
such that the kth sixplet in o, is a 0-sixplet while the kth sixplet in o, is a 1-sixplet. The
Lemma now follows from Claim 4.3. o O

4.2 The Knowledge Extractor

Consider an adversarially coordinated system ((A, B),(C,D), A : ¥(B) < ¥(C)) where
(A, B) and (C, D) are both instances of S. Intuitively, if @ and § are the strings committed
to by ¥(A) and ¥(C), respectively, our goal is to extract 5. To achieve this we devise a
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somewhat different protocol, called &', on which the extractor operates, and from which
it extracts §. This new protocol is a string commitment protocol that is not necessarily
non-malleable. In the next section we prove that extraction of 8 from S’ implies the non-
malleability of S.

The string commitment scheme S’ consists of a Committer P and a Receiver ¢ and
takes a parameter m.
P Commits to a string a:

e Commit to a using the protocol in [24].
e Repeat m times:

1. ) chooses a bit b and chooses whether or not it wishes to see an additional
proof of consistency in step BCK3 of either triple in the b-sixplet; ) requests a
b-sixplet, possibly augmented by an additional proof of consistency;

2. P and @ run a (possibly augmented) b-sixplet;

From the semantic security of the regular string commitment protocol and from the
zero-knowledge properties, a standard simulation argument yields the following lemma:

Lemma 4.2 For any stralegy of choosing the sizplets and for any receiver @', the above
protocol is a string commitment protocol which is semantically secure. O

We provide an adapter that allows us to emulate to A (and its controlled machines) a
player A that executes S, whereas in reality ¥(B) (under control of A) communicates with
the sender P of §&’. &’ has been designed so that it can actually tolerate communicating
with many copies of A, with messages from the different copies being “multiplexed” by the
adapter. (P cannot distinguish this scenario from the one in which it is communicating
with a single receiver @).)

In more detail, suppose that player ¢( P) is running the sender part of S’ and that player
P(B) is supposed to run the receiver part of §. (¢(B) might deviate from the protocol as
written, but the communication steps are as in §.) It is not hard to construct an adapter
that operates between () and B: whenever (A, B) calls for a b-sixplet the adapter “pretends
it is @7 and asks for a b-sixplet; then ¢(B) and ¥(P) run the b-sixplet. It should be
clear that the distribution of conversations that ¢(B) sees when it participates in § and
the distribution of conversations it sees when it participates through the adapter in S’ are
identical.

We are now ready to present the extractor. Suppose that in the adversarially coordinated
system the probability that ©(C') completes its part successfully is p. Following the commit
stage (during which C' may or may not have committed in any meaningful way), we cannot
in general hope to extract § with probability greater than p. However we can get arbitrarily
close: we will show that for any ¢ we can successfully extract § with probability at least
p— €.

Fix ¢ > 0. The knowledge extractor begins to run &' = (P,()) and § = (C, D) with the
adapter arranging that A cannot distinguish this from the adversarially coordinated system

((A,B),(C,D), A:¢(B) < ¢(C)) (see Figure 2).
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adversary controlled

P= adaptor — :Q C‘

D

running S running S running S running S

Figure 2: The S’-adaptor-S system used in constructing the Extractor

Once ¥(C') completes the first (commitment) stage of S, the extractor freezes the random
tape of A.

A now defines a tree according to all possible communication exchanges between A and
D. The tree contains A-nodes and D-nodes, according to which of the two is the next one
to send a message. The root of the tree corresponds to the point at which the tape was
frozen. Thus, the branching at each node is all possible messages that either A or D can
send at that point. To enable us to follow more than a single path (that is, to fork) in the
tree, we keep at each D-node a snapshot of the current state, i.e. a copy of A’s tapes and
the states of A and D.

A node v is good if all the communication between C' and D up to v is legal (according
to the non-malleable protocol §) and C' successfully opened and proved whenever it was
asked to do so. Our goal is to identify two nodes having the following properties: (1) at
each of the two, C' has just completed a BCK3 step; (2) the paths to the two nodes depart
in a branching at a D-node. As noted above, given two such nodes we can extract 3.

To identify such a pair of nodes, choose £ = (é’llgge)’ and run the following extraction
procedure £ times. Fach time start again at the root of tree.

Recall that by Lemma 4.1 every path to a good leaf contains an exposed triple. Run
the §'-adapter-S system until an exposed triple j in o, is reached (or we reach a bad node).
We partition the exposed triples into two types:

o j is of the first type if Vi > (5{ (nothing happened yet in o, between 9 (A) and
¢¥(B))or Vi s.t. 71 < § we have 75 < 3 (the challenge in o, ends before the challenge
in o, begins).

o jis of the second type if it is not of the first type and Vi s.t. < 6{ and 7§ > (5% we
have 75 > &% (the challenge in o, ends after the reply in o, ends, so ¥(C) can’t use
the answers from (A, B) to help it answer challenges from (D)).

In the first type of exposure, for each ¢ there are two possible interleavings:
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i J
T2 o

5 %

Thus, there exists a time ¢, (5{ <t< (5% such that for all i, Tf <tl= Té < t. The time t
is the maximum of § and the maximum over all 7 such that 7} < 67, of 7i. In this case,
intuitively, for every 7 such that the values committed to by ¥(C') in BCK(7) may depend
on the values committed to by ¥(P) in BCK(¢), the queries made by ¥(Q) to ¥(P) about
these values are independent of the queries made by ¥ (D) to ¥(C). It follows that (C')
can’t get any help from ¥ (P) in answering ¥(D)’s queries in BCK(j).

At the point ¢ defined above, P has no triples of which step BCK1 has completed but
BCK2 has not yet begun, thus A doesn’t play a part right now. At this point we fork:
the extractor creates a new copy of A and D, and runs both this copy and the original,
with each copy of D making independent random queries. Note that with overwhelming
probability any two such vectors differ in some position. The vectors are the various choices
associated for all the concurrent instances in the protocol. The adapter multiplexes to P
the vectors of queries made by the two copies of B. 4

In the second type of exposed triple, the exposure does not become evident until 63.
At any point in time there are at most two triples between A and B that are open, in
that step BCKI1 has been executed but BCK2 has not. Say that at é] the two open
triples are the ¢ and i + 1 ones. We know that i < T{'+1‘< 67 and T3 > T%'+‘1 > 61 and
75 > 8. We distinguish between two cases: (a) 737" < 63 and (b) 75T > & (since j is
exposed it cannot be the case that & < 7it! < §3.) In case (a) we fork right after 75*!
by running a copy of A until the conclusion of triple j in the copy. Note that we can
assume that Té‘H < &} because the replies and proofs that P sends in BCK3 of triple
t + 1 are completely determined by BCK1 and BCK2, and are therefore are completely
determined by time Té—H. Moreover, the challenges sent in BCK2(j) by D are independent
of BCK(i+ 1) (by definition, because j is exposed). D makes independent random choices
in this run. We will not run the original beyond 3. The communication with A is limited
in the original execution to the zero knowledge proof of consistency. However, since in S’
the committer P is willing to repeat this proof, when running the copy we simply ask for
such a repetition and continue as before. We stop when the copy finishes BCK3 of the j
triple. Note that in the copy the jth triple need not be exposed (this depends on 73). Case
(b) is even simpler: we fork right after 6{. In the original ¢(B) does not communicate with
P until 83, so we simply continue with the copy until it finishes BCK3 of the jth triple.
Here again we have that 7 need not be exposed in the copy.

In exploiting either type of exposure, if in both branches (the original and the copy) the
proof of consistency in BCK3(j) succeeds, then in triple j the extractor obtains the answers
to two different and independent queries, hence § can be extracted. The significance of the
zero-knowledge proof of consistency is that it allows the extractor to know whether any
trial is successful. Therefore if any trial is successful the extractor succeeds.

This completes the description of the extractor. We now show that its probability of
success is high.

At each node v of the tree we can define the probability of success, p(v), i.e., the
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probability that the communication between A and D leads to a good leaf. Let py be the
probability of success at the root. Notice that by definition, the expected value of pg is p.

Lemma 4.3 In each run of the above experiment 3 is successfully extracted with probability
g/ — 1/2%0,

Proof. Consider a random root-leaf path w in the tree (the randomness is over the coin flips
of A and D). At each node v let p(v) denote the probability, taken over choices of A and
of D, of successfully completing the execution from v. Let p(w) be the minimum along the
execution path w. Note that p(w) is a random variable.

Claim 4.4 With probability at least pg/2 we have p(w) > po/2.

Proof. The probability of failure is 1 —pg. Let V be the set of nodes v such that p(v) < po/2
and for no parent u of v is p(u) < pg/2 (i.e. the V consists of the “first” nodes such that
p(v) < po/2). We know that Prp(w) < po/2] < 3 ,ey Pr[v is reached]. On the other hand,
the probability of failure, 1 — po, is

E Prlv is reached](1 — p(v) > (1 — po/2) Z Pr[v is reached].
veY vs.t.p(v)<po/2

Therefore Prp(w) < pg/2] < 11__/)5‘}2 =1- % <1l-pg/2. O

Thus, with probability pg/2 the main path we take succeeds. The experiment branches
at a point with probability of success pg/2. The probability of success of each branch is
independent. Therefore, the new branch succeeds with probability pg/2. Excluding a small
probability 1/2%" that both branches choose identical strings, the experiment succeeds with
probability p2/4 —1/2*". O

With probability p — €/2 the probability of success at the root, pg, is at least €/2. The
extractor makes £ independent experiments. Because of the proof of consistency, extraction

2
fails only if all experiments fail. This occurs with probability at most (1 — %O)f. The choice
of £ implies that the probability that the extractor succeeds, given that pg > €/2, is at least

p2 2
1—(1—Zo)f21—(1—z)f21—e/2.

Therefore, with probability at least p — € the string § is extracted in at least one of the
{ experiments. Thus we can conclude that,

Lemma 4.4 For any adversarially coordinated system ((A, B),(C, D), A:¢(B) < ¢(C))
there is a knowledge extraction procedure that succeeds with probability arbitrarily close to

p- m

The next claim says, in essence, that the values § obtained by the extractor are “cor-
rectly” distributed.

Claim 4.5 Let « €gp D and let § be obtained by the extractor. Then for every relation
approzimator R, either (1) the probability that R(a,() oulpuls 1, where the probability
space is over the choice of a and the internal coin flips of the machines involved, is larger
than ©(A, R) or (2) these two probabilities are arbitrarily close.

24



4.3 Extraction Implies Non-Malleability

In this subsection we reduce the non-malleability of & to the security of &’. Let R be
a relation approximator and let ((A, B),(C, D), A : ¥(B) < (C)) be an adversarially
controlled system, where (A, B) and (C, D) are both instances of S.

Consider the following procedure for an adversary simulator A’ with access to the prob-
ability distribution D.
Procedure for A’:

1. Generate § €g D.

2. Emulate the system ((A, B),(C, D), A : ¥(B) < (C)) where 9(A) is running &’
with private input 6 and A has access to hist(¢), and extract v, the value committed
to by ¥(C') in the emulation.

3. Output 7.
The structure of the proof is as follows. Let a €p D. We define three random variables:

1. Let 3 be the value committed to by C'in an execution of (A, B),(C, D), A: ¢¥(B) <
¥(C)) in which A has input a and A has input hist(«). By definition, Pr[R(a, §)] =
(A, R).

2. Let ' be obtained by extraction from A’ in a run of the §’-adaptor-S system in which
P has input a but A’ has input hist(«). By definition, Pr[R(a, §")] = 7'(A’, R).

3. Let 8" be obtained by extraction from A’ in a run of the §’-adaptor-S system in which
P has input 6 €g D but A’ has input hist(«). Let 7/(A’, R) denote Pr[R(«a, 3")].

We will first show that if |Pr[R(«, )] — Pr[R(a, 5")]| is polynomial, then there is a
distinguisher for §’. By the semantic security of §’, this means that 7'(A’, R) = Pr[R(«a, §')]
is very close to 7'(A’, R) = Pr[R(«, 3")]. In other words, on seeing the history hist(a), A’,
interacting with P having input a, is essentially no more successful at committing to a
value related by R to « than A’ can be when it again has history hist(a) but is actually
interacting with P having input § (unrelated to «). This means that, for A’, having the
interaction with P doesn’t help in committing to a value related to P’s input.

Let us say that A" succeeds in an execution of the §’-adaptor-S system, if ¥(C') commits
to a value related by R to P’s input (the value to which P commits). Similarly, we say that
A succeeds in an execution of ((4, B),(C,D), A:¥(B) < ¥(C)) if ¥(C) it commits to a
value related by R to A’s input. Recall that, by Claim 4.5, either A is essentially equally
likely to succeed as A’, or A is less likely to succeed than A’ is. So the probability that A
succeeds, (A, R) is essentially less than or equal to 7/(A’, R), which we show in the first

step of the proof to be close to #'(A’, R). ;From this we conclude the non-malleability of
S.

Lemma 4.5 If |7'(A",R) — n'(A’, R)| is polynomial, then there is a distinguisher for S’

that violates the indistinguishability of encryptions (commitment) property (equivalent to
semantic security [13, 17, 23]).
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Proof. Assume |7/(A’, R) — 7'(A’, R)| is polynomial. The distinguisher is as follows.
Distinguisher for S':

1. Create a random challenge (a1 €g D, a3 € D);

2. Choose 7 €r {1,2}. Emulate the system ((A, B),(C, D), A: {(B) < ¥(C)), where
P(A) is running &’ with private input a; and A has access to hist(ay), and extract ¢,
the value committed to by #(C') in the emulation.

3. Output R(ay,().

If, in the emulation, the input to ¥(P) is ay, then the distinguisher outputs 1 with
probability 7'(A’, R). Similarly, if in the emulation the input to ¢ (P) is ag, then the
distinguisher outputs 1 with probability 7'(.A’, R). Since by assumption these two quantities
differ polynomially, we have a polynomial distinguisher for commitments in §’. O

Corollary 4.6 |7'(A’, R) — ©'(A’, R)| is subpolynomial. O
Theorem 4.7 The string commitment scheme S is non-malleable.

Proof. By Claim 4.5, 7(A, R) < 7'(A’, R) or the two are subpolynomially close. Thus
A is not polynomially more likely to successfully commit to a value related by R to the
value committed to by ¥(A) than A’ is able to commit to a value related by R to the
value committed to by ¢(P). However, by Lemma 4.5, 7/(A’, R) is subpolynomially close
to 7(A’, R); that is, interacting with P does not help A’ to commit to a value related to
the value committed to by ¢(P). O

Remark 4.8 The number of rounds in the above protocol is proportional to the length of |I|.
However, the number of rounds may be reduced to log |I| using the following: Let n = |I|.

To commil to string a, choose random aq,aq,. ..oy satisfying @i, a1 = a. For each o
(in parallel) commit to o; with identity (i,1;) (i concatenated with the ith bit of the original
identity).

To see why this is secure, consider an adversary with identity I' # I who commits to
o. For I' # I there must be at least one i such that I} # I; (we assume some prefix free
encoding). This i implies the non-malleability of the resulling scheme: Make o for j # i
public. Since all the identities of the form (j,1}) are different than (i, I;) we can extract all

the a;- s and hence o'.

Remark 4.9 As we have seen, the proofs of consistency aid in the extraction procedure.
Interestingly, they also ensure that if there are many concurrent invocations of (A, B), call
them

(Ah B1)7 .. '7(Ak7 Bk)v

such that the adversary controls all the ¥(B;) and ¥(C'), then if C' commits to a value (3 to
D then [ is essentially unrelated to all the a; committed to by the A; in their interactions
with the B;.
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5 General Non-Malleable Zero-Knowledge Interactions

For the results in this section we assume the players have unique identities. Let (A, B) be an
interactive protocol with joint distribution D on the inputs to A and B. Roughly speaking,
(A, B) is zero-knowledge with respect to B if for every ¢(B) there exists a simulator Sim
such that the following two ensembles of conversations are indistinguishable. In the first
ensemble, a pair a, § is drawn according to D, ¥(A) gets a, ¥(B) gets 3, and the interaction
proceeds and produces a conversation. In the second ensemble, a, 8 €g D is selected, Sim
is given 3, and produces a conversation.

We have constructed a compiler, which, given any zero-knowledge interaction (A, B)
produces a zero-knowledge protocol which is non-malleable in the sense described next.

Consider an adversarially coordinated system ((A4, B),(C,D), A : ¥(B) < %(C)) in
which (A, B) need not be the same protocol as (C, D) (in particular, (C, D) needn’t be
zero-knowledge). Note that, if (A, B) were to be run in isolation, then given the inputs
a, and the random tapes of ¥(A) and ¥(B), the conversation between these agents is
completely determined. A similar statement applies to (C, D). For every polynomial time
relation approximator R and for every adversarially coordinated system of the compiled
versions with adversary A there exists an adversary simulator A’ satisfying the following
requirement.

Let D now denote the distribution for inputs to all four players. Let (o, 3,7,0) €Er D
and run the compiled versions of the two protocols. Let p4 denote the probability that
R(a,p,v,6,C(C,D)) = 1, where C(C, D) denotes the conversation between C' and D. As
above, R rejects if a conversation is syntactically incorrect.

Again, let (a,3,7,6) €r D. A’ gets inputs §,7. Run an execution of (C, D) in which
A’ controls ¥(C') and let C'(C, D) denote the resulting conversation. Let p4 denote the
probability that R(a,,7,6,C'(C, D))= 1.

The security requirement is that for any A there exists an A’ (of comparable complexity)
such that |p4 — par| is subpolynomial.

Our compiler is extremely simple. Each player commits to its input and the seed to a
cryptographically strong pseudo-random bit generator, using the non-malleable scheme for
string commitment described in Section 4. The pseudo-random sequence is used instead
of a truly random sequence whenever the original protocol calls for a random bit. The
parties then execute the original protocol (with the pseudo-random bits), with each player
proving at each step that the message it sends at that step is the one it should have
sent in the unique conversation determined by its committed inputs and messages of the
original protocol received so far. Since proving the consistency of the new message with
the conversation so far can be done effectively (given the random tape and the input), this
proof has a (malleable) zero-knowledge protocol [16].

Informally, we prove non-malleability of the compiled programs by constructing an ex-
tractor for the committed values in a fashion similar to the one constructed in Section 4. We
apply Lemma 4.4 to show that the probability of extraction is similar to the probability of
success (in the (C, D) protocol). The rest of the proof then follows from the zero-knowledge
property of the proof of consistency.

The issue of preserving the non-malleability of compiled programs under concurrent
composition is delicate, as in general zero-knowledge proofs do not compose (e.g. [14]). As
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in Remark 4.9, the proofs of consistency in the steps of our compiled programs play a key
role in yielding non-malleability under composition.
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