
A Proposal for an ISO Standard for Public Key Encryption

(version 2.0)

Victor Shoup
IBM Zurich Research Lab, Säumerstr. 4, 8803 Rüschlikon, Switzerland

sho@zurich.ibm.com

September 17, 2001

Abstract

This document should be viewed less as a first draft of a standard for public-key encryption,
and more as a proposal for what such a draft standard should contain. It is hoped that this
proposal will serve as a basis for discussion, from which a consensus for a standard may be
formed.

Summary of Changes from version 1.1 (February 13, 2001) to ver-
sion 2.0 (September 17, 2001)

• Some new and quite severe criticisms of the security of ECIES in certain modes of operation
have been added. Specifically, it is shown that in certain modes of operation, the scheme is
malleable in a very strong and quite non-trivial sense. See §15 and in particular §15.6.4.

• The implementation of “cofactor mode” for ECIES is now based on the notion of “compatible
cofactor mode” in IEEE P1363a, and the “old cofactor mode” is no longer recommended. See
§15 as well as §15.6.5.

• A new “primitive” called a data encapsulation mechanism has been introduced (see §4). This
primitive was implicit in previous versions, but now it has been made explicit. This is mainly
just a conceptual change. Note, however, that there is one slight change in the recommended
implementation of the primitive (which we call DEM1); namely, the way in which the length
of the label is formatted when passed to the MAC. This is done so as to align with IEEE
P1363a. This change affects ECIES, as well as other hybrid schemes. See §10.

• A new section has been added that details all the differences between our recommended version
of ECIES and that recommended in the IEEE P1363a standard. Note that our recommended
version of ECIES is consistent with the IEEE P1363a version — the only differences between
the two are that our recommended version does not allow several options and modes of
operations allowed by the IEEE P1363a version. See §15.6.

• Two changes were made to ACE-KEM (formerly ACE-Encrypt ′). First, the value of v is now
encoded in the ciphertext using the group encoding function, rather than the partial encoding
function as in previous versions. This was done mainly for aesthetic reasons. Second, the
implementation of “cofactor mode” has been changed to align with the IEEE P1363a notion
of “compatible cofactor mode.” See §17.

• It is now recommended that all Diffie-Hellman-based schemes use prime order subgroups.
This is done mainly for alignment with other standards, as well overall consistency.

• Following discussions in Santa Barbara, this report now recommends inclusion of EPOC-2 in
the standard, although this report does not yet include a detailed specification of EPOC-2.

• A new final section has been added that recommends the next steps to be taken toward an
ISO standard. See §21.

• A number of names have been changed. Some of these name changes were suggested by
working group members, while others were made to increase overall consistency.

old name new name
ECIES ′ ECIES-KEM
PSEC-2 ′ PSEC-KEM
ACE-Encrypt ′ ACE-KEM
Simple RSA RSA-KEM
EME-OAEP OAEP-EME
XEME-OAEP+ OAEP+XEME

• A number of other, essentially aesthetic, changes.

i

Summary of Changes from original version (February 13, 2001) to
version 1.1 (May 29, 2001)

• The decryption algorithm for ACE-Encrypt′ has been slightly modified (see §17.3).

• Additionally, some minor errors — not affecting the descriptions of any algorithms — have
been fixed.

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goals of this document . 2
1.3 Preliminary remarks on security . 2
1.4 A summary of submissions and proposed schemes . 4

2 Public-key encryption and chosen ciphertext attack 8
2.1 Abstract interface . 8
2.2 Notion of security . 11
2.3 Benign malleability: a slightly weaker notion of security 13

3 Key encapsulation 13
3.1 Abstract interface . 14
3.2 Notion of security . 14
3.3 Further remarks . 15

4 Data encapsulation 15
4.1 Abstract interface . 16
4.2 Notion of security . 16

5 Hybrid encryption 16

6 Byte string/integer conversions 17

7 Pseudo-random byte generator 17

8 Symmetric key encryption 17
8.1 Abstract interface . 17
8.2 Notion of security . 18

9 One-time MAC 18

10 DEM1 19

11 Hash functions 20

12 Key derivation functions 20
12.1 KDF1 . 21
12.2 KDF2 . 21
12.3 Security critique of KDF1 and KDF2 . 21
12.4 KDF3 . 22
12.5 KDF4 . 22

13 Abstract groups 22
13.1 Subgroups of Z∗p . 23
13.2 Subgroups of Elliptic Curves . 24

iii

14 Intractability assumptions related to groups 24
14.1 The Computational Diffie-Hellman Problem . 24
14.2 The Decisional Diffie-Hellman Problem . 24
14.3 The Gap-CDH Problem . 25

15 ECIES-KEM 25
15.1 Key Generation . 25
15.2 Encryption . 26
15.3 Decryption . 26
15.4 Some remarks . 26
15.5 Security considerations . 27
15.6 Compatibility with the IEEE P1363a version of ECIES 27
15.7 Compatibility with the submitted version of ECIES 32

16 PSEC-KEM 32
16.1 Key Generation . 32
16.2 Encryption . 32
16.3 Decryption . 33
16.4 Some remarks . 33
16.5 Changes from PSEC-2 . 34
16.6 Security considerations . 35

17 ACE-KEM 39
17.1 Key Generation . 39
17.2 Encryption . 39
17.3 Decryption . 40
17.4 Some remarks . 41
17.5 Security considerations . 41
17.6 Further remarks . 42

18 RSA-OAEP 43
18.1 Message encoding functions . 43
18.2 OAEP-EME . 44
18.3 RSA-OAEP . 45
18.4 Defects of RSA-OAEP . 46

19 RSA-OAEP+ 46
19.1 Extended message encoding functions . 46
19.2 OAEP+XEME . 47
19.3 RSA-OAEP+ . 48
19.4 Security considerations . 50

20 RSA-KEM 51
20.1 Key generation . 51
20.2 Encryption . 51
20.3 Decryption . 52
20.4 Security considerations . 52

iv

21 Further actions 54

v

1 Introduction

1.1 Background

At its meeting on April 3-7 2000 in London, the ISO/IEC JTC 1/SC 27/WG 2 decided to put out
a call for contributions for a proposed new project (NP 18033) on encryption algorithms. This call
for contributions (document SC 27 N 2563) proposed four parts:

1. General

2. Asymmetric Ciphers

3. Block Ciphers

4. Stream Ciphers

The author of this document is currently the acting editor for the Asymmetric Ciphers part of
the standard. This document deals exclusively with asymmetric ciphers, a.k.a., public-key encryp-
tion schemes.

A number of submissions in response to the call for contributions were received, and are available
as ISO document SC 27 N 2656. The author of the present document has carefully reviewed all of
the submitted proposals for public-key encryption schemes.

There were a number of different types of schemes submitted:

• Some are based on the hardness of factoring integers or related problems.

• Some are Diffie-Hellman-based schemes — of these, some are based on elliptic curves, and
some are based on subgroups of Z∗p.

• Some allow encryption of arbitrary length messages, and others only allow encryption of short
messages.

• Some allow for additional data to be “non-malleably bound” to the ciphertext, while others
do not.

• Some allow for messages and ciphertexts to be efficiently processed as “streams,” while others
do not, requiring more than one pass over this data.

• Some have claims of “provable” security against adaptive chosen ciphertext attack — some
relying on the “random oracle” heuristic — some not. For several schemes, these claims of
security have proven to be invalid upon closer scrutiny.

Clearly, these submissions are quite incompatible in a number of respects, and one of the
challenges of this project is to minimize these incompatibilities.

Recently, an ad hoc meeting of the working group was held on August 21 in Santa Barbara,
to further discuss the proposals in an earlier draft of this document. The current version of this
proposal reflects the author’s own vision for how this standard should develop, while at the same
time, takes into account the discussions at the ad hoc meeting.

1

1.2 Goals of this document

The goals of this document are as follows:

• To propose a standard functionality that a public-key encryption scheme should implement.
This is essentially an abstract interface.

• To propose a “unified framework” for hybrid encryption. In order for a cryptosystem to be
practical, it must be able to process messages that are arbitrary byte strings. There are
traditional, and fairly well known “hybrid” schemes to do this: one first uses public-key
techniques to derive a shared key, and then encrypts or decrypts the actual payload using
symmetric-key techniques. We propose a fairly traditional and “provably” secure way of doing
this.

We shall refer to a method of generating a shared random key in this sense as a “key encap-
sulation mechanism,” and we shall refer to a method of encrypting the message using such a
shared random key as a “data encapsulation mechanism.”

• To propose a “unified framework” for Diffie-Hellman-based encryption schemes. This frame-
work specifies an “abstract group interface” for a group so that any Diffie-Hellman-based
encryption scheme can be specified with respect to an abstract group, but yet the group can
be implemented in one of several ways, including as a subgroup of an elliptic curve group,
and as a subgroup of Z∗p. The interface is rich enough so as to support all of the subtleties
and quirks found in many proposed cryptosystems, especially those using elliptic curves.

• To propose a set of encryption schemes such that each scheme

– is “provably” secure against adaptive chosen ciphertext attack in some reasonable sense,

– conforms to the proposed abstract interface,

– conforms to the proposed unified framework for hybrid encryption (where applicable),

– conforms to the proposed unified framework for Diffie-Hellman-based encryption (where
applicable),

– provides a fairly unique and attractive tradeoff between efficiency and security, and

– conforms to pre-existing standards (where applicable).

In order to achieve the last goal of proposing a set of schemes meeting the stated requirements,
we have taken several of the submitted schemes, and proposed modified schemes that meet the
stated requirements. Some of these changes are quite minor, while others are more drastic. Some
schemes were omitted altogether — given the limited amount of time and other resources available
to construct this proposal for a standard, resources had to be concentrated on those schemes which
appeared most likely to meet the stated objectives, either with or without minor modification.

1.3 Preliminary remarks on security

Typically, practical symmetric encryption schemes are designed “from scratch,” based partly on
established design principles. The security of such a scheme is usually simply taken on faith —
there is no justification other than to demonstrate that reasonable design principles were employed
in the design of the scheme, and to give (perhaps heuristic) arguments that the scheme resists
known types of attacks.

2

For public-key encryption schemes, the situation is somewhat different. Such a scheme is typi-
cally composed of a number of components: besides some kind of “trapdoor” cryptographic trans-
form, there may also be various other components, such as hash functions, symmetric ciphers, etc.
Because of this, it is customary nowadays to formally analyze the security of such a scheme relative
to the security of its constituent components; that is, to prove the security of the scheme under the
assumption that these components satisfy particular, explicit security requirements.

Since proving the security of practical schemes in this way is often infeasible, a heuristic called
the random oracle model is sometimes used in the proof. In this approach, a cryptographic hash
function is modeled — for the purposes of analysis — as a “black box” containing a random function
to which the adversary and the algorithms implementing the cryptosystem have “oracle access.”
This approach has been used implicitly and informally for some time; however, it was formalized
by Bellare and Rogaway [BR93], and has subsequently been used quite a bit in the cryptographic
research community.

We should stress, however, that the random oracle model is not just “another assumption,”
like assuming that a hash function is collision resistant, or that a function is pseudo-random. It
is a heuristic “leap of faith” — invoking this heuristic is qualitatively a much bigger step than
making any particular cryptographic assumption. Indeed, in [CGH98], it is shown that there are
cryptosystems that are secure in the random oracle model, but are insecure no matter what hash
function is used to implement the random oracle.

Despite these problems, the random oracle model is still a useful heuristic and design principle.
A proof of security in the random oracle model is still much better than no proof at all, and certainly
such a proof does rule out a large family of attacks.

In judging the security of a “provably secure” scheme, there are several independent “dimen-
sions”:

• the use or non-use of the random oracle heuristic,

• the “strength” of the underlying assumptions, and

• the efficiency of the security reduction.

Because of these several dimensions, the security of two “provably secure” schemes might be es-
sentially incomparable. For example, one scheme might rely on the random oracle heuristic and a
weak assumption, and the other might not use the random oracle heuristic but rely on a stronger
assumption, or perhaps the assumptions are simply incomparable.

The efficiency of a security reduction is an issue that is all too often ignored. However, it should
be taken into account. For example, a scheme might be secure if RSA inversion is hard, but the
security reduction may be so inefficient that for typical sizes of keys — say 1024-bit RSA modulus
— the implied algorithm for solving the RSA inversion problem might be slower than the fastest
currently known algorithm for factoring numbers.

Even if the security reduction is very inefficient, it can still be argued that such a proof of
security nevertheless provides a “qualitative” guarantee of security. Moreover, such a reduction
does rule out attacks that would efficiently “scale” to larger sizes of keys.

For public-key encryption schemes, it is widely agreed that the “right” notion of security for a
scheme intended for general-purpose use is that of security against adaptive chosen ciphertext attack.
This notion was introduced in [RS91], and implies other useful properties, like non-malleability. See
[DDN91, DDN98, BDPR98] for further discussion. In this document, this will be the relevant notion
of security used for judging the security of an encryption scheme.

3

1.4 A summary of submissions and proposed schemes

In this section, we summarize the submissions that were made, give a very brief assessment of of
the submissions, and briefly describe the schemes that we actually propose to be included in the
standard.

1.4.1 RSA-OAEP, RSA-OAEP+, and RSA-KEM

RSA-OAEP is the fairly well-established RSA encryption scheme, using the padding scheme OAEP
invented by Bellare and Rogaway [BR94], with enhancements and refinements due to Johnson and
Matyas [JM96].

The submission coincides with the standards PKCS #1 v2.0 and IEEE P1363.1

One of the main supposed virtues of this scheme was an alleged proof in the random oracle
model of security against adaptive chosen ciphertext attack, assuming RSA inversion is hard. This
“proof” was published in [BR94], and despite years of public scrutiny, it was only recently observed
in [Sho01] that not only is the proof invalid, but that there can be no standard proof via “black box”
reduction for the OAEP construction in general, given an arbitrary one-way trapdoor permutation.

This negative result does not necessarily imply that the specific instance RSA-OAEP is insecure.
Indeed, as it turns out — essentially by accident, rather than design — RSA-OAEP is indeed secure
in the random oracle model. This was proven for encryption exponent 3 in [Sho01], and for arbitrary
encryption exponent in [FOPS01]. The security reduction is the latter paper is highly inefficient,
however.

Another problem with RSA-OAEP is that it only encrypts messages of short length. As such,
many applications that use RSA-OAEP use it simply as a key encapsulation mechanism, which
wastes one of the most attractive features of RSA-OAEP, namely, its fairly compact ciphertexts.

To overcome these problems, we propose in this document a new scheme, called RSA-OAEP+.
It is just as efficient as RSA-OAEP, but the general OAEP+ construction is provably secure in
the random oracle model (as shown in [Sho01]). Moreover, even with RSA, the security reduction
for OAEP+ is much more efficient than that in [FOPS01] for OAEP, making the scheme more
attractive from a concrete security point of view. Also, RSA-OAEP+ is enhanced to deal with
arbitrary-length messages in a very “compact” manner.

Even with the security improvements provided by RSA-OAEP+, the security reduction is still so
inefficient that the security guarantees provided are still not very meaningful in a strict, quantitative
sense. For this reason, we also recommend an alternative RSA scheme which is both simpler and
more secure, which we call RSA-KEM. This scheme is designed as a pure key encapsulation
mechanism, and fits more nicely into our framework for hybrid encryption.

1.4.2 ECIES

ECIES is the “Elliptic Curve Integrated Encryption Scheme.” It is a Diffie-Hellman-based scheme.
It is a hybrid encryption scheme based on the hardness of the Computational Diffie-Hellman (CDH)
problem for elliptic curves. It is closely related to the DHAES construction in [ABR98].

The current draft of IEEE P1363a2 also contains a version of ECIES, but this version differs in
some significant respects from the submitted version of ECIES.

As we shall point out, this scheme is not secure against adaptive chosen ciphertext attack, but
can easily be made so with some small changes. Therefore, we have proposed a scheme ECIES-KEM,

1In this document, all references to IEEE P1363 refer specifically to the final draft D13, dated November 12, 1999.
2In this document, all references to IEEE P1363a refer specifically to the latest draft D9.9, dated July 21, 2001.

4

which besides providing a higher level of security, also has been generalized to conform to our
proposed unified frameworks for hybrid and Diffie-Hellman-based encryption. The changes between
ECIES and ECIES-KEM are the minimal changes required to ensure security.

The ECIES-KEM scheme is a pure key encapsulation mechanism. It can be converted into a
hybrid encryption scheme using the techniques standardized here. The resulting hybrid encryption
scheme is consistent with the ECIES scheme proposed in IEEE P1363a, in the sense that the scheme
proposed here conforms to that in IEEE P1363a; however, there are a number of variations and
modes of operation of ECIES in P1363a that do not conform to the scheme proposed here. Thus,
this standard for ECIES is a strict subset of the IEEE P1363a standard for ECIES.

The main motivation for these restrictions are security concerns about the IEEE P1363a version
of ECIES. The secondary motivation for these restrictions is to make this standard simpler, more
uniform, and self-consistent.

The ECIES-KEM scheme can be proven secure against adaptive chosen ciphertext attack, either
by using the rather non-standard assumption in [ABR98], or by using the random oracle heuristic,
combined with the (also not very standard) assumption that the CDH problem is hard, even when
given access to an oracle for the Decisional Diffie-Hellman (DDH) problem. This latter assumption
is called the gap-CDH assumption, and is studied in detail in [OP01].

As for efficiency, encryption takes two group exponentiations, and decryption takes one or two
(depending on the group, but usually one for elliptic curves).

1.4.3 PSEC

PSEC is a family of Diffie-Hellman-based encryption schemes.
It is claimed that these schemes are all provably secure in the random oracle model, under

different assumptions. There are three schemes: PSEC-1, PSEC-2, and PSEC-3.

• For PSEC-1, the DDH problem is assumed to be hard.

• For PSEC-2, the CDH problem is assumed to be hard.

• PSEC-3 is based on the gap-CDH assumption.

We shall argue that actually, these security claims for PSEC-1 and PSEC-2 are unjustified (see
§16.5).

We shall propose a scheme PSEC-KEM that is a variant of PSEC-2, and we provide a complete
and detailed proof of security in the random oracle model based on the CDH assumption. Besides
correcting the security problems of PSEC-2, other changes were made so that the resulting scheme
conforms to our proposed abstract interface and to our proposed unified frameworks for hybrid
and Diffie-Hellman-based encryption. In particular, as the name implies, PSEC-KEM is a key
encapsulation mechanism.

As for efficiency, both PSEC-KEM encryption and decryption require two group exponentia-
tions.

PSEC-1 is based on stronger assumptions, is not significantly more efficient than the other
schemes, and has some significant security problems. For these reasons, we have chosen not to
include it (or a variant thereof) in this proposal.

PSEC-3 is very similar to ECIES, offering an almost identical efficiency/security trade-off; since
ECIES appears to be the more well-established scheme, we have chosen not to include PSEC-3 (or
a variant thereof) in this proposal.

5

1.4.4 ACE-Encrypt

ACE-Encrypt is a Diffie-Hellman-based hybrid encryption scheme that can be proven secure against
adaptive chosen ciphertext attack assuming the DDH problem is hard. It is the only submission
that can truly be proven secure — it does not rely on the random oracle heuristic. It is slightly
less efficient than PSEC-2.

The submission is based on the DDH problem for a subgroup of Z∗p. We have proposed a
variant, ACE-KEM. Several changes were made to the original ACE-Encrypt scheme so that
the resulting scheme conforms to our proposed abstract interface and to our proposed unified
frameworks for hybrid and Diffie-Hellman-based encryption. As the name suggests, ACE-KEM is a
key encapsulation mechanism. ACE-KEM and the corresponding hybrid scheme are still provably
secure — without the random oracle heuristic — based on the DDH, as well as a couple of other
reasonable symmetric-key cryptographic assumptions.

As for efficiency, ACE-KEM encryption requires five group exponentiations, and decryption
requires either three or four (depending on the group, but usually three for elliptic curves). Several
optimizations are available to reduce the effective costs of these exponentiations, however.

We point out that, like PSEC-KEM, the scheme ACE-KEM can be proven secure in the random
oracle model under the weaker CDH assumption, although the security reduction for ACE-KEM
is much less efficient than that for PSEC-KEM. Additionally, it can be shown that ACE-KEM is
no less secure than ECIES-KEM, in the sense that there is a very tight reduction from an attack
on ECIES-KEM to an attack ACE-KEM. That is, any attack on ACE-KEM can be converted into
an attack on ECIES-KEM, where the running time and success probability of the latter attack are
essentially the same as for the former attack. This is discussed in detail in §17.6.2. Thus, any fears
that the DDH assumption is “too strong” (see [JN01]) can be safely put to rest.

1.4.5 EPOC

EPOC is a family of encryption schemes based on factoring integers of the form n = p2q. There
are three variants: EPOC-1, EPOC-2, and EPOC-3.

Security of these schemes is claimed in the random oracle model under one of several assumptions
(including the assumption that factoring is hard).

It was the initial judgment of this author that these schemes should not be included in the
standard, for the following reasons:

• the theory on which these schemes are based has not been very widely scrutinized, nor have
many of the implementation details;

• they do not seem to offer a particularly attractive efficiency/security tradeoff in relation to
the other schemes (one drawback in particular is that it is not amenable “stream processing”
— see §2.1.3).

However, at the ad hoc meeting in Santa Barbara, a consensus was reached that EPOC-2 should
be included in the standard. The reasons given were that

• it is the only proposed scheme whose proof of security is based on factoring (as opposed to
RSA inversion);

• the decryption operation may be somewhat faster than for RSA;

• it has been subjected to a certain amount of public scrutiny, and no security problems have
yet been discovered;

6

• it is in IEEE P1363a, and so including it in the ISO standard increases the compatibility of
these two standards.

At the present time, we have not yet incorporated a specification EPOC-2 into this proposal,
although the intention is that it will be a part of the first working draft. This specification should
be consistent with the IEEE P1363a version of EPOC-2.

1.4.6 HIME

HIME is a family of encryption schemes based on factoring integers.
Security of these schemes is claimed in the random oracle model under one of several assumptions

(including the assumption that factoring is hard).
It was the judgment of this author that these schemes should not be included in the standard.

The main reason for this is that the design of the schemes and the claims of security do not appear
to stand on very firm ground. Indeed, many details are missing, and it is not at all clear that these
gaps can be filled in. Moreover, none of these schemes have been published anywhere, and therefore
have not been widely scrutinized.

Also, it was the general consensus at the ad hoc meeting in Santa Barbara that this scheme
should not be considered any further.

1.4.7 Further references on the submissions

The schemes RSA-OAEP, ECIES, PSEC, EPOC, and ACE-Encrypt have also been submitted to
the Crypto-Nessie evaluation project, and were presented at the first Crypto-Nessie workshop, held
in Leuven on November 13-14, 2000.

Besides the ISO document SC 27 N 2656, detailed descriptions of these algorithms are publicly
available at www.cryptonessie.org/workshop.

1.4.8 Summary of proposed schemes

So our proposed schemes are as follows:

• Diffie-Hellman-based schemes:

– ECIES-KEM

– PSEC-KEM

– ACE-KEM

• RSA-based schemes:

– RSA-OAEP

– RSA-OAEP+

– RSA-KEM

• Factoring-based schemes:

– EPOC-2

7

Scheme exponentiations exponentiations random oracle main
per encryption per decryption heuristic assumption

ECIES-KEM 2 1 (or 2) yes gap CDH
PSEC-KEM 2 2 yes CDH
ACE-KEM 5 3 (or 4) no DDH

Table 1: Comparison of Diffie-Hellman-based schemes

The reason for proposing three different RSA-based schemes is that they each offer a unique
efficiency/security trade-off. While they are all based on the RSA problem, the security reduc-
tion for RSA-KEM is much tighter than that for RSA-OAEP+, and the security reduction for
RSA-OAEP+ is much tighter than that of RSA-OAEP. Additionally, RSA-KEM is very simple,
and fits more nicely into our general framework for hybrid encryption. The scheme RSA-OAEP+
is attractive as it yields more compact ciphertexts than the hybrid scheme arising from RSA-KEM.
The scheme RSA-OAEP is included here mainly for compatibility with other standards: it offers
no real security or performance benefit compared to the other RSA-based schemes.

The reason for including three different Diffie-Hellman-based schemes is that they seem to each
offer a unique efficiency/security trade-off, as summarized in Table 1.

2 Public-key encryption and chosen ciphertext attack

2.1 Abstract interface

We first define the basic structure of a public-key encryption scheme.
A public-key encryption scheme PKE consists of three algorithms:

• A key generation algorithm PKE.KeyGen(), that outputs a public key/secret key pair
(PK,SK). The structure of PK and SK depend on the particular scheme.

• An encryption algorithm PKE.Encrypt(PK, L,M, options) that takes as input a public key
PK, a label L, a message M , and an optional options argument, and outputs a ciphertext C.
Note that L, M , and C are byte strings. See §2.1.4 below for more on labels. See §2.1.6 below
for more on the options argument.

• A decryption algorithm PKE.Decrypt(SK, L, C) that takes as input a secret key SK, a label
L, and a ciphertext C, and outputs a message M .

In general, the key generation and encryption algorithms will be probabilistic algorithms, while
the decryption algorithm is deterministic.

2.1.1 Soundness

A basic requirement of any public-key encryption scheme is soundness: for any public-key/secret-
key pair (PK,SK), for any label/message pair (L,M), any encryption of M with label L under PK
decrypts with label L under SK to the original message M . This requirement may be relaxed, so
that it holds only for all but an acceptably negligible fraction of public-key/secret-key pairs, and
even just for all but an acceptably negligible fraction of encryptions.

8

2.1.2 Message length

It is important to note that messages may be of arbitrary and variable length, although a particular
scheme may choose to impose a (very large) upper bound on this length. Thus, our proposed notion
of a public-key encryption scheme is essentially a “digital envelope.”

Some currently available public-key encryption schemes, like RSA-OAEP, only allow for very
short messages, and leave it to application engineers to design their own “hybrid” scheme to encrypt
long messages (i.e., by encrypting a session key and then using symmetric-key cryptography to
encrypt the payload).

However, it seems unrealistic to expect application engineers to correctly design such a secure
hybrid scheme. Even PKCS#7 — the standard “digital envelope” mechanism — is not appropriate.
The simplest version of this simply encrypts a session key using RSA-OAEP, and then encrypts the
message using a standard symmetric cipher — no additional integrity checks are made. Because of
this, straightforward application of PKCS#7 yields a trivially malleable encryption scheme.

Despite all of the above potential problems and limitations, given that some very important
existing encryption schemes do impose a small upper bound on the length of a message, we also
introduce the notion of a bounded-length public-key encryption scheme. Such a scheme PKE sup-
ports the same interface as that of an ordinary (unbounded) scheme, but only allows messages of
length bounded by PKE.MaxLen(PK).

2.1.3 Stream processing

Given that messages may be arbitrarily long, a highly desirable property of any public-key en-
cryption scheme should be that both the encryption and decryption algorithms can be efficiently
implemented as filters. That is, the message may be presented to the encryption algorithm as an
input stream, and the ciphertext should be written to an output stream. The algorithm should
never have to rewind these streams, and should be able to process these streams using a small,
bounded amount of internal storage, independent of the length of these streams. Similarly, the
decryption algorithm should be given access to an input stream representing the ciphertext, and
the message should be written to an output stream.

All of the schemes proposed here are amenable to stream processing, with the sole exception of
EPOC-2.

2.1.4 The use of labels

A label is a byte string that is effectively bound to the ciphertext in a non-malleable way. It may
contain data that is implicit from context and need not be encrypted, but that should nevertheless
be bound to the ciphertext. We view a label to be a byte string that is meaningful to the application
using the encryption scheme, and that is independent of the implementation of the encryption
scheme.

For example, there are key exchange protocols in which one party, say A, encrypts a session
key K under the public key of the other party, say B. In order for the protocol to be secure, party
A’s identity (or public key or certificate) must be non-malleably bound to the ciphertext. One way
to do this is simply to append this identity to the message. However, this creates an unnecessarily
large ciphertext, since A’s identity is typically already known to B in the context of such a protocol.
A good implementation of the labeling mechanism achieves the same effect, without increasing the
size of the ciphertext.

9

Labels may also be of arbitrary and variable length, but we do not impose the restriction that
the encryption and decryption algorithms should be able to process labels as streams.

Both the ECIES and RSA-OAEP submissions include the notion of a label (where it is called
an encoding parameter), although no indication was given as to the role or function of a label.
Nevertheless, it seems to be a potentially useful feature, and so we include it here.

2.1.5 Ciphertext format

The schemes proposed in this document describe precisely the format of a ciphertext. This is
desirable for several reasons. First, it facilitates the inter-operability of different implementations
of the same scheme. Second, it allows higher-level protocols to use public-key encryption as a “black
box” in a way that is independent of the particular scheme. Third, it is necessary to even discuss
the notion of security in a meaningful way.

It is highly recommended that a general-purpose library offering public-key encryption implement
the abstract interface in a way suitable for its particular programming environment, and that
the ciphertexts conform to the prescribed format. Standardizing the abstract interface and the
ciphertext format is meant to facilitate this type of software development.

However, these specifications in no way dictate that such formatting must be preserved in
a system using an encryption scheme, or that an implementation of the abstract interface must
explicitly appear anywhere in the system. For example, in transporting a ciphertext over a network,
it may be chopped up, and reformatted in an arbitrary way. Some transformations may be generic,
i.e., independent of the encryption scheme, while others may be applicable only to a specific scheme.
Indeed, it is not even necessary that a particular system using a scheme standardized here actually
outputs (resp., inputs) ciphertexts in the prescribed format upon encryption (resp., decryption):
the encryption and decryption algorithms may behave as if they performed such transformations
on the ciphertext, even though the ciphertext may never really be represented in the prescribed
format. In such a system, the prescribed format of the ciphertext plays a purely conceptual role in
reasoning about the security of the system, even though it plays no direct role in the implementation
of the system.

2.1.6 Scheme-specific encryption options

Some schemes allow certain types of scheme-specific options to be passed to the encryption algo-
rithm, which is why we have allowed for an extra argument options in our abstract interface.

Allowing scheme-specific options in an abstract interface is clearly not such a good idea, as this
runs counter to the very notion of an abstract interface. Also, since such options are scheme specific,
their use will almost certainly atrophy over time, especially if more applications take advantage of
the benefits provided by an abstract encryption interface.

Although we strongly discourage the use of such options, we nevertheless allow them in our
formal model for the sake of allowing us to cast some existing schemes into the model.

The only place where we will actually use encryption options is in discussing encryption schemes
based on elliptic curves: some of these scheme allows the encryptor to dynamically choose, from
one of several formats, how it wants to format a point on the curve.

For the sake of some notion of completeness or symmetry, one could also allow scheme-specific
decryption options, but since we do not need such a notion, we do not attempt to formalize it.

10

2.1.7 Algorithm failure

Throughout this document, algorithms will always compute a function on their inputs, except that
instead of returning a value, they may fail. By convention, if an algorithm fails, then unless
otherwise specified, an algorithm that invokes that algorithm as a sub-routine also fails. Thus,
failing is analogous to “throwing an exception” in many programming languages.

2.1.8 Bits vs. Bytes

Our abstract interface treats messages and labels as strings of bytes (a.k.a., octets), rather than
strings of bits.

We argue against allowing bit strings, for the following reasons.
First, it seems unlikely that many, if indeed any, applications really work with data that is

represented as bit strings, rather than byte strings.
Second, even if an application does want to work with bit strings, it can be left to the application

to encode these bit strings as byte strings. Anyway, an application may in general have to properly
format its messages before encryption, for example, to hide any information that may be leaked
just from the length of the message (see §2.2.2).

Third, we note that existing standards, such as IEEE P1363a, are themselves inconsistent in
this regard, and so it does not seem advisable to propagate this inconsistency here as well. Indeed,
while some encryption schemes in IEEE P1363a (ECIES) allow for bit strings, others (RSA-OAEP
and EPOC-2) are byte oriented.

2.2 Notion of security

We next recall the definition of security against adaptive chosen ciphertext attack, adapted to deal
with labels.

We begin by describing the attack scenario.
First, the key generation algorithm is run, generating the public key and private key for the

cryptosystem. The adversary, of course, obtains the public key, but not the private key.
Second, the adversary makes a series of arbitrary queries to a decryption oracle. Each query

is a label/ciphertext pair (L,C) that is decrypted by the decryption oracle, making use of the
private key of the cryptosystem. The resulting decryption is given to the adversary; moreover,
if the decryption algorithm fails, then this information is given to the adversary, and the attack
continues. The adversary is free to construct these label/ciphertext pairs in an arbitrary way—it
is certainly not required to compute them using the encryption algorithm.

Third, the adversary prepares a label L∗ and two “target” messages M0,M1 of equal length, and
gives these to an encryption oracle. If the scheme supports any encryption options, the adversary
also chooses these. The encryption oracle chooses b ∈ {0, 1} at random, encrypts Mb with label L∗,
and gives the resulting “target” ciphertext C∗ to the adversary.

Fourth, the adversary continues to submit label/ciphertext pairs (L,C) to the decryption oracle,
subject only to the restriction that (L,C) 6= (L∗, C∗).

Just before the adversary terminates, it outputs b̂ ∈ {0, 1}.
That completes the description of the attack scenario.

For a given adversary A, and a given scheme PKE, we define the adversary’s guessing advantage

AdvantagePKE(A) =
∣∣∣Pr[b̂ = b]− 1/2

∣∣∣ .

11

Security means that AdvantagePKE(A) is “acceptably” small for all adversaries A that run in a
“reasonable” amount of time.

2.2.1 Alternative characterizations and implications

Note that in proving an encryption scheme secure, the definition we have given is usually the most
convenient. However, in analyzing an encryption scheme in a larger context, a slightly different
definition is usually more convenient. In this definition, the attack scenario proceeds just as before.
However, instead of measuring the adversary’s guessing advantage, we measure its distinguishing
advantage

Advantage′PKE(A) =
∣∣∣Pr

[
b̂ = 1|b = 1

]
− Pr

[
b̂ = 1|b = 0

]∣∣∣ .
It follows directly from the definitions by a trivial calculation that for any adversary A,

Advantage′PKE(A) = 2 ·AdvantagePKE(A).

Equivalently, one can view Advantage′PKE(A) as measuring how differently an adversary behaves
in two different attack games: in one game, M0 is always encrypted, and in the other, M1 is always
encrypted.

In analyzing an encryption scheme in a larger context, one usually substitutes an encryption of
a secret message by an encryption of a garbage message (all zeros, or random) of the same length,
and then analyzes how the adversary behaves. Many secret messages may be replaced by garbage
strings, and the distinguishing advantage simply sums (although for some schemes, one can exhibit
an even tighter security reduction). A small distinguishing advantage implies that the adversary
will not behave significantly differently when this substitution is made. See [BBM00] for more
details.

This definition, in slightly different form, was first proposed by Rackoff and Simon [RS91]. It is
generally agreed in the cryptographic research community that this is the “right” security property
for a general-purpose public-key encryption scheme. This notion of security implies other useful
properties, like non-malleability. See [DDN91, DDN98, BDPR98] for more on notions of security
for public-key encryption schemes.

2.2.2 Hiding the message length

Note that in the attack game, the adversary is required to submit two target messages of equal
length to the encryption oracle. This restriction on the adversary reflects the fact that we cannot
expect to hide the length of an encrypted message from the adversary—for many cryptosystems,
this will be evident from the length of the ciphertext. It is in general up to the application using
the cryptosystem to ensure that the length of a message does not reveal sensitive information.

For bounded-length public-key encryption schemes (see §2.1.2) the notion of security is the same
as for the ordinary, unbounded case, except that the adversary is not required to submit target
messages of equal length to the encryption oracle. This reflects the fact that such schemes in fact
do hide the length of an encrypted message from the adversary.

2.2.3 Failing streams

There is a subtle interaction between failing, as discussed in §2.1.7 and the notion of a stream,
discussed in §2.1.3. An application reading the output stream of the decryption algorithm should
take care not to leak any information about the message it has read from that stream, until the

12

decryption process has finished without failing. If it does not do this, the application could
potentially forfeit the security guarantees of the scheme.

2.2.4 Security parameters and asymptotic security

Note that none of these definitions make explicit mention of a security parameter. Our point of view
is concrete—not asymptotic. We assume that a scheme specifies a particular security parameter
(or set of parameters). If one wants to translate these definitions into ones compatible with the
“asymptotic complexity” point of view, then one can consider families of algorithms indexed by a
parameter λ = 1, 2, 3, . . . that run in time bounded by a polynomial in λ. Both the scheme and the
adversary are viewed as families of algorithms. One can consider either uniform or non-uniform
families of algorithms. Security means that the adversary’s advantage is “negligible” in λ, meaning
that it goes to zero faster than the inverse of any polynomial in λ.

2.3 Benign malleability: a slightly weaker notion of security

The definition of security given in §2.2 is sometimes viewed as being unnecessarily strong. For
example, suppose we take an encryption scheme PKE that satisfies the definition in §2.2, and
modify it as follows, obtaining a new encryption scheme PKE ′: the scheme PKE ′ is the same as
PKE, except that it appends a random byte to the ciphertext upon encryption, and ignores this
extra byte upon decryption. Technically speaking, PKE ′ does not satisfy the definition in §2.2, yet
this seems counter-intuitive. Indeed, although PKE ′ is technically “malleable,” it is only malleable
in a “benign” sort of way: one can create alternative encryptions of the same message, and these
alternative encryptions are all clearly recognizable as such.

We present here a formal notion of security that precisely captures the intuitive notion of
“benign malleability.”

For a particular encryption scheme PKE and any public-key/secret-key pair (PK,SK), we
call a binary relation ≡PK on label/ciphertext pairs a compatible relation if for any and two la-
bel/ciphertext pairs (L,C) and (L′, C ′),

• if (C,L) ≡PK (C ′, L′) then L = L′,

• if (C,L) ≡PK (C ′, L′) then PKE.Decrypt(SK, L, C) = PKE.Decrypt(SK, L′, C ′), and

• it can be determined if (C,L) ≡PK (C ′, L′) using an efficient algorithm that takes inputs
PK, L, C, L′, C ′.

Clearly, any compatible relation is an equivalence relation.
We say that a public-key encryption scheme PKE is benignly malleable if there exists a compat-

ible relation for PKE as above, and if it satisfies the definition of security given in §2.2, but with
the following modification in the attack game: when the adversary submits a label/ciphertext pair
(L,C) to the decryption oracle subsequent to the invocation of the encryption oracle, then instead
of requiring that (L,C) 6= (L∗, C∗), we only require that (L,C) 6≡PK (L∗, C∗).

This definition of security is essentially just as useful as the definition in §2.2 for all applications
of public-key encryption that we know of.

3 Key encapsulation

In designing an efficient public-key encryption scheme, a useful approach is to design a “hybrid”
scheme, where one uses public key cryptography to encrypt a key that can then be used to encrypt

13

the actual payload using symmetric key cryptography.
We will build a hybrid encryption scheme from two lower-level “building blocks.” The first is

a method for using public key cryptography to “encapsulate” a symmetric key. We call such a
scheme a key encapsulation mechanism. The second is a method to properly encrypt the message
using symmetric-key cryptographic techniques applied to the the symmetric key obtained from the
key encapsulation mechanism. We call such a scheme a data encapsulation method.

In this section, we discuss key encapsulation mechanisms. Data encapsulation mechanisms
are discussed in §4, and the construction of hybrid encryption schemes built out of key and data
encapsulation mechanisms is discussed in §5.

Briefly, a key encapsulation mechanism works just like a public-key encryption scheme, except
that the encryption algorithm takes no input other than the recipient’s public key. Instead, the
encryption algorithm generates a pair (K,C0), where K is a bit string of some specified length, and
C0 is an encryption of K, that is, the decryption algorithm applied to C0 yields K.

One can always use a (possibly bounded-length) public-key encryption scheme for this purpose,
generating a random bit string, and then encrypting it under the recipient’s public key. However,
as we shall see, one can construct a key encapsulation scheme in other, more efficient, ways as well.

Now the details.

3.1 Abstract interface

A key encapsulation mechanism KEM consists of three algorithms.

• A key generation algorithm KEM.KeyGen(), that outputs a public key/secret key pair
(PK,SK). The structure of PK and SK depend on the particular scheme.

• An encryption algorithm KEM.Encrypt(PK, options) that takes as input a public key PK,
along with an optional options argument, and outputs a key/ciphertext pair (K,C0). The
role of options is analogous to that for public-key encryption (see §2.1.6).

• A decryption algorithm KEM.Decrypt(SK, C0) that takes as input a secret key SK and a
ciphertext C0, and outputs a key K.

A key encapsulation mechanism also specifies a positive integer KEM.OutputKeyLen — the
length of the key output by KEM.Encrypt and KEM.Decrypt.

Any key encapsulation mechanism should satisfy a soundness property analogous to the sound-
ness property of a public-key encryption scheme, as described in §2.1.1.

Additionally, we need the following property. The set of all possible outputs of the encryption
algorithm should be a subset of some an easy-to-recognize, prefix-free language.3 The prefix-freeness
property is needed so that we can parse byte strings from left to right, and efficiently “strip off” a
ciphertext. Note that if all ciphertexts have the same length, then the prefix-freeness property is
trivially satisfied.

3.2 Notion of security

We next define security against adaptive chosen ciphertext attack for a key encapsulation mecha-
nism.

We begin by describing the attack scenario.
3A language L is prefix free if for any two x, y ∈ L, x is not a proper prefix of y.

14

First, the key generation algorithm is run, generating the public key and private key for the
cryptosystem. The adversary, of course, obtains the public key, but not the private key.

Second, the adversary makes a series of arbitrary queries to a decryption oracle. Each query
is a ciphertext C0 that is decrypted by the decryption oracle, making use of the private key of
the cryptosystem. The resulting decryption is given to the adversary; moreover, if the decryption
algorithm fails, then this information is given to the adversary, and the attack continues.

Third, the adversary invokes an encryption oracle, supplying an encryption option, if the scheme
supports them. The encryption oracle does the following:

1. Run the encryption algorithm, generating a pair (K∗, C∗0).

2. Generate a random string K̃ of length KEM.OutputKeyLen.

3. Choose b ∈ {0, 1} at random.

4. If b = 0, output (K∗, C∗0); otherwise output (K̃, C∗0).

Fourth, the adversary continues to submit ciphertexts C0 to the decryption oracle, subject only
to the restriction that C0 6= C∗0 .

Just before the adversary terminates, it outputs b̂ ∈ {0, 1}.
That completes the description of the attack scenario.

For an adversary A, the quantities AdvantageKEM(A) and Advantage′KEM(A) are defined in
exactly the same way (in terms of b and b̂) as AdvantagePKE(A) and Advantage′PKE(A) for a public-
key encryption scheme (see §2). Security means that AdvantageKEM(A) is “acceptably” small for
all adversaries A that run in a “reasonable” amount of time.

3.3 Further remarks

One can also define the notion of benign malleability for key encapsulation mechanisms, just as we
did for public-key encryption schemes (§2.3).

Although one could do so, we have chosen not to incorporate the notion of a label in the
definition of a key encapsulation mechanism. The reason is that the only application we have of a
key encapsulation mechanism in this paper is in the construction of a hybrid encryption scheme, and
it is easier to implement labels in the data encapsulation mechanism than in the key encapsulation
mechanism itself.

4 Data encapsulation

A data encapsulation mechanism provides a “digital envelope” that protects the secrecy and in-
tegrity of data using symmetric-key cryptographic techniques; it also may bind the data to a public
label. The definition of security for this primitive that we present here is appropriate for building
hybrid public-key encryption schemes, but may not be appropriate for other applications.

In this section we only describe the abstract interface and security properties that a data encap-
sulation mechanism should satisfy. Later, in §10, we present a fairly traditional and provably secure
implementation of a data encapsulation mechanism. There may, however, be other interesting ways
to implement this primitive.

15

4.1 Abstract interface

A data encapsulation mechanism DEM specifies a key length DEM.KeyLen, along with encryption
and decryption algorithms:

• The encryption algorithm DEM.Encrypt(K,L,M) takes as input a key K, a label L, and and
a message M . It outputs a ciphertext C1. Here, K, L, M , and C1 are byte strings, and L
and M may have arbitrary length, and K is of length DEM.KeyLen.

• The decryption algorithm DEM.Decrypt(K,L,C1) takes as input a key K, a label L, and a
ciphertext C1. It outputs a message M .

We assume that the encryption and decryption algorithms are deterministic, and that the
scheme is (perfectly) sound, in the sense that for all keys K, all labels L, and all messages M ,

DEM.Decrypt(K,L,DEM.Encrypt(K,L,M)) = M.

4.2 Notion of security

We shall need the following security property.
Consider the following attack scenario. The adversary generates two messages (byte strings)

M0,M1 of equal length, and a label L∗. A random key K is generated. A random bit b is chosen, and
Mb is encrypted under key K. The resulting ciphertext C∗1 is given to the adversary. The adversary
then submits a series of requests to a decryption oracle: each such request is a label/ciphertext
pair (L,C1) 6= (L∗, C∗1), and the decryption oracle responds with the decryption of C1 with label
L under key K. The adversary makes a guess b̂ at b. The adversary’s advantage is defined as
|Pr[b̂ = b]− 1/2|. We denote this advantage by AdvantageDEM(A).

Security means that this advantage is acceptably small.

5 Hybrid encryption

We now propose a canonical way to compose a secure key encapsulation mechanism and a secure
data encapsulation mechanism so as to obtain a secure public-key encryption scheme.

Let KEM be a key encapsulation mechanism and let DEM be a data encapsulation mecha-
nism. To compose these two mechanisms, we require that they are compatible, in the sense that
KEM.OutputKeyLen = DEM.KeyLen. So let us assume that KEM and DEM are compatible in
this sense.

We now define a hybrid public-key encryption scheme H-PKE = H-PKEKEM,DEM in terms of
KEM and DEM as follows.

The key generation algorithm, public key, and secret key for H-PKE are the same as that of
KEM.

Let (PK,SK) be a public key/secret key pair.
To encrypt a message M with label L and any encryption options under PK, the encryption

algorithm for H-PKE does the following. First, it runs the encryption algorithm for KEM with the
given options, generating a ciphertext C0 and a key K. Second, it encrypts M with label L under
K using the encryption algorithm for DEM. Third, it outputs the ciphertext C = C0 ‖C1.

To decrypt a ciphertext C with label L under SK, the decryption algorithm for H-PKE does the
following. First, it parses C as C = C0 ‖C1, using the prefix-freeness property of the ciphertexts
associated with KEM. Second, it decrypts C0 under SK using the decryption algorithm of KEM

16

to obtain a key K. Third, it decrypts C1 with label L under K using the decryption algorithm
of DEM, and outputs the resulting message M . Any of these steps may fail, in which case the
decryption algorithm for H-PKE also fails.

It is an easy matter to prove that for any adversary A,

AdvantageH-PKE(A) ≤ Advantage′KEM(A1) +
AdvantageDEM(A2),

where A1 and A2 are adversaries that run in time roughly the same as that of A. Actually, this
estimate assumes that KEM is perfectly sound; however, if the soundness condition may be violated
with some small probability, that probability must be added into this estimate as well.

It follows that if KEM and DEM are secure, then so is H-PKE.

6 Byte string/integer conversions

We simply adopt the functions OS2IP and I2OSP from the IEEE P1363 standard for conversions
between byte (a.k.a., octet) strings and integers.

The function OS2IP(x) takes as input a byte string, and outputs an integer. If x =
xl−1 ‖xl−2 ‖ · · · ‖x0, where each xi is a byte, then

OS2IP(x) =
l−1∑
i=0

xi · 256i.

In this formula, each byte xi is interpreted as a base-256 digit. Note that the left-most byte
represents the most-significant digit.

The function I2OSP is essentially the inverse of OS2IP. The function I2OSP(m, l) takes as
input two non-negative integers m and l, and outputs the unique byte string x of length l such that
OS2IP(x) = m, if such an x exists. Otherwise, the function fails. Note that the function fails if
and only if m ≥ 256l.

7 Pseudo-random byte generator

A pseudo-random byte generator PRBG is a scheme with the following interface. It defines fixed
seed length PRBG.SeedLen and a function PRBG.eval(s, l) that takes as input a byte string s of
length PRBG.SeedLen and an integer l ≥ 0, and produces as output a byte string of length l.

The assumption we make is that for a random seed s, the output is computationally indistin-
guishable from a random byte string of the same length.

One recommended way to implement a PRBG is to simply use a block cipher in counter mode.
An alternative is to use a block cipher in counter mode, but to output the XOR of consecutive

pairs of block cipher outputs. This approach yields a higher level of security when l is very large
(see [Luc00]).

8 Symmetric key encryption

8.1 Abstract interface

A symmetric key encryption scheme SKE specifies a key length SKE.KeyLen, along with encryption
and decryption algorithms:

17

• The encryption algorithm SKE.Encrypt(k,M) takes as input a key (byte string) k of length
SKE.KeyLen and a message M . It outputs a ciphertext c.

• The decryption algorithm SKE.Decrypt(k, c) takes as input a key k of length SKE.KeyLen
and a ciphertext c. It outputs a message M .

We assume that the encryption and decryption algorithms are deterministic, and that the
scheme is (perfectly) sound, in the sense that for all keys K and all messages M ,

SKE.Decrypt(K,SKE.Encrypt(K,M)) = M.

8.2 Notion of security

We shall need the following security property.
Consider the following attack scenario. The adversary generates two messages (byte strings)

M0,M1 of equal length. A random key k is generated. A random bit b is chosen, and Mb is
encrypted under key k. The resulting ciphertext c is given to the adversary. The adversary makes
a guess b̂ at b. The adversary’s advantage is defined as |Pr[b̂ = b]− 1/2|.

For an adversary A that chooses M0,M1 of length bounded by l, we denote this advantage by
AdvantageSKE(A, l).

Security means that the advantage is acceptably small.
Note that one can build a secure symmetric key encryption scheme by using a pseudo-random

byte generator (see §7) to generate a “one time pad,” which is then XORed with the message.
Also, the IEEE P1363a standard specifies other methods based on block ciphers that could be

used as well. The ISO working group should perhaps consider other methods as well.

9 One-time MAC

A one-time message authentication code MAC is a scheme that defines two quantities MAC.KeyLen
and MAC.TagLen, along with a function MAC.eval(k′, T) that takes a key k′ of length MAC.KeyLen
and an arbitrary byte string T as input, and computes as output a byte string tag of length
MAC.TagLen. We shall need the following security property.

Consider the following attack scenario. A byte string T ∗ is chosen by the adversary. A key k′

is chosen at random. The MAC is evaluated at T ∗ with key k′, and the output tag∗ is given to the
adversary. The adversary outputs a list of pairs (T, tag), where T is a byte string with T 6= T ∗ (and
not necessarily of the same length as T ∗), and tag is a byte string of length MAC.TagLen. The
adversary’s advantage is defined to be the probability that for one such pair (T, tag), the MAC on
input T with key k′ is equal to tag.

For an adversary A that chooses T ∗ of length bounded by l1 and at most l3 pairs (T, tag) with
T of length bounded by l2, we denote this advantage by AdvantageMAC(A, l1, l2, l3).

Security means that this advantage should be acceptably small.
There are a number of acceptable one-time MAC schemes.
Any of the schemes specified by the ISO MAC standard should be acceptable. IEEE P1363a

standard also specifies a MAC that should be acceptable.

18

10 DEM1

Given a symmetric encryption scheme SKE (see §8), and a one-time message authentication code
MAC (see §9), here is how one can build a data encapsulation mechanism DEM1 = DEM1SKE,MAC.
We require that DEM1.OutputKeyLen = SKE.KeyLen + MAC.KeyLen.

To encrypt a message M with label L under a key K, we parse K as K = k ‖ k′, where
|k| = SKE.KeyLen and |k′| = MAC.KeyLen. We encrypt M using SKE under key k, obtaining its
encryption c. Then we apply MAC to the byte string string T = c ‖L ‖ I2OSP(8 · |L|, 8) using k′,
obtaining tag. The entire ciphertext is C1 = c ‖ tag.

To decrypt a a ciphertext C1 with respect to a given label L, we first parse C1 as c ‖ tag, where
|tag| = MAC.TagLen. This step may fail, of course, if C1 is too short. We then parse K as
K = k ‖ k′, where |k| = SKE.KeyLen and |k′| = MAC.KeyLen. Then we apply the MAC with key
k′ to the byte string string T = c ‖L ‖ I2OSP(8 · |L|, 8), and test whether the resulting tag equals
the given tag. If not, we report failure. Otherwise, decrypt c under k, obtaining M . It is possible
that SKE.Decrypt fails. Finally, we output M .

It is straightforward to show that if the underlying components are secure, then the resulting
data encapsulation mechanism DEM1 is secure. Moreover, the reduction is quite “tight” quantita-
tively.

Specifically, we have the following:

AdvantageDEM1(A) ≤ AdvantageSKE(A1, l1) +
AdvantageMAC(A2, l2, l3, qD).

Here,

• A1, A2 are adversaries that run in about the same time as A,

• l1 is a bound on the length of the target message,

• l2 is a bound on the length of the string T ∗ corresponding to the target ciphertext,

• l3 is a bound on the length of the strings T corresponding to ciphertexts submitted to the
decryption oracle,

• qD is a bound on the number of decryption oracle queries,

• AdvantageSKE is as defined in §8, and

• AdvantageMAC is as defined in §9.

The proof of this is an easy exercise.

Note that we pass an encoding of the length of L to MAC. This is essential to ensure non-
malleability (see §15.6.3). The particular mechanism used to encode the length was chosen so as
to be compatible with the IEEE P1363a version of ECIES. In particular, we multiply |L| by 8 so
as to encode the length of L in bits, rather than bytes, since the IEEE P1363a version of ECIES
allows (in theory, but not really in practice) messages and labels that are bit strings rather than
byte strings.

19

We continue here the discussion started in §2.2.3. In our hybrid construction, there is a single
tag that is checked at the end of the ciphertext stream. This is the simplest approach, and one
that is already seen in practice (as in ECIES). In the ACE-Encrypt submission, there was actually
a tag value inserted every kilobyte or so in the ciphertext stream. The reason for this was so
that the decryption algorithm would fail as soon as it detected a “bad” ciphertext stream. This
would greatly enhance the ability of an application to process the output stream of the decryption
algorithm in a stream-like fashion — it would not have to wait until the end of the output stream
to detect a “bad” stream. It would not be too difficult to specify such a scheme. This point should
perhaps be discussed by the working group.

11 Hash functions

We shall assume the availability of a cryptographic hash function. Let Hash denote the scheme.
Then Hash.OutputLen denotes the length of the hash function output, and Hash.eval denotes
the hash function itself, which maps arbitrary length byte strings to byte strings of length
Hash.OutputLen.

The invocation of Hash.eval may fail if the input length exceeds some (very large)
implementation-defined bound.

In the security analysis, we shall make the following types of assumptions about Hash:

• It is collision resistant, i.e., it is hard to find two inputs x, y with x 6= y such that
Hash.eval(x) = Hash.eval(y).

• It is second-preimage collision resistant, i.e., for a given set S of byte strings together with
a prescribed probability distribution on S, if x ∈ S is chosen at random, then it is hard to
find y ∈ S with x 6= y such that Hash.eval(x) = Hash.eval(y). The set S and the probability
distribution depend on the application.

• It is a good entropy-smoothing hash function, i.e., for a given set S of byte strings together
with a prescribed probability distribution on S, then if x ∈ S is chosen at random, the
output Hash.eval(x) is computationally indistinguishable from a random byte string of length
Hash.OutputLen. Of course, for this assumption to be reasonable, it must be the case that
the entropy of S is sufficiently high.

• We might also choose to view it as a random oracle.

Recommended choices for Hash are SHA-1 and RIPEMD-160.

12 Key derivation functions

It is convenient to have a key derivation function KDF(x, l) that takes as input a byte string x and
an integer l ≥ 0, and outputs a byte string of length l. The string x is of arbitrary length.

The invocation of KDF may fail if the input or output lengths exceed some (very large)
implementation-defined bound.

In the security analysis, we will often model KDF as a random oracle.
A specific security property that is sometimes desirable for a key derivation function is that it be

a good entropy smoothing function. That is, the input x is chosen at random from a distribution of
byte strings with high entropy, then the output should be computationally indistinguishable from
a random byte string of the same length.

20

Sometimes the notion of a key derivation function is called a mask generating function (MGF);
there seems to be no difference in meaning between the two terms.

12.1 KDF1

This function is parameterized by a hash function Hash (see 11), and is defined as follows. On
input (x, l), the output is the first l bytes of

Hash.eval(x ‖ I2OSP(0, 4)) ‖ · · · ‖Hash.eval(x ‖ I2OSP(k − 1, 4)),

where k = dl/Hash.OutputLene.
This function is the same as the function called MGF1 in IEEE P1363.

12.2 KDF2

This function KDF2 is the same as KDF1, except that the counter runs from 1 to k, rather than
from 0 to k − 1.

This function is the same as the function called KDF2 in IEEE P1363a, except that the latter
allows for an output that is a bit string, rather than a byte string, and also allows for an extra key
derivation parameter that we do not need here.

12.3 Security critique of KDF1 and KDF2

Of course, if one chooses to model KDF1 (or KDF2) as a random oracle in a security analysis, one
is free to do so. There is really not much of a rational basis to argue either for or against such a
choice.

However, we do not recommend the use of these functions in applications where one requires
the entropy smoothing property discussed above. The only point in this document where this is
significant is in the analysis of the variant of the ACE-Encrypt scheme discussed in §17, whose
security analysis is not based on the random oracle heuristic.

Our reasoning is as follows.
If we were to believe that these were good entropy smoothing functions, this would suggest that

the function Fx(y) defined by
Fx(y) = Hash.eval(x ‖ y)

should be a “good” pseudo-random function with key x and input y. However, standard hash
functions, like SHA-1, are built using a particular block cipher Pa(b) — with key a and input block
b — chained in a standard way. Indeed, suppose that Hash is SHA-1 with initial chaining value IV
and that x is 512-bits long. So in this case, Pa(b) is a block cipher with a 512-bit key size, and a
160-bit block size. Then

Fx(y) = Py(z)⊕ z, where, z = Px(IV)⊕ IV.

Assuming that Pa(b) is a good block cipher, and that x is suitably random, then the value z
above should be pseudo-random. Therefore, the security of Fx(y) as a pseudo-random function is
equivalent to the security of the function Gz(y) defined by

Gz(y) = Py(z)⊕ z

21

as a pseudo-random function with key z and input y. Is Gz(y) a good pseudo-random function?
This is not clear. But certainly, this is a quite unorthodox construction that does not appear to be
based on any well-worn or otherwise sound principles.

Because of this perceived potential weakness, we propose two further key derivation functions,
KDF3 and KDF4. Either of these can be used in a situation where a random oracle is required.
However, these functions seem more reasonable in applications where the entropy smoothing prop-
erty is required.

12.4 KDF3

This function is parameterized by a hash function Hash and a padding amount pamt ≥ 4, and is
defined as follows. On input (x, l), the output is the first l bytes of

Hash.eval(I2OSP(0, pamt) ‖x) ‖ · · · ‖Hash.eval(I2OSP(k − 1, pamt) ‖x),

where k = dl/Hash.OutputLene.
Recommended choices for the hash function are SHA-1 or RIPEMD-160. Recommended choices

for pamt are either 4, or the block size of the underlying hash (64 in the case of SHA-1 or RIPEMD-
160).

Based upon the way standard hash functions like SHA-1 or RIPEMD-160 are constructed, it
seems like a reasonable assumption is that they are good pseudo-random functions, where we view
the text input as the key of the function, and we view the initial vector IV as the input to the
function. Typical implementations of these hash functions often do not provide an interface that
allows the programmer to choose the IV. However, we get the equivalent effect by setting pamt to
the block size of the underlying hash.

By setting pamt to the block size of the underlying hash function, we are able to give a reasonable
justification for the security of KDF3. If we set pamt to another value, such as 4, this justification
is no longer valid. Nevertheless, setting pamt = 4 does not seem like a completely unreasonable
choice, and certainly the arguments we made above against KDF1 and KDF2 no longer apply.

12.5 KDF4

This function is parameterized by a hash function Hash and a pseudo-random byte generator PRBG
(see §7). It is required that Hash.OutputLen = PRBG.SeedLen.

On input (x, l), this function outputs

PRBG.eval(Hash.eval(x), l).

For the hash function, one can use a standard function like SHA-1 or RIPEMD-160. If
PRBG.SeedLen is less than 20, then one can simply truncate the output of the hash function.

This function will be a good entropy smoothing function, provided Hash is a good entropy
smoothing function, and provided PRBG is secure as a pseudo-random byte generator.

13 Abstract groups

We describe a group as an abstract data type. As a matter of convention, we shall always use
additive notation for a group. Also, group elements will be typeset in boldface, and 0 denotes the
identity element of the group.

A fully specified group Group is a tuple (H,G,g, µ, ν, E ,D, E ′,D′), where:

22

• H is a finite abelian group in which all group computations are actually performed. Note
that this group need not be cyclic.

• G is a cyclic subgroup of H. This is where the real “action” will normally take place in a
cryptographic scheme.

• g is a generator for G.

• µ is the order (size) of G, and ν is the index of G in H, i.e., ν = |H|/µ.

We shall require that µ is prime. For some cryptographic schemes, we make the stronger
requirement that gcd(µ, ν) = 1.

• E(a, format) is an “encoding” function that maps a group element a ∈ H to a byte string.

The second argument format may be used to choose from one of several possible formats for
the encoding of a group element.

We do not strongly recommend the use of multiple encoding formats, but it is in some cases
an already established practice which we need to properly model here.

We require that the set of all outputs of E is a subset of some easy-to-recognize, prefix-free
language.

• D(x) is a function that fails if x is not a proper encoding of an element of H; otherwise, it
returns the group element a ∈ H such that E(a) = x.

If a group supports multiple encoding formats, we require that the format value used to
encode a group element is evident from the encoding itself.

• E ′(a) is a “partial encoding” function that maps a group element a ∈ H to a byte string.

We require that the set of all outputs of E ′ is a subset of some easy-to-recognize, prefix-free
language.

• D′(x) is a function that either fails if x is not a proper partial encoding of an element of H;
otherwise, it returns the set containing all group elements a ∈ H such that E ′(a) = x. We
will assume that the size of this set is bounded by a small constant.

All of the above algorithms should have efficient implementations. The function D′ will never be
used by any of the schemes, but the existence of this function is necessary to analyze their security.

We of course assume that arithmetic in H can be carried out efficiently.
We also assume that we can efficiently test if an element of H lies in the subgroup G. If all

elements in H of order µ lie in G, then we can test if a ∈ G by testing if µ · a = 0. This test is
therefore applicable of H is itself cyclic, or if gcd(µ, ν) = 1. For specific groups, there may be more
efficient tests of subgroup membership.

This abstraction is meant to be flexible enough to model two important classes of groups:
subgroups of Z∗p, and subgroups of elliptic curves.

13.1 Subgroups of Z∗p

Let p be a prime, and consider the multiplicative group of units modulo p, denoted Z∗p. Let H
denote this group. Let G denote any prime-order subgroup of Z∗p. Set µ = |G| and ν = (p− 1)/µ.
Because H is itself cyclic, it follows that G contains all elements of H whose order divides µ, even

23

if gcd(µ, ν) 6= 1. The encoding map E can be implemented using the function I2OSP, where all
group elements are encoded as byte strings of length dlog256 pe. The map D can be implemented
using OS2IP. The function E ′ is the same as E , and D′ is the same as D.

Note that one can also work with subgroups of arbitrary finite fields, as is done in IEEE P1363.

13.2 Subgroups of Elliptic Curves

Let E be an elliptic curve defined over a finite field Fq. Let H denote this group. Note that H
is not in general cyclic. Let G denote a prime-order subgroup, and let µ be its order, and ν be
its index in H. The encoding/decoding maps E and D can be implemented using the techniques
described in IEEE P1363. Note that these encoding techniques allow for a variety of formats:
uncompressed, compressed, and hybrid. The partial encoding map E ′ outputs a fixed length byte
string encoding of the x-coordinate of the point, provided the point is not the “point at infinity”;
otherwise, it outputs, say, the all-zero byte string of the same fixed length. The partial decoding
map D′ converts the given by string back into an element of Fq, and then solves a polynomial
equation to find the set of possible y-coordinates (there are at most two).

14 Intractability assumptions related to groups

Let
Group = (H,G,g, µ, ν, E ,D, E ′,D′)

as in §13.

14.1 The Computational Diffie-Hellman Problem

The Computational Diffie-Hellman (CDH) problem for this group is as follows. On input (xg, yg),
where x, y ∈ {0, . . . , µ− 1}, compute xy · g. We assume the inputs are random, i.e., that x and y
are randomly chosen from the set {0, . . . , µ− 1}.

The CDH assumption is the assumption that this problem is intractable.
Note that in general, it is not feasible to even identify a correct solution to the CDH problem

(this is the Decisional Diffie-Hellman problem — see below). In analyzing cryptographic systems,
the types of algorithms for solving the CDH that most naturally arise are algorithms that produce
a list of candidate solutions to a given instance of the CDH problem. For any algorithm A for
the CDH problem that produces a list of length at most l, we let AdvantageCDH(A, l) denote the
probability that this list contains a correct solution to the input problem instance.

Note that in [Sho97], it is shown how to take an algorithm A with ε = AdvantageCDH(A, l), and
transform this into an algorithm A′ that produces a single output that for all inputs is correct with
probability 1− δ. The running time of A′ is roughly equal to O(ε−1 log(1/δ)) times that of A, plus
the time to perform

O(ε−1l log(1/δ) logµ+ (logµ)2)

additional group operations.
It is well known that the CDH problem is “random self reducible.”

14.2 The Decisional Diffie-Hellman Problem

The Decisional Diffie-Hellman (DDH) problem is as follows.
We define two distributions.

24

Distribution R consists of triples (xg, yg, zg), where x, y, z are chosen at random from
{0, . . . , µ− 1}. Let XR denote a random variable sampled from this distribution.

Distribution D consists of triples (xg, yg, zg), where x, y are chosen at random from {0, . . . , µ−
1}, and z = xy mod µ. Let XD denote a random variable sampled from this distribution.

The problem is to distinguish these two distributions.
For an algorithm A that outputs either 0 or 1, we define

AdvantageDDH(A) = |Pr[A(XR) = 1]− Pr[A(XD) = 1]|.

The DDH assumption is that this advantage is negligible for all efficient algorithms.

The DDH problem is “random self-reducible” (see [Sta96] and [NR97]). See [Bon98] and [NR97]
for further discussion of the DDH.

14.3 The Gap-CDH Problem

The submitters of the PSEC scheme have proposed a new computational assumption, called the
gap-CDH assumption. This is the assumption that it is hard to solve the CDH problem, even in
the presence of an oracle for solving the DDH problem.

This assumption is not entirely unreasonable, as it it is easily seen that there is no “black box”
reduction from the CDH problem to the DDH problem. This can easily be proven in the “black
box group” or “generic group” model of [Sho97].

For any algorithm A that makes at most q queries to a DDH oracle, we define
AdvantageGapCDH(A, q) to the the probability that A solves a random instance of the CDH problem.

See [OP01] for more details about this assumption.

15 ECIES-KEM

We present here an encryption scheme that is a slight variant of ECIES, and also bears many
similarities to PSEC-3. What we describe is actually a key encapsulation mechanism, which we
call ECIES-KEM.

We have to describe the key generation, encryption, and decryption algorithms.

15.1 Key Generation

A fully specified group
Group = (H,G,g, µ, ν, E ,D, E ′,D′)

is chosen.
Two additional parameters need to be chosen, which we call CofactorMode and CheckMode.

Each of these parameters take 0/1 values. These modes are used to deal with security problems
that can arise when ν > 1. Here are the rules which should be obeyed in setting these modes.

• If ν = 1, then both of these modes should be 0.

• If ν > 1, both modes can be set to 0, provided gcd(µ, ν) = 1 and ν is very small. Note that
security in this case degrades by a factor of ν.

• If ν > 1, CofactorMode may be set to 1 provided gcd(µ, ν) = 1.

25

• At most one of CofactorMode and CheckMode should be set to 1.

In addition to Group, a key derivation function KDF needs to be selected.
Next, a number x ∈ {1, . . . , µ − 1} is chosen at random, and the group element h = xg is

computed.
The public key consists of encodings of Group and h, along with an indication of the choice of

KDF. The precise format of this encoding is not specified here.
The private key consists of the public key, together with the number x and the values

CofactorMode and CheckMode.

15.2 Encryption

Recall that for a key encapsulation mechanism, the goal is to produce a ciphertext C0 that is an
encryption of a key K, where K is a byte string of length KeyLen = ECIES-KEM.OutputKeyLen.

In this scheme, the encryption algorithm may take an optional argument format that specifies
the format to be used for encoding group elements. The algorithm runs as follows.

1. Choose r ∈ {1, . . . , µ− 1} at random.

2. Compute g̃ = rg and h̃ = rh.

3. Output the ciphertext
C0 = E(g̃, format),

and the key
K = KDF(C0 ‖ E ′(h̃),KeyLen).

15.3 Decryption

The decryption algorithm on input C0 runs as follows.

1. Parse C0 as the encoding of a group element g̃ ∈ H. This step fails is C0 is not a proper
encoding of an element of H.

2. If CheckMode = 1, test if g̃ ∈ G; if not, then fail.

3. If CofactorMode = 1, set ĝ = νg̃ and x̂ = ν−1x mod µ; otherwise, set ĝ = g̃ and x̂ = x.

4. Compute h̃ = x̂ĝ.

5. If h̃ = 0, then fail.

6. Output the key
K = KDF(C0 ‖ E ′(h̃),KeyLen).

15.4 Some remarks

Using CofactorMode = 1 may yield a performance benefit if ν is fairly small. Note that in this
mode, an implementation could simply pre-compute and store the value x̂, instead of the value x.

26

15.5 Security considerations

This scheme can be proved secure against adaptive chosen ciphertext attack in the random oracle
model under the gap-CDH assumption (see §14.3). Here, we model KDF as a random oracle.

Indeed, it is straightforward to show that

AdvantageECIES-KEM(A) = O(AdvantageGapCDH(A′, qKDF))

where

• A′ is an algorithm with access to a DDH oracle whose running time is about the same as that
of A,

• qKDF is a bound on the number of random oracle queries, and

• AdvantageGapCDH is as defined in §14.3.

This estimate assumes that either CofactorMode = 1 or CheckMode = 1; otherwise, the security
bound is

AdvantageECIES-KEM(A) = O(ν ·AdvantageGapCDH(A′, qKDF)).

It can also be proved secure under an appropriate “oracle hashing” assumption, as put forward
in the DHAES paper [ABR98].

15.6 Compatibility with the IEEE P1363a version of ECIES

The key encapsulation mechanism ECIES-KEM, when combined with the data encapsulation mech-
anism DEM1 described in §10, yields a hybrid encryption scheme that is compatible with the IEEE
P1363a version of ECIES, provided the choice of group, KDF, MAC, SKE is restricted to be
consistent with the IEEE P1363a version.

To remain compatible with IEEE P1363a, we have restricted the group elements g̃, h, and in
particular h̃ to not be the identity. In particular, this means that the partial encoding function E ′
is never evaluated at 0, which is consistent with IEEE P1363a.

Note that we have made a number of restrictions on the scheme that are not made in the IEEE
P1363a version:

1. Key derivation using C0: we insist that C0 be passed to KDF, whereas this is optional in
IEEE P1363a.

2. No other key derivation parameters: we do not allow any key derivation parameters,
whereas IEEE P1363a allows an arbitrary byte string as a key derivation parameter.

3. Proper label formatting: we insist that the input to the MAC include the length of the
label L, whereas this is optional in IEEE P1363a.

4. No stream cipher option: we insist on performing data encapsulation using the DEM1
scheme described in §10, whereas IEEE P1363a allows an alternative mechanism in which
KDF is used directly as a stream cipher.

5. No use of “old” cofactor mode: we insist on using the newer, “compatible” cofactor
mode, whereas IEEE P1363a also allows the use of an “old” cofactor mode.

27

6. Messages are byte strings: we insist that messages are byte strings, whereas IEEE P1363a
allows these to be bit strings.

7. Static selection of system parameters: we insist that all system parameters, including
the choice of KDF, SKE, and MAC, be fixed at key generation time, whereas IEEE P1363a
allows these to vary dynamically over the lifetime of the public key.

8. gcd(µ, ν) = 1 if both CofactorMode and CheckMode are zero: we insist on this, whereas
IEEE P1363a does not.

Each of these restrictions is discussed in turn below. For each restriction, we discuss the rationale
for the restriction, and also discuss the the option of easing the restriction so as to achieve greater
compatibility with IEEE P1363a. Although in each case, we provide particular arguments for
making the recommended restriction, one general argument that applies in all cases is the appeal
for simplicity: the IEEE P1363a version of ECIES provides a fairly bewildering array of options,
and it is not clear if all of these options are either desirable or useful.

15.6.1 Key derivation using C0

We insist that C0 be passed to KDF, whereas this is optional in IEEE P1363a.
We offer two reasons for this requirement.

First, without this requirement, the scheme does not achieve security against adaptive chosen
ciphertext attack.

There are a number of simple examples that illustrate why ECIES does not achieve this level
of security. In particular, it is malleable. If the group is an elliptic curve, and the partial encoding
function E ′ encodes only the x-coordinate of a point, then the derived key K is the same if one
takes a given ciphertext C0 encoding a point g̃ and replaces it with an encoding of −g̃. A similar
problem arises if ν > 1 and CofactorMode = 1 — in this case, one could add to g̃ a non-zero
element whose order divides ν, and one obtains yet again a different ciphertext that decrypts to
the same thing. Essentially the same problem arises again if the group supports multiple encoding
formats.

Of course, this does not represent a catastrophic failure of the system; it simply illustrates that
the definition of adaptive chosen ciphertext security is not met in a strict sense. Indeed, the scheme
is still secure in the sense of being only benignly malleable (see §2.3), which may be acceptable in
many applications. Note, however, that if ν > 1 and both CofactorMode and CheckMode are zero,
then the scheme does not even achieve our weaker notion of benign malleability: it still does not
appear to be patently insecure, but it is not clear what useful abstract security properties one can
establish for the scheme.

The second reason for our requirement is that including C0 as an input to KDF yields a much
tighter reduction from the gap-CDH problem. If qD is the number of decryption requests, and qKDF

is the number of random oracle requests, then without the hash of C0, the number of DDH oracle
calls that must be made is qKDF ·qD, whereas with the hash of C0, this drops to qKDF. This security
advantage is amplified even further in the multi-user/multi-message setting (see [BBM00]).

The latest draft of IEEE P1363a allows for an optional “DHAES mode,” which (among other
things) passes C0 to KDF in just the same way we have done here. Thus, by making this require-
ment, the ISO standard would conform to the IEEE P1363a standard. Instead of just allowing it,
we strongly recommended that the ISO standard requires it, so as to achieve full non-malleability,
and perhaps more importantly, to obtain a much tighter security reduction, especially since the cost

28

of hashing C0 is negligible compared to the cost of the public-key operations. However, it would
also be acceptable if the ISO standard allowed a variation of the scheme in which C0 is not hashed,
in order to achieve a greater degree of consistency between IEEE P1363a and the ISO standard.

15.6.2 No other key derivation parameters

We do not allow any key derivation parameters, whereas IEEE P1363a allows an arbitrary byte
string as a key derivation parameter.

The notion of a key derivation parameter does not fit well with the abstract interface for
encryption proposed in this document, and since it is a quite unusual functionality, it seems likely
that this is a feature of the IEEE P1363a version of ECIES that will quickly atrophy. Indeed, none
of the other encryption scheme in IEEE P1363 support an analogous feature. Nevertheless, if this
feature is desired, it could be included for backward compatibility’s sake.

15.6.3 Proper label formatting

We insist that the input to the MAC include the length of the label L, whereas this is optional in
IEEE P1363a.

In an early draft of the IEEE P1363a version of ECIES, the MAC is evaluated (in our notation)
on the string c ‖L, instead of on the string c ‖L ‖ I2OSP(8 · |L|, 8), as we have proposed in §10.

The reason we insist on this adding this length information as input to MAC, is that without
it, the scheme may be malleable.

The problem is that without encoding the length of L in MAC input, one can potentially
choose any pair of strings (c′, L′) such that c′ ‖L′ = c ‖L, and then the decryption oracle in a
chosen ciphertext attack when supplied with the same ciphertext but with label L′ instead of L
may leak interesting information about the target message.

This problem was identified and brought to the attention to the IEEE P1363 working group by
David Hopwood, as well as through an earlier version of this document. The latest version of the
IEEE P1363a draft supports an optional “DHAES mode,” which (among other things) provides
the same “fix” that we propose here. For compatibility reasons, one might allow variations without
the fix, but then require a restriction, such as the restriction that the label must be empty, or that
all messages are of a length that is fixed for the lifetime of the public key (which would also be
consistent with the recommendation below in §15.6.4).

15.6.4 No stream cipher option

We insist on performing data encapsulation using the DEM1 scheme described in §10, whereas
IEEE P1363a allows an alternative mechanism in which KDF is used directly as a stream cipher.

The reason we insist on this restriction, is that without it, the scheme is malleable in a very
strong sense.

We first describe the “stream cipher option,” and then we describe the attack.
Suppose the input to the encryption algorithm is a message M of length l, and a label L. After

the shared Diffie-Hellman key h̃ is produced, a key derivation function is applied to obtain a string
k ‖ k′, where k has length l and k′ has length MAC.KeyLen. The ciphertext is

C = (C0, c,MAC.eval(k′, c ‖L)),

where c = M ⊕ k and C0 is the encoding of the ephemeral Diffie-Hellman key g̃.

29

Now we describe the attack. Suppose

C = (C0, c, tag)

is the encryption of a message M with label L, such that

• the length l of M is equal to l′ + MAC.KeyLen for l′ > 0,

• c = c1 ‖ c2, where |c1| = l′ and |c2| = MAC.KeyLen

• M = M1 ‖M2, where |M1| = l′ and |M2| = MAC.KeyLen, and

• M2 is known to the attacker.

Then for any byte string ∆ of length l′, and any label L̃, the ciphertext

C̃ = (C0, c̃,MAC.eval(k̃, c̃ ‖ L̃)),

where
c̃ = c1 ⊕∆ and k̃ = c2 ⊕M2,

is a valid encryption of M1 ⊕∆ with label L̃.
Thus, the scheme is trivially malleable, in a very strong way: we can transform the encryption

of M1 ‖M2 with label L into an encryption of M1 ⊕∆ with label L̃, for any ∆ and any L̃.
This problem could easily have been avoided if the output of the key derivation function was

parsed as k′ ‖ k instead of k ‖ k′. Indeed, if this were done, the security of the data encapsulation
method could be proven secure under standard assumptions.

Because of this rather serious flaw in the design of ECIES, this mode of data encapsulation was
not included in our proposal here, and it is strongly recommended that the ISO version of ECIES
not allow this mode of data encapsulation.

The only possible circumstances under which the stream cipher option would be acceptable as
an option would be if the message length were fixed for the lifetime of a public key.

The current IEEE P1363a draft document recommends using the stream cipher option only in
applications where the message is short, such as key transport, but the reasons given are efficiency
(decryption cannot be performed in a single pass) and the fact that the recommended instantiations
of KDF have not traditionally been used as stream ciphers, and so there may be unforeseen security
problems in their use as such. However, no recommendation is made in IEEE P1363a that the
length of the message should be fixed for all ciphertexts. Thus, this appears to be an authentic,
and perhaps serious, security hole in ECIES. The same problem appears in the versions of ECIES
submitted to ISO, submitted to Crypto-Nessie, and in the draft of ANSI X9.63.4

15.6.5 No use of “old” cofactor mode

We insist on using the newer, “compatible” cofactor mode, whereas IEEE P1363a also allows the
use of an “old” cofactor mode.

The cofactor mode described in this document corresponds to what is called “compatible”
cofactor mode in the IEEE P1363a version of ECIES. That version of ECIES also allows another
mode, which we shall call here “old” cofactor mode. “Old” cofactor mode appeared in the ECIES
submission to ISO, but “compatible” cofactor mode did not. Both of these modes deal quite

4This refers to the draft of January 8, 1999.

30

effectively with the potential problem of small subgroup attacks when ν 6= 1. The advantage of
“compatible” cofactor mode over “old” cofactor mode is that the encryption algorithm is oblivious
to it in the former, while it needs to be aware of it in the latter. “Old” cofactor mode appears to
offer no advantages at all, and so we recommend not including it in the ISO standard. However,
we could include it for compatibility reasons, without any great harm.

Note that “compatible” cofactor mode is not “just” an alternative implementation of the de-
cryption algorithm: the behavior of the decryption algorithm is different when using this mode
than it is when not, as some ciphertexts that would be rejected without this mode, will not be
rejected with this mode.

15.6.6 Messages are byte strings

We insist that messages are byte strings, whereas IEEE P1363a allows these to be bit strings.
See §2.1.8 for a discussion of why we work only with byte strings. It is mentioned there that

the IEEE P1363a version of ECIES allows bit strings, but even that is not entirely true, since the
underlying symmetric-key encryption schemes that it currently allows do not support bit strings.
The only exception to this is when the “stream cipher option” discussed in §15.6.4 is used, but as
we have already argued, this option should anyway not be allowed in the ISO standard.

15.6.7 Static selection of system parameters

We insist that all system parameters, including the choice of KDF, SKE, and MAC be fixed at
key generation time, whereas IEEE P1363a allows these to vary dynamically over the lifetime of
the public key. Although the latter is not recommended in IEEE P1363a, due to possible security
problems that may arise from “unintended interactions” of different options, it is nevertheless
allowed.

It is the opinion of this author that allowing such flexibility is entirely unacceptable: all hope
of a meaningful security analysis vanishes if one allows for this, and there may indeed be real harm
that could come from “unintended interactions.” This proposal recommends with the strongest
possible urgency that the ISO standard should require all such options to be fixed at key generation
time. In addition, all scheme options discussed above, such as not including C0 in the key derivation
function, allowing additional key derivation parameters, cofactor mode, check mode, etc., should
be determined at key generation time and fixed for the lifetime of public key.

15.6.8 gcd(µ, ν) = 1 if both CofactorMode and CheckMode are zero

We insist on this, whereas IEEE P1363a does not.
The reason is that without this restriction, it does not seem possible to reason about the security

of the scheme, whereas with this restriction, it is possible.
Without going into all the details, we just note that if gcd(µ, ν) = 1, then one can decompose H

as the direct sum of G and the subgroup G′ ⊂ H consisting of all elements of H whose order divides
ν. This decomposition is effective, in the sense that given a ∈ H, one can efficiently compute a1 ∈ G
and a2 ∈ G′ such that a = a1 + a2. The existence of an effective decomposition such as this is
critical to the proof of security.

Making this requirement most likely will have little practical impact, since it is very unusual to
have gcd(µ, ν) 6= 1.

31

15.7 Compatibility with the submitted version of ECIES

There are a number of differences between the IEEE P1363a version of ECIES and the version of
ECIES that was submitted to the ISO.

First, and most prominently, the IEEE P1363a version allows subgroups of finite fields as groups
in addition to just elliptic curve groups, as in the submitted version.

Second, the IEEE P1363a version allows for a data encapsulation mechanism of the type de-
scribed in §10 and recommended here, in addition to the “stream cipher option” (see §15.6.4) as
in the submitted version. Note that the version of ECIES submitted to Crypto-Nessie allows for
both modes of operations (although not with the same set of symmetric-key encryption schemes).

Third, the IEEE P1363a version allows for a “compatible” cofactor mode, in addition to the
“old” cofactor mode, as in the submitted version (see §15.6.5).

Fourth, the IEEE P1363a version of ECIES provides a “DHAES option,” which when used,
passes C0 to KDF (see §15.6.1) and the length of L to MAC (see §15.6.3).

In preparing this document, based on discussions with ISO working group members, priority
was given to consistency with the IEEE P1363a version, rather than to the submitted version.

16 PSEC-KEM

We present here a variant of PSEC-2. This is a key encapsulation scheme, which we call
PSEC-KEM, that can be combined with the general hybrid method in §5 to get a full public-
key encryption scheme. While the scheme we present here differs in numerous details from the
original PSEC-2, we believe it is similar in spirit to the PSEC-2 submission, preserves the main
idea of [FO99] on which it is based, and provides very nearly the same security/efficiency trade-off.

16.1 Key Generation

A fully specified group
Group = (H,G,g, µ, ν, E ,D, E ′,D′).

Additionally, a key derivation function KDF (see §12) should be selected, along with a positive
integer SeedLen.

Next, a number x ∈ {0, . . . , µ − 1} is chosen at random, and the group element h = xg is
computed.

The public key consists of encodings of Group and h, along with an indication of the choice of
KDF and the value SeedLen. The precise format of this encoding is not specified here.

The private key consists of the public key together with x.

16.2 Encryption

Recall that for a key encapsulation mechanism, the goal is to produce a ciphertext C0 that is an
encryption of a key K, where K is a byte string of length KeyLen = PSEC-KEM.OutputKeyLen.

Let I0 = I2OSP(0, 4) and I1 = I2OSP(1, 4).
The encryption algorithm takes an optional argument format that specifies the format to be

used to encode group elements, and runs as follows.

1. Choose a random byte string s of length SeedLen.

32

2. Compute
t = KDF(I0 ‖ s, dlog256 µe+ 16 + KeyLen),

a byte string of length dlog256 µe+ 16 + KeyLen.

3. Parse t as t = u ‖K, where |u| = dlog256 µe+ 16 and |K| = KeyLen.

4. Compute r = OS2IP(u) mod µ.

5. Compute g̃ = rg and h̃ = rh.

6. Set EG = E(g̃, format) and PEH = E ′(h̃).

7. Compute
v = s⊕KDF(I1 ‖EG ‖PEH,SeedLen).

8. Output the key K and the ciphertext C0 = EG ‖ v.

16.3 Decryption

The decryption algorithm takes the secret key as well as a ciphertext C0 as input. It runs as follows.

1. Parse C0 as C0 = EG ‖ v, where EG is an encoding a group element g̃, and v is a byte string
of length SeedLen. This step may, of course, fail.

2. Compute h̃ = xg̃.

3. Set PEH = E ′(h̃).

4. Compute
s = v ⊕KDF(I1 ‖EG ‖PEH,SeedLen).

5. Compute
t = KDF(I0 ‖ s, dlog256 µe+ 16 + KeyLen),

a byte string of length dlog256 µe+ 16 + KeyLen.

6. Parse t as t = u ‖K, where |u| = dlog256 µe+ 16 and |K| = KeyLen.

7. Compute r = OS2IP(u) mod µ.

8. Compute ḡ = rg.

9. Test if ḡ = g̃; if not, then fail.

10. Output the key K.

16.4 Some remarks

Note that in this scheme, we do not have to make an additional check to ensure that g̃ lies in G
during the decryption process. This is already taken care of by the test in step 9 of the decryption
algorithm.

Also note that unlike ECIES, a value of 0 for h̃ is perfectly legal, and therefore, the function E ′
must be well defined at 0. It was felt that making the restriction that h̃ 6= 0 would only complicate
the scheme, with no tangible benefit.

33

16.5 Changes from PSEC-2

There are a number of substantial differences between PSEC-KEM and the PSEC-2.
First and foremost is the fact that the above scheme is just a key encapsulation mechanism. As

we discussed in §5, using this we can build a hybrid scheme.
The PSEC-2 submission proposed a different kind of hybrid construction. We would recommend

the hybrid construction here above the hybrid construction in the PSEC-2 for three reasons.

1. One of the goals of this document is to consolidate the various submissions, taking the best
ideas from all of them, and obtaining a small set of schemes, each of which offers something
unique. To that end, it seems like a good idea to use the same hybrid construction for all
schemes.

2. The hybrid construction proposed here has a distinct advantage over the hybrid construction
proposed in PSEC-2. Namely, it facilitates the implementation of the encryption and decryp-
tion algorithms as filters (see §2.1.3). For the original PSEC-2 construction, this does not
seem possible.

3. The hybrid construction proposed here does not rely on random oracles, whereas that in
PSEC-2 does. It is easy enough to build a hybrid scheme without random oracles, assuming
the underlying key encapsulation mechanism is secure, so it seems worthwhile to do so. In
particular, we want to be able to include schemes, like ACE-KEM, that do not use random
oracles in their security analysis.

The only disadvantages of our proposed hybrid construction are that the ciphertexts are slightly
longer (an additional MAC tag is required), and additional code is required for its implementation
(the MAC code). We feel that these disadvantages are outweighed by the advantages of conformity
with the other schemes, and of facilitating “streaming.” This, of course, may be a point of discussion
by the working group.

There are some other differences as well. In our scheme, the value v (in our notation) is
computed by masking the seed s with a cryptographic hash

KDF(I1 ‖EG ‖PEH,SeedLen),

whereas in PSEC-2, s is masked directly with PEH — no hash at all. Our scheme thus has
potentially more compact ciphertexts than PSEC-2. Also, by including EG in the hash, we get a a
much more efficient security reduction in the multi-user/multi-message model (see [BBM00]), and
we also deal properly with the multiple group encoding formats.

A serious criticism of the PSEC-2 scheme as submitted is that there is no detailed proof of the
claimed security theorem, either in the submission or elsewhere in the literature. In fact, there
is some doubt as to whether the scheme actually is secure under the stated assumptions. The
problem is the way the value v (our notation) is computed in PSEC-2. As mentioned above, this
is computed as v = s ⊕ PEH. The only requirement in the scheme is that SeedLen ≤ |PEH|.
However, if SeedLen < |PEH|, then the ciphertext contains some of bits of PEH in the clear. To
prove security of this scheme, then, one would (at least) need to show that one could not compute
h̃ from g̃ and some of the bits of the partial encoding of h̃. It would appear that requiring that
SeedLen ≥ |PEH| solves the problem. Note that the stated requirement that SeedLen ≤ |PEH| is
apparently not a typographic error, since the examples of PSEC-2 in the appendix of the submission
all have SeedLen < |PEH|.

34

A similar, but more severe, criticism applies to the PSEC-1 submission. More specifically, in the
PSEC-1 encryption algorithm, the ciphertext contains the XOR of the message with a substring
of PEH. There is no way the semantic security of this scheme can be based upon the DDH
assumption, since the DDH assumption does not imply that the bits of an encoding of a group
element are pseudo-random.

Also note that our proposed scheme works with any prime-order group, not just subgroups of
elliptic curves.

We should also mention that the scheme we have proposed here bears some similarities not only
to the PSEC-2 submission, but also to a very similar scheme presented in [BLK00].

16.6 Security considerations

Since this proposed scheme differs significantly from PSEC-2 and other schemes in the literature,
we sketch a security proof in the random oracle model assuming the CDH (see §14.1).

We view KDF as a random oracle. Note that all relevant inputs to KDF start with either a
“zero word” or a “one word.” This effectively gives us two independent random oracles,

H0 : BSeedLen → Bdlog256 µe+16+KeyLen,

H1 : E(H)× E ′(H)→ BSeedLen.

Here, B denotes the set of bytes. Also, E(H) denotes the set of all encodings of elements in H, using
all formats, and E ′(H) denotes the set of all partial encodings of elements in H. In the security
analysis, we shall replace the calls to KDF by appropriate queries to H0 and H1.

Consider an adversary A that makes qD calls to the decryption oracle, q0 calls to H0 and q1

calls to H1.
Let G0 be the original attack game, and let S0 be the event that the adversary correctly guesses

the hidden bit b in this game (see §3). We shall define a sequence of attack games G1,G2, . . . ,Gk.
Each of these games should be viewed as operating on the same underlying probability space —
only the rules for how certain random variables are computed differ. In each game Gi, 1 ≤ i ≤ k,
there will be an event Si corresponding to S0. We shall show that for all 1 ≤ i ≤ k, that the
difference |Pr[Si] − Pr[Si−1]| is negligible, and moreover, it will be evident that in the last game,
Pr[Sk] = 1/2. This will imply that AdvantagePSEC-KEM(A), which is equal to |Pr[S0] − 1/2|, is
negligible.

We adopt the following convention. For an arbitrary ciphertext C0, we denote by

EG, v, g̃, h̃,PEH, s, t, u,K, r, ḡ,

the values computed by the decryption algorithm on this ciphertext. Some of these may be un-
defined if the algorithm would fail before the value was computed. We also denote the target
ciphertext C∗0 , and define corresponding values EG∗, v∗, g̃∗,

We classify ciphertexts C0 submitted to the encryption oracle as follows:

Type I g̃ 6= g̃∗;

Type II EG = EG∗;

Type III g̃ = g̃∗, but EG 6= EG∗.

35

Note that all ciphertexts C0 submitted to the decryption oracle before the encryption oracle has
been invoked are classified as Type I. Notice that Type III ciphertexts can arise only if the group
supports multiple encoding formats.

Let S denote the set of points s at which the oracle H0 has been queried either (i) directly by
the adversary, or (ii) by a Type III decryption oracle invocation. The set S grows over time, as
more queries to H0 are made. For any byte string s of length SeedLen, we define ρ(s) to be the
number obtained by taking the first dlog256 µe+16 of H0(s), converting to an integer, and reducing
mod µ.

The following trivial lemma will streamline our arguments.

Lemma 1 Let E, E′, and F be events defined on a probability space such that Pr[E ∧ ¬F] =
Pr[E′ ∧ ¬F]. Then we have ∣∣Pr[E]− Pr[E′]

∣∣ ≤ Pr[F].

The proof is a simple calculation, which we omit.

We now define our sequence of games G1,G2,

Game G1. We modify the decryption oracle as follows. If the adversary submits a Type II cipher-
text C0, then in game G1, we summarily reject C0, without executing the decryption algorithm at
all.

Let F1 be the event that in game G1 such a ciphertext is rejected that would not have been
rejected under the rules of game G0. Since these two games proceed identically until F1 occurs,
we have Pr[S0 ∧ ¬F1] = Pr[S1 ∧ ¬F1], and applying Lemma 1 with (S0, S1, F1), we have |Pr[S0]−
Pr[S1]| ≤ Pr[F1].

So it suffices to bound Pr[F1]. Consider a Type II ciphertext C0 submitted to the decryption
oracle in game G1. Since C0 6= C∗0 , we must have v 6= v∗, which implies s 6= s∗. To accept under
the rules of game G0, we must have r = r∗.

To make this happen, the adversary must find an input s 6= s∗ to H0 such that ρ(s) = r∗. Thus,
Pr[F1] ≤ (q0 + qD)µ−1(1 + 2−128). The factor (1 + 2−128) comes from the fact that the value r is
not exactly uniformly distributed over {0, . . . , µ− 1}.

So we have
|Pr[S0]− Pr[S1]| ≤ (q0 + qD)µ−1(1 + 2−128). (1)

Game G2. In this game, we modify the decryption oracle as follows. Suppose a Type I ciphertext
C0 is submitted, and suppose that s /∈ S. Then we summarily reject this ciphertext, without ever
proceeding past step 4 of the decryption algorithm.

Note that in this game, Type I and II decryption oracle invocations never evaluate H0 at points
not already in S.

Let F2 be the event that in game G2 such a ciphertext is rejected that would not have been
rejected under the rules of game G1. These two games proceed identically until F2 occurs, and so
Pr[S1 ∧ ¬F2] = Pr[S2 ∧ ¬F2], and applying Lemma 1 to (S1, S2, F2), we have |Pr[S1] − Pr[S2]| ≤
Pr[F2].

So it suffices to bound Pr[F2]. Consider a ciphertext C0 as above is submitted to the decryption
oracle in game G2. On the one hand, if the encryption oracle was previously invoked and s = s∗,
then under the rules of game G1, we would certainly reject C0, since g̃ 6= g̃∗. On the other hand, if
the decryption oracle was not previously invoked or it was but s 6= s∗, then H0 was never queried
at s either by the encryption oracle, the decryption oracle, or the adversary, and so the value
r is independent of everything in the adversary’s view. It follows that the probability that this
ciphertext would not be rejected under the rules of game G1 is at most µ−1(1 + 2−128).

36

From this, it follows that Pr[F1] ≤ qDµ−1(1 + 2−128), and therefore,

|Pr[S1]− Pr[S2]| ≤ qDµ−1(1 + 2−128). (2)

Game G3. We make another modification to the decryption oracle. In this new game, we process
all Type I ciphertexts C0 as follows. If g̃ is not equal to ρ(s′)g for any s′ ∈ S, then we reject
without any further processing. Otherwise, if g̃ = ρ(s′)g for some s′ ∈ S, we compute h̃ = ρ(s′)h,
and proceed to decrypt just as in game G2, but starting with step 3 of the decryption algorithm.

We argue that games G2 and G3 are identical.
Consider first a ciphertext for which g̃ is not equal to ρ(s′)g for any s′ ∈ S. This ciphertext

would have anyway been rejected under the rules in game G2. To see this, let g̃ = r̂g, where
r̂ ∈ {0, . . . , µ − 1}. Now, r̂ 6= ρ(s′) for any s′ ∈ S. Consider the value s. If s ∈ S, then we would
reject under the rules in game G2, since the test in step 9 would fail; otherwise, if s /∈ S, we would
also reject under the rules in game G2, since the special rejection rule introduced in game G2 would
apply.

Next, consider the case where g̃ = ρ(s′)g for some s′ ∈ S. It is clear that in this case, decryption
proceeds exactly as in game G2.

So we have
Pr[S3] = Pr[S2]. (3)

Game G4. We modify game G3 to obtain an equivalent game G4. This rather technical step is a
“bridging” step that will facilitate the analysis of more drastic modifications in game G5.

In game G4, we introduce

• a random byte string s+ of length SeedLen,

• a random byte string u+ of length dlog256 µe+ 16,

• a random byte string K+ of length KeyLen, and

• a random oracle
h+ : E(H)→ BSeedLen.

Game G4 is identical to game G3, except that we apply the following special rules:

R1: In the encryption oracle, we perform the following steps:

1. Set r+ = OS2IP(u+) mod µ.

2. Compute g̃∗ = r+g.

3. Set EG∗ = E(g̃∗, format).

4. Compute v∗ = s+ ⊕ h+(EG∗).

5. Output the key K+ and the ciphertext C∗0 = EG∗ ‖ v∗.

R2: In the decryption oracle, when processing a Type III ciphertext, we use the value h+(EG) in
step 4, instead of H1(EG,PEH).

R3: Whenever the oracle H0 is queried — by either the adversary or a Type III decryption oracle
— at s+ we respond with u+ ‖K+, instead of H(s+).

R4: Whenever the oracle H1 is queried — by either the adversary or a Type I decryption oracle
— at a point (EG,PEH), where EG is an encoding of g̃∗ and PEH is a partial encoding of
xg̃∗, we respond with h+(EG) instead of H1(EG,PEH).

37

It is clear that games G3 and G4 are completely equivalent, since we have consistently replaced
one set of random variables by another set of identically distributed random variables. In particular,

Pr[S3] = Pr[S4]. (4)

Game G5. Game G5 is the same as game G4, except that we drop rules R3 and R4, while
retaining R1 and R2.

Note that in this game, we do not use the secret key of the cryptosystem at all. Also note that
the ciphertext C∗0 is no longer a valid ciphertext in general, nor does it hold in general that s∗ = s+,
or that t∗ = u+ ‖K+, since the random oracles are no longer consistent with the modifications made
in the encryption oracle. Indeed, K+ and hence the hidden bit b are independent of the adversary’s
view in game G5. The string s+ is also independent of the adversary’s view. Further, the behavior
of Type III decryption oracle queries are also not consistent with the random oracles.

Despite these differences, however, games G4 and G5 proceed identically until the string s+

appears in S or either the adversary or a Type I decryption oracle invocation queries H1 on inputs
(EG,PEH), where EG is an encoding of g̃∗ and PEH is the partial encoding of xg̃∗.

Let F5a be the event that in game G5, the string s+ appears in S at some point in time. Let
F5b be the event that either the adversary or a Type I decryption oracle invocation queries H1 on
inputs (EG,PEH), where EG is an encoding of g̃∗ and PEH is the partial encoding of xg̃∗. Let
F5 = F5a ∨ F5b.

Since games G4 and G5 proceed identically until the point where F5 occurs, we have Pr[S4 ∧
¬F5] = Pr[S5 ∧ ¬F5]. Applying Lemma 1 with (S4, S5, F5), we have |Pr[S4]− Pr[S5]| ≤ Pr[F5].

Since s+ is independent of the adversary’s view, we have

Pr[F5a] ≤ (q0 + qD)2−SeedLen.

Now, Pr[F5b] is bounded by (1 + 2−128) times the probability that an adversary A′ — running
in expected time nearly the same as the running time of the original adversary A — can construct
a list of O(q1 +qD) group elements, one of which contains a solution to a given instance of the CDH
problem.

This algorithm runs by taking a random instance (g,h, g̃+) of the CDH problem as input, and
runs A against a slightly modified version of game G5. In this modified game, we use the given
values g,h to form the public key in game G5, Also, we use the given value g̃+, instead of deriving it
from u+ (note that u+ is not used anywhere else in game G5). Finally, to implement this algorithm,
we simulate the random oracles in the usual way, using standard hash table techniques. We also
use standard hash table techniques to implement the Type I decryption oracle queries, as modified
in game G3. The factor (1 + 2−128) comes from the fact that the distribution of g̃+ in game G5 is
slightly non-uniform, whereas we assume the corresponding value in the CDH instance is uniformly
distributed.

From this, it follows that

|Pr[S4]− Pr[S5]| ≤ AdvantageCDH(A′, O(q1 + qD))(1 + 2−128) +
(q0 + qD)2−SeedLen,

(5)

where AdvantageCDH is as defined in §14.1.
It is also clear that in game G5, the hidden bit b is independent of all values directly or indirectly

accessible to the adversary. Hence,
Pr[S5] = 1/2. (6)

38

Putting together (1), (2), (3), (4), (5), (6), we obtain

AdvantagePSEC-KEM(A) ≤ (q0 + 2qD)µ−1(1 + 2−128) +
AdvantageCDH(A′, O(q1 + qD))(1 + 2−128) +
(q0 + qD)2−SeedLen.

(7)

17 ACE-KEM

In this section, we present a variant of the ACE-Encrypt submission. Several changes were made to
the original submission, so that the resulting scheme fits into our frameworks for hybrid and Diffie-
Hellman-based encryption. This variant is a key encapsulation mechanism that we call ACE-KEM.

17.1 Key Generation

A fully specified group
Group = (H,G,g, µ, ν, E ,D, E ′,D′)

is chosen. In what follows, we let g1 = g.
An additional parameter, CofactorMode, must be specified. This parameter takes the value 0

or 1. Here are the rules which should be obeyed in setting this parameter.

• If ν = 1, then CofactorMode should be 0.

• If ν > 1, CofactorMode may be set to 1 provided gcd(µ, ν) = 1.

In addition to Group, a hash function Hash (see §11) and key derivation function KDF (see §12)
must be chosen. It is required that and that Hash.OutputLen < log256 µ.

Since we want KDF to be a good entropy smoothing function, one should select either KDF3
or KDF4. As discussed in §12, the functions KDF1 and KDF2 are not recommended.

Next, numbers w, x, y, z ∈ {0, . . . , µ− 1} are chosen at random, and the group elements

g2 = w · g1, c = x · g1, d = y · g1, h = z · g1

are computed.
The public key consists of encodings of Group, the group elements g2, c,d,h, and an indication

of the choice of Hash and KDF. The precise format of this encoding is not specified here.
The private key consists of the public key, together with the numbers w, x, y, z.

17.2 Encryption

Recall that for a key encapsulation mechanism, the goal is to produce a ciphertext C0 that is an
encryption of a key K, where K is a byte string of length KeyLen = ACE-KEM.OutputKeyLen.

In addition to the recipient’s public key, the encryption algorithm takes an optional format
argument, which is used to specify the format for group element encodings.

The encryption scheme works as follows.

1. Choose r ∈ {0, . . . , µ− 1}.

2. Compute group elements

u1 = r · g1, u2 = r · g2, h̃ = r · h.

39

3. Compute the byte strings

EU1 = E(u1, format), EU2 = E(u2, format).

4. Compute the number
α = OS2IP(Hash.eval(EU1 ‖EU2)).

5. Compute the number
r′ = α · r mod µ.

6. Compute the group element
v = r · c + r′ · d.

7. Output the ciphertext
C0 = EU1 ‖EU2 ‖ E(v, format)

and the key
K = KDF(EU1 ‖ E ′(h̃),KeyLen).

17.3 Decryption

The decryption algorithm takes as input a ciphertext C0 along with the private key.

1. Parse the ciphertext as EU1 ‖EU2 ‖EV, where EU1 encodes the group element u1, EU2
encodes the group element u2, and EV encodes the group element v. If this step fails, then
fail.

Also, one must check that EU1, EU2, and EV are all encoded using the same format; if not,
then fail.

2. If CofactorMode = 1, set

û1 = ν · u1, ŵ = ν−1w mod ν, x̂ = ν−1x mod ν, ŷ = ν−1y mod ν, ẑ = ν−1z mod ν;

otherwise, set
û1 = u1, ŵ = w, x̂ = x, ŷ = y, ẑ = z.

3. If CofactorMode 6= 1 and ν > 1, test if u1 ∈ G. If not, then fail.

4. Compute the number
α = OS2IP(Hash.eval(EU1 ‖EU2))

5. Compute the number
t = x̂+ ŷα mod µ.

6. Test if
w · û1 = u2 and t · û1 = v.

If not, then fail.

7. Compute the group element
h̃ = ẑ · û1.

8. Output the key
K = KDF(EU1 ‖ E ′(h̃),KeyLen).

40

17.4 Some remarks

For security reasons, one should always perform all of the computations in step 6 of the decryption
algorithm; otherwise, some “timing” information could be gained by the adversary that is not
available to it in the formal proof of security. Note, however, that we know of no actual attack
based on such timing information, nor is such an attack at all likely.

Also note that unlike ECIES, a value of 0 for h̃ is perfectly legal, and therefore, the function E ′
must be well defined at 0. It was felt that making the restriction that h̃ 6= 0 would only complicate
the scheme, with no tangible benefit.

Using CofactorMode = 1 may yield a performance benefit if ν is fairly small. Note that in this
mode, an implementation could simply pre-compute and store the values ŵ, x̂, ŷ, ẑ, instead of the
values w, x, y, z.

17.5 Security considerations

This scheme differs in only very minor ways from schemes that have been rigorously analyzed in
the literature. It most closely resembles the variation of the Cramer-Shoup scheme discussed in
detail in [Sho00].

The security of the scheme is based on the DDH (see §14.2), and a few other specific assumptions
about the hash and key derivation functions. The security reduction is quite tight. One can easily
verify the following, using following the line of reasoning in [CS98] and [Sho00].

AdvantageACE-KEM(A) = O(AdvantageDDH(A1) +
AdvantageHash(A2) +
AdvantageKDF(A3) +
qD · µ−1),

where:

• A1, A2, A3 denote adversaries that run in time essentially the same as A.

• AdvantageDDH is as defined in §14.2.

• AdvantageHash(A) denotes the probability that an adversary A, given encodings EU1∗ and
EU2∗ of two independent, random elements in G, can find encodings EU1 and EU2 of elements
in G, such that (EU1,EU2) 6= (EU1∗,EU2∗), but

Hash.eval(EU1 ‖EU2) = Hash.eval(EU1∗ ‖EU2∗).

If the group supports multiple encodings, the adversary can choose the format it wants when
EU1∗ and EU2∗ are generated; furthermore, the adversary may choose to use the same or
different formats in its choice of EU1 and EU2; however, EU1∗ and EU2∗ must be encoded
using the same format, and the same holds for EU1 and EU2.

If CofactorMode = 1, then the adversary may choose EU1 to be an encoding of an element
of H that does not necessarily lie in G.

Note that this problem is a second-preimage collision problem, which is generally believed to
be a much harder problem to solve than the problem of finding an arbitrary pair of colliding
inputs.

41

• AdvantageKDF(A) denotes the advantage that an adversary A has in distinguishing between
the following two distributions. Let u1 and h̃ be independent, random elements of G, and
let EU1 be an encoding of u1. Let R be a random byte string of length KeyLen. The first
distribution is (R,EU1), and the second is (KDF(EU1 ‖ E ′(h̃),KeyLen),EU1).

• qD bounds the number of decryption oracle queries made by the adversary A.

The “O” above represents a very small constant, which we have not computed exactly.

17.6 Further remarks

17.6.1 Random oracles and interactive assumptions

We emphasize that this scheme can be proved secure under reasonable intractability assumptions,
without resorting to either the random oracle heuristic, and without using “interactive” intractabil-
ity assumptions as in done in [ABR98].

We stress that a proof of security in the random oracle model is not a proof with “just another
assumption.” One is not assuming a hash function is a random function, since this assumption is
patently false. The random oracle model is a heuristic, and a proof of security in the random oracle
model does not directly imply anything about the security of a system “in the real world.”

We also stress that interactive intractability assumptions, like in [ABR98], are qualitatively
much stronger than standard intractability assumptions. Indeed, it can be argued that the main
activity of theoretical cryptography is to show that breaking a cryptosystem via some kind of subtle,
interactive attack is at least as hard as solving some specific, non-interactive problem.

ACE-KEM can also be proved secure in the random oracle model under the CDH assumption
(see [Sho00]), although the reduction is not nearly as tight as for PSEC-KEM. Indeed, the tightness
of the reduction for PSEC-KEM and the efficiency of PSEC-KEM are the main reasons for including
PSEC-KEM in this proposal.

17.6.2 ACE-KEM and ECIES-KEM

One should also note that ACE-KEM is no less secure than ECIES-KEM in a very strong sense.
Indeed, assuming the two cryptosystems use the same parameters, then one can show that any
adversary A that breaks ACE-KEM can be converted into an adversary A′ with about the same
running time that breaks ECIES-KEM with the same advantage.

To see this, consider an ECIES-KEM public key containing the group element h. Upon obtaining
this public key, A′ generates w, x, y at random modulo µ, and then chooses w, x, y ∈ {0, . . . , µ− 1}
at random, and constructs the ACE-KEM public key (g2, c,d,h), where g2 = wg, c = xg, and
d = yg. A′ then runs adversary A using this public key.

Now, whenever the adversary A makes a decryption oracle query, then knowing w, x, y, adver-
sary A′ performs the extra validity tests of ACE-KEM, and if these pass, it uses the decryption
oracle of ECIES-KEM to obtain the decrypted symmetric key, giving this to A.

When A invokes the encryption oracle for ACE-KEM, A′ invokes the encryption oracle for
ECIES-KEM, obtaining an encoding of a group element u∗1. Then using w, x, y, A′ easily constructs
the remaining components of a corresponding ACE-KEM ciphertext, and gives this to A.

One needs to check that A′ carries out a legal chosen ciphertext attack, i.e., that A′ never
attempts to submit the target ciphertext to the decryption oracle subsequent to the invocation of
the encryption oracle. But this follows easily from the following claim: for any two valid ACE-KEM
ciphertexts C0 = EU1 ‖EU2 ‖EV and C+

0 = EU1+ ‖EU2+ ‖EV+, if EU1 = EU1+, then C0 = C+
0 .

42

Note that this claim relies on the fact that the validity test for a ciphertext C0 as above ensures
that EU1, EU2, and EV are encoded using the same format. If this were not done, then simply
by replacing EU2 or EV by a different encoding of the same group element, one would violate the
above claim.

When A terminates and outputs a bit b̂, A′ also terminates and outputs the same thing.
It is easily seen that this simulation is perfect, and that whatever advantage A has in breaking

ACE-KEM, A′ has the same advantage in breaking ECIES-KEM.
We have left one detail out of the above proof: in ECIES-KEM, the Diffie-Hellman public keys

may not be zero, whereas in ACE-KEM, they may be. We leave it to the reader to adjust the above
proof to accommodate this detail.

17.6.3 ACE-Encrypt and ACE-KEM

We outline the major differences between ACE-Encrypt and ACE-KEM.

• We have generalized the algorithm to work with an arbitrary, abstract group, and to work
with an arbitrary message authentication code and symmetric key encryption scheme.

• We have chosen not to use the rather specialized universal one-way hash function to compute
the quantity α. Instead, we use a standard cryptographic hash, and make a specific — but
reasonable — “second preimage collision resistance” assumption.

The proposed standard need not necessarily preclude the possibility of using such a specialized
hash function, so long as we allow such a hash to have a variable length key that is stored in
the public key.

• We have chosen not to use the rather specialized entropy-smoothing hash function to derive
the key K. Instead, we again use a standard cryptographic hash, and make a specific — but
again, reasonable — “entropy smoothing” assumption.

The proposed standard need not necessarily preclude the possibility of using such a specialized
hash function, so long as we allow such a hash to have a variable length key that is stored in
the public key.

18 RSA-OAEP

18.1 Message encoding functions

OAEP-EME is a fully specified version of Bellare and Rogaway’s original OAEP scheme for message
encoding [BR94].

In general, a message encoding scheme EME of this type specifies two algorithms:

• EME.Encode(M,L,ELen) takes as input a message M and a label L, and an output length
ELen. Here, M and L are byte strings whose lengths are bounded, as described below. It
outputs a byte string E of length ELen.

• EME.Decode(E,L) takes as input a byte string E and a label L. It attempts to find a message
M such that EME.Encode(M,L, |E|) = E. It returns M if such an M exists, and otherwise
fails.

43

In addition to this, the mechanism should specify a bound EME.Bound such that when
EME.Encode(M,L,ELen) is invoked, the condition |M | ≤ ELen − EME.Bound should hold; if
not, the encoding algorithm fails. Additionally, the encoding algorithm may also fail if |L| exceeds
some (very large) implementation-defined bound.

The algorithm EME.Encode will in general be probabilistic, so that the same message can be
encoded in a number of ways.

18.2 OAEP-EME

We now describe OAEP-EME.
The scheme is parameterized by a hash function Hash (see §11) and a key derivation function

KDF (see §12). Current standards, as well as the RSA-OAEP submission to ISO, recommend the
use of the function KDF1 using Hash. Let HLen = Hash.OutputLen.

The quantity OAEP-EME.Bound is defined as

OAEP-EME.Bound = 2 ·HLen + 1.

18.2.1 Encoding function

The algorithm OAEP-EME.Encode(M,L,ELen) runs as follows:

1. Check that |M | <= ELen− 2 ·HLen− 1; if not, then fail.

2. Generate a random byte string r of length HLen.

3. Let pad be the byte string of length ELen−|M |−2 ·HLen consisting of a sequence of 0-bytes,
followed by a single 1-byte.

4. Set x = Hash.eval(L) ‖ pad ‖M.

5. Set s = KDF(r,ELen−HLen)⊕ x.

6. Set t = KDF(s,HLen)⊕ r.

7. Output E = t ‖ s.

18.2.2 Decoding function

The algorithm OAEP-EME.Decode(E,L) runs as follows.

1. Let ELen = |E|.

2. Check if ELen ≥ 2 ·HLen + 1; if not, then fail.

3. Parse E as E = t ‖ s, where |t| = HLen and |s| = ELen−HLen.

4. Set r = KDF(s,HLen)⊕ t.

5. Set x = KDF(r,ELen−HLen)⊕ s.

6. Test that x is of the form x = Hash.eval(L) ‖ pad ‖M, where pad is a byte string consisting
of zero or more 0-bytes, followed by a 1-byte. If not, then fail.

7. Output M .

44

18.3 RSA-OAEP

We describe a generic RSA encryption scheme, based on an arbitrary message encoding mechanism
EME. If one uses OAEP-EME, the resulting scheme is called RSA-OAEP.

RSA-OAEP is a bounded length public-key encryption scheme.

18.3.1 Key generation

The public key consists of an RSA modulus n that is the product of two large primes, and an
exponent e, where gcd(e, φ(n)) = 1. It also specifies any parameters of EME (such as Hash and
KDF, in the case of OAEP-EME). Let nLen denote the length, in bytes, of n.

The secret key consists of the decryption exponent d, where ed ≡ 1 mod φ(n).

18.3.2 Encryption

The algorithm to encrypt a message M , where |M | ≤ nLen − EME.Bound − 1, with label L runs
as follows.

1. Set E = EME.Encode(M,L,nLen− 1).

2. Set m = OS2IP(E).

3. Set c = me mod n.

4. Output C = I2OSP(c,nLen).

18.3.3 Decryption

The algorithm to decrypt a ciphertext C with label L runs as follows.

1. If |C| 6= nLen, then fail.

2. Let c = OS2IP(C).

3. Check that c ≤ n− 1; if not, then fail.

4. Set m = cd mod n.

5. Set E = I2OSP(m,nLen− 1); note that this step may fail if m is too large.

6. Set M = EME.Decode(E,L); note that this step may fail.

An implementation should take care not to reveal which of steps 5 or 6 fail. Such information
could take the form of distinct error codes, or of timing information. In particular, it is recom-
mended that both steps 5 and 6 should be performed, even if step 5 fails. If such precautions are
not taken, an implementation may be vulnerable to Manger’s attack [Man01].

45

18.4 Defects of RSA-OAEP

RSA-OAEP suffers from two defects.
The first is a security defect. It was a widely held belief that the general OAEP construction was

secure against adaptive chosen ciphertext attack, assuming the underlying trapdoor permutation
was one-way. This belief is based on a supposed random-oracle proof in [BR94]. This of course
would imply the security of RSA-OAEP in the random oracle model, assuming that RSA is one-
way. However, it was recently shown in [Sho01] that the proof of security of the general OAEP
construction was invalid, and further, the general construction can not be proven secure using
standard proof techniques.

This result by itself does not imply that RSA-OAEP is insecure; it simply invalidates the original
justification of its security. In fact, in [Sho01], it is shown that RSA-OAEP with e = 3 is secure
(in the random oracle model). This result is extended by [FOPS01] to arbitrary e. It should be
noted however, that the security reduction is much less efficient in [FOPS01] than that proposed
in [BR94] for OAEP.

The fact that RSA-OAEP can be proved secure is essentially an accident. The proofs of security
exploit particular algebraic properties of the RSA function.

In [Sho01], a slight variant of OAEP is presented, called OAEP+. A detailed proof of security
is given, on the general assumption of a trapdoor one-way permutation. Moreover, the security
reduction is much more efficient than that of [FOPS01] or even [BR94].

Another defect of RSA-OAEP is that it only encrypts messages of a bounded length. Because
of this, RSA-OAEP is really only useful as a key encapsulation mechanism (see §3), and it is left
to application engineers to implement a “digital envelope” for encrypting longer messages. See
§2.1.2 for a discussion about why we believe that this standard should provide a complete solution
to the “digital envelope” problem, rather than just a partial solution. Also, using RSA-OAEP for
nothing more than key encapsulation completely wastes one of the main feature of OAEP, namely,
its very good “message expansion” rate. Indeed, if all one wants to do with RSA is encapsulate a
key, then one is better served using the RSA-KEM scheme in §20, as that method is both simpler
and quantitatively more secure.

Because of these two defects, we propose that the new ISO standard contain a variation of
RSA-OAEP+ that offers both a higher level of security than RSA-OAEP, while at the same time
introduces a standard for encrypting messages of arbitrary length using RSA.

19 RSA-OAEP+

In this section, we propose a new encryption scheme, called RSA-OAEP+. It has better provable
security properties than RSA-OAEP, and also provides a secure mechanism for encrypting messages
of arbitrary length.

19.1 Extended message encoding functions

To facilitate encryption of arbitrary length messages, we extend the notion of a message encoding
scheme.

In general, an extended message encoding scheme XEME specifies two algorithms:

• XEME.Encode(M,L,ELen,KeyLen) takes as input a message M , a label L, an encoding
output length ELen, and a key output length KeyLen. Here, M and L are byte strings

46

whose lengths are bounded, as described below. It outputs a pair (E,K) of byte strings with
|E| = ELen and |K| = KeyLen.

• XEME.Decode(E,L,KeyLen) takes as input a byte string E and a label L. It attempts to find
a message M and a key K such that EME.Encode(M,L, |E|,KeyLen) = (E,K). It returns
the pair (M,K) if it exists, and otherwise fails.

In addition to this, the mechanism should specify a bound XEME.Bound such that when
XEME.Encode(M,L,ELen,KeyLen) is invoked, the condition |M | ≤ ELen−XEME.Bound should
hold; if not, the encoding algorithm fails. Additionally, the encoding algorithm may also fail if |L|
or KeyLen exceed some (very large) implementation-defined bound.

The algorithm XEME.Encode will in general be probabilistic, so that the same message can be
encoded in a number of ways.

19.2 OAEP+XEME

We now describe the extended message encoding scheme OAEP+XEME.
The scheme is parameterized by a key derivation function KDF (see §12) and an integer

MaskLen ≥ 1. Any of the functions described in §12 are suitable.
The quantity OAEP+XEME.Bound is defined as

OAEP+XEME.Bound = 2 ·MaskLen + 1.

Let (I0, I1, . . .) denote the values (I2OSP(0, 4), I2OSP(1, 4), . . .).

19.2.1 Encoding function

The algorithm OAEP+XEME.Encode(M,L,ELen,KeyLen) runs as follows.

1. Check that |M | <= ELen− 2 ·MaskLen− 1; if not, then fail.

2. Generate a random byte string r of length MaskLen.

3. Let pad be the byte string of length ELen − |M | − 2 ·MaskLen consisting of a sequence of
0-bytes, followed by a single 1-byte.

4. Set x = pad ‖M .

5. Set
check = KDF(I0 ‖ r ‖x ‖ I2OSP(KeyLen, 4) ‖L,MaskLen).

6. Set
x′ = KDF(I1 ‖ r,ELen− 2 ·MaskLen)⊕ x.

7. Set
s = check ‖x′.

8. Set
t = KDF(I2 ‖ s,MaskLen)⊕ r.

9. Output
E = t ‖ s

and
K = KDF(I3 ‖ r,KeyLen).

47

19.2.2 Decoding function

The algorithm OAEP+XEME.Decode(E,L) runs as follows.

1. Let ELen = |E|.

2. Check if ELen ≥ 2 ·MaskLen + 1; if not, then fail.

3. Parse E as E = t ‖ s, where |t| = MaskLen and |s| = ELen−MaskLen.

4. Set
r = KDF(I2 ‖ s,MaskLen)⊕ t.

5. Parse s as check ‖x′, where |check| = MaskLen and |x′| = ELen− 2 ·MaskLen.

6. Set
x = KDF(I1 ‖ r,ELen− 2 ·MaskLen)⊕ x′.

7. Test if x is of the form x = pad ‖M , where pad is a byte string consisting of zero or more
0-bytes, followed by a 1-byte; if not, then fail.

8. Test if
check = KDF(I0 ‖ r ‖x ‖ I2OSP(KeyLen, 4) ‖L,MaskLen).

If not, then fail.

9. Output M and
K = KDF(I3 ‖ r,KeyLen).

This encoding scheme is very similar to that of [Sho01]. Besides a few inconsequential formatting
changes, this scheme deals with a label L and produces a key K of length KeyLen. The scheme in
[Sho01] does not deal with labels or key outputs at all. Notice that both KeyLen and L are hashed
into the value check — this is important for the security of the scheme.

In general, we have kept the changes between OAEP-EME and OAEP+XEME minimal. But
since some changes were anyway necessary, we took the liberty to propose a couple of further
changes.

The main change is that we use the function KDF in several places, and we insert the strings
I0, I1, etc., into the different invocations of KDF. This is done so that these can be more properly
modeled as independent random oracles, as required in the proof of security.

19.3 RSA-OAEP+

We describe a generic extended RSA encryption scheme that uses an arbitrary extended message
encoding scheme XEME. If the OAEP+XEME encoding scheme is used, the resulting encryption
scheme is called RSA-OAEP+. We call this an extended RSA encryption scheme, since it handles
messages of arbitrary length.

This scheme also makes use of a data encapsulation mechanism DEM (see §4); however, we do
not require that DEM supports any labels.

48

19.3.1 Key generation

Just as for RSA-OAEP, the public key consists of an RSA modulus n that is the product of two
large primes, and an exponent e, where gcd(e, φ(n)) = 1. It also specifies any parameters of XEME.
Let nLen denote the length, in bytes, of n.

The secret key consists of the decryption exponent d, where ed ≡ 1 mod φ(n).

19.3.2 Encrypting short messages

To encrypt a message M with label L, where |M | ≤ nLen − XEME.Bound − 1, one does the
following.

1. Set (E,K) = XEME.Encode(M,L,nLen− 1, 0); note that K is the empty string.

2. Set m = OS2IP(E).

3. Set c = me mod n.

4. Output C = I2OSP(c,nLen).

19.3.3 Decrypting short messages

To decrypt a ciphertext C with label L, where |C| ≤ nLen, one does the following.

1. If |C| < nLen, then fail.

2. Let c = OS2IP(C).

3. Check that c ≤ n− 1; if not, then fail.

4. Set m = cd mod n.

5. Set E = I2OSP(m,nLen− 1); note that this step may fail if m is too large.

6. Set (M,K) = XEME.Decode(E,L, 0); note that this step may fail, and also that K is the
empty string.

7. Output M .

As in the the case of RSA-OAEP, an implementation should reveal no information that would
reveal to an adversary which of steps 5 or 6 fail.

19.3.4 Encrypting long messages

To encrypt a message M with label L, where |M | > nLen − XEME.Bound − 1, one does the
following.

1. Let M = M0 ‖M1, where |M0| = nLen−XEME.Bound− 1.

2. Set (E,K) = XEME.Encode(M0, L,nLen− 1,DEM.KeyLen).

3. Set m = OS2IP(E).

4. Set c = me mod n.

49

5. Set C0 = I2OSP(c,nLen).

6. Encrypt M1 under the key K using DEM, and let C1 be the resulting ciphertext.

7. Output the ciphertext C = C0 ‖C1.

19.3.5 Decrypting long messages

To decrypt a ciphertext C with label L, where |C| > nLen, one does the following.

1. Parse C as C = C0 ‖C1, where |C0| = nLen.

2. Let c = OS2IP(C0).

3. Check that c ≤ n− 1; if not, then fail.

4. Set m = cd mod n.

5. Set E = I2OSP(m,nLen− 1); note that this step may fail if m is too large.

6. Set (M0,K) = XEME.Decode(E,L,DEM.KeyLen). Note that this step may fail.

7. Test if |M0| = nLen−XEME.Bound− 1; if not, then fail.

8. Decrypt C1 under the key K using DEM, and let M1 be the resulting message.

9. Output M = M0 ‖M1.

As in the the case of RSA-OAEP, an implementation should reveal no information that would
reveal to an adversary which of steps 5 or 6 fail.

19.4 Security considerations

It is straightforward to adapt the proof of security in [Sho01] to show that this scheme is secure in
the random oracle model against adaptive chosen ciphertext attack, assuming the RSA inversion
problem is hard.

That proof implies that for any adversary A, its advantage in breaking the cryptosystem
RSA-OAEP+ is bounded by

AdvantageRSA-OAEP+(A) = O(AdvantageRSA(A1) +
AdvantageDEM(A2, l1) +
qD · qKDF · 2−MaskLen)

Here,

• A1 is an algorithm that runs in time roughly equivalent to that of A, plus O(q2
KDF) applications

of the RSA function,

• A2, A3 are adversaries whose running times are about the same as A,

• AdvantageRSA(A) denotes the success probability of an algorithm A has in solving a random
instance of the RSA inversion problem,

• qD is a bound on the number of decryption oracle queries made by A,

50

• qKDF is a bound on the number of random oracle queries made by A,

• l1 is a bound on the length of the target message, and

• l2 is a bound on the length of ciphertexts submitted to the decryption oracle.

Note that this security reduction is actually somewhat more efficient than the original (and
incorrect) security reduction for RSA-OAEP in [BR94]. It is also far more efficient than the
security reduction in [FOPS01]. In that reduction, the algorithm A′ for inverting RSA is somewhat
slower than that of RSA-OAEP+, but worse, if the advantage of A is ε, then the success probability
of A′ is about ε2.

Even though the security reduction for RSA-OAEP+ is tighter than that for RSA-OAEP, we
should perhaps point out that because of the term O(q2

KDF) in the running time of the RSA inversion
algorithm, this reduction actually says very little about the security of, say, 1024-bit RSA. This
is because one can (most likely) factor 1024-bit numbers in less time than that required by the
implied RSA inversion algorithm. However, as pointed out in [Sho01], for exponent e = 3, there
is a much more efficient security reduction whose running time is linear in qKDF. Is this a reason
recommend the use of e = 3? Perhaps. Alternatively, one can use the RSA-KEM scheme (see §20).

Of course, if the security reduction for RSA-OAEP+ implies very little about concrete security,
the security reduction for RSA-OAEP in [FOPS01] says even less.

20 RSA-KEM

We also suggest for possible inclusion in the ISO standard the following very simple version of RSA.
It is based on the ideas in [BR93].

The scheme we present is a key encapsulation mechanism (see §3), called RSA-KEM, which can
be turned into an encryption scheme as described in §5.

The main advantages of this scheme are its simplicity and the fact that it yields a much more
efficient (and hence meaningful) security reduction compared to that for OAEP or OAEP+. The
disadvantage is that ciphertexts are a little bit larger.

20.1 Key generation

Just as for RSA-OAEP, the public key consists of an RSA modulus n that is the product of two
large primes, and an exponent e, where gcd(e, φ(n)) = 1. It also specifies a key derivation function
KDF (see §12). Let nLen denote the length, in bytes, of n.

The secret key consists of the decryption exponent d, where ed ≡ 1 mod φ(n).

20.2 Encryption

Recall that RSA-KEM is a key encapsulation mechanism, and so the goal of the encryption algo-
rithm is simply to produce a pseudo-random key K of length KeyLen = RSA-KEM.OutputKeyLen
and a ciphertext C0 that encrypts K.

The encryption algorithm runs as follows.

1. Generate a random number r ∈ {0, . . . , n− 1}.

2. Compute y = re mod n.

3. Compute K = KDF(I2OSP(r,nLen),KeyLen).

51

4. Compute C0 = I2OSP(y,nLen).

5. Output the ciphertext C0 and the key K.

20.3 Decryption

Given a ciphertext C0, decryption runs as follows.

1. Check that |C0| = nLen; if not, then fail.

2. Set y = OS2IP(C0).

3. Check that y < n; if not, then fail.

4. Compute r = yd mod n.

5. Compute K = KDF(I2OSP(r,nLen),KeyLen).

6. Output the key K.

20.4 Security considerations

The security of RSA-KEM can be analyzed in the random oracle model in a manner very similar
to that in [BR93], where we model the invocation of KDF as a random oracle query. It is easy to
show that

AdvantageRSA-KEM(A) ≤ AdvantageRSA(A′) + nBound/qD, (8)

where

• A′ is an algorithm for solving a random instance of the RSA problem that runs in time roughly
the same as that of A; more precisely, the running time is that of A, plus the time to perform
qKDF exponentiations modulo n, where qKDF is a bound on the number of random oracle
queries made by A;

• qD is a bound on the number of decryption oracle queries made by A;

• nBound is an lower bound on n.

We sketch a proof of this. Let G0 be the original attack game played by adversary A, and let
S0 be the event that A correctly guesses the hidden bit b in game G0. Let H denote the random
oracle mapping elements of Zn to bit strings of length KeyLen. Let y∗ ∈ Zn denote the target
ciphertext, and let r∗ = (y∗)1/e ∈ Zn.

We next define a game G1 that is the same as game G0, except that if the target ciphertext y∗

was submitted to the decryption oracle prior to the invocation of the encryption oracle, then the
game is halted. Let S1 be the event in game G1 corresponding to the event S0.

Let F1 be the event that game G1 is halted as above. Clearly, Pr[F1] ≤ nBound/qD, and since
games G0 and G1 proceed identically until F1 occurs, it follows by Lemma 1 that |Pr[S0]−Pr[S1]| ≤
nBound/qD.

We next define a game G2 that is the same as G1, except that (1) the target ciphertext is
generated at the beginning of the game, and (2) if the adversary ever queries H at r∗, we halt the
game. Let S2 be the event in game G2 corresponding to the event S0.

52

It is clear by construction that Pr[S2] = 1/2, since the key H(r∗) is independent of everything
else that is accessible to the adversary in game G2, either directly or indirectly. Indeed, only the
encryption oracle evaluates H at r∗ in this game.

Let F2 be the event that game G2 is halted as above. It is clear that both games G1 and G2

proceed identically until F2 occurs, and so by Lemma 1, we have |Pr[S1]−Pr[S2]| ≤ Pr[F2]. Thus,
it suffices to bound Pr[F2].

We claim that
Pr[F2] ≤ AdvantageRSA(A′)

for an algorithm A′ that runs in time bounded as described above. The inequality (8) will follow
immediately.

Algorithm A′ runs as follows. It takes as input a random RSA modulus n, an RSA exponent e,
and a random element y∗ ∈ Zn. It creates a public key using N and e, and then lets adversary A
run in game G2.

When adversary A invokes the encryption oracle, algorithm A′ responds to A with the pair
(K∗, y∗), where K∗ is a random bit string of length KeyLen, and y∗ is the above-mentioned input
to A.

Algorithm A′ simulates the random oracle H as well as the decryption oracle, as follows. For
every input r ∈ Zn to the random oracle, A′ computes y = re ∈ Zn, and places the triple consisting
of r, y, and the random value K = H(r) in a table; however, if y = y∗, algorithm A′ instead
outputs r and halts. When the adversary A submits a ciphertext y ∈ Zn to the decryption oracle,
algorithm A′ looks up the value y in the above table to determine if the random oracle has been
evaluated at r = y1/e ∈ Zn. If so, algorithm A′ responds to the decryption oracle invocation with
the value K = H(r) stored in the table. Otherwise, algorithm A′ generates a fresh random key
K, and places the pair (y,K) in a second table; moreover, if in the future the adversary A should
evaluate the random oracle at a point r ∈ Zn such that re = y, then the key K generated above
will be used for the value of H(r).

It is clear that algorithm A′ perfectly simulates the view of A, and that A′ outputs a solution
to the given instance of the RSA problem with probability equal to Pr[F2].

That completes the proof of security.

Quantitatively, it is clear that RSA-KEM provides a much better security reduction than
RSA-OAEP+ (or RSA-OAEP). This advantage becomes even more pronounced when one ana-
lyzes the security of many messages encrypted under a single public key (as formally modeled in
[BBM00]). In this setting, one can exploit the well-known random self-reducibility property of the
RSA inversion problem to easily show that the security of RSA-KEM key encapsulation mechanism
does not degrade at all as the number of ciphertexts increases. Note that this argument will be valid
only if the number r in the encryption algorithm for Simple RSA is chosen uniformly modulo n, or
at least with a distribution that is computationally indistinguishable from the uniform distribution.

For RSA-OAEP+, the security degrades linearly with the number of ciphertexts, since one can-
not use the random self-reducibility property, and must instead use a “hybrid argument.” The rea-
son the random self-reducibility property cannot be used is that in RSA-OAEP+ (like RSA-OAEP)
the ciphertext is not uniformly distributed modulo n.

We also mention that RSA-KEM does not appear to be as “fragile” as either RSA-OAEP or
RSA-OAEP+, in the sense that there appears to be no possible attacks on an implementation, such
as those in [Man01].

53

21 Further actions

In this section, we summarize the next steps that must be taken to fully develop a standard.
First, there are still a few gaps in the specifications that need to be filled in:

choice of groups for Diffie-Hellman schemes: We have yet to specify precisely what groups
are allowed. One possibility is to simply adopt “wholesale” the choices allowable in IEEE
P1363.

encoding of group elements: We have yet to fully specify how group elements are to be encoded
as byte strings. Again, one possibility is simply to adopt “wholesale” the encoding schemes
in IEEE P1363.

choice of MAC’s, SKE’s, and KDF’s: These choices are also yet to be specified. Again, one
possibility is to simply adopt “wholesale” the choices allowable in IEEE P1363. However,
the recommendations for KDF3 and KDF4 in the present proposal should be given some
consideration. Also, for SKE’s, we might want to consider other choices than those available
in IEEE P1363a, e.g., a “counter mode” use of a block cipher; further, we may wish to
“harmonize” the notion of an SKE as used here with the symmetric-key encryption part of
the larger ISO standard.

Second, a decision must be made as to whether this standard should require or recommend a
particular encoding for public keys, e.g., as ASN.1 encoded structures. An argument for doing this
is that it could potentially greatly enhance adoption of the schemes in this standard.

Third, a decision must be made as to whether the schemes proposed here are the ones we
really want. There seemed to be some consensus at the ad hoc meeting in Santa Barbara that
the selection proposed here was acceptable, with the understanding that the decision to include
the schemes RSA-OAEP+ and RSA-KEM, which were proposed by the editor, should be taken
later after further scrutiny and discussion. Also, a decision needs to be made as to whether all of
the restrictions on ECIES discussed in §15.6 are appropriate, or whether some of these should be
relaxed.

Fourth, a full specification for EPOC-2, hopefully compatible with IEEE P1363a, needs to be
developed for inclusion in a working draft.

Fifth, this proposal must be converted to a proper draft standard. This entails separating out
normative content (specifications) from informational content (rationale, security considerations,
etc.), putting the latter in an annex. The intent is that the standard should contain almost all of
the informational content that is in this proposal.

References

[ABR98] M. Abdalla, M. Bellare, and P. Rogaway. DHAES: an encryption scheme based on the
Diffie-Hellma problem. Submission to IEEE P1363, 1998.

[BBM00] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting:
security proofs and improvements. In Advances in Cryptology–Eurocrypt 2000, 2000.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In Advances in Cryptology–Crypto ’98,
pages 26–45, 1998.

54

[BLK00] J. Baek, B. Lee, and K. Kim. Secure length-saving ElGamal encryption under the
computational Diffie-Hellman assumption. In Proc. 5th Australian Conference on In-
formation, Security, and Privacy, 2000.

[Bon98] D. Boneh. The Decision Diffie-Hellman Problem. In Ants-III, pages 48–63, 1998.
Springer LNCS 1423.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing effi-
cient protocols. In First ACM Conference on Computer and Communications Security,
pages 62–73, 1993.

[BR94] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in
Cryptology—Eurocrypt ’94, pages 92–111, 1994.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model, revisted. In 30th
Annual ACM Symposium on Theory of Computing, 1998.

[CS98] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Advances in Cryptology–Crypto ’98, pages 13–25,
1998.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd Annual ACM
Symposium on Theory of Computing, pages 542–552, 1991.

[DDN98] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography, 1998. Manuscript
(updated, full length version of STOC paper).

[FO99] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Advances in Cryptology–Crypto ’99, pages 537–554, 1999.

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the
RSA assumption. In Advances in Cryptology–Crypto 2001, 2001.

[JM96] D. Johnson and S. Matya. Asymmetric encryption: evolution and enhancements. Cryp-
tobytes, 2(1), 1996. http://www.rsasecurity.com/rsalabs.

[JN01] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-Hellman in
cryptographic groups. Cryptology ePrint Archive, Report 2001/003, 2001. http://
eprint.iacr.org.

[Luc00] S. Lucks. The sum of PRPs is a secure PRF. In Advances in Cryptology–Eurocrypt
2000, 2000.

[Man01] J. Manger. A chosen ciphertext attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as standardized in PKCS # 1 v2.0. In Advances in Cryptology–Crypto
2001, pages 230–238, 2001.

[NR97] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In 38th Annual Symposium on Foundations of Computer Science, 1997.

[OP01] T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for the
security of cryptographic schemes. In Proc. 2001 International Workshop on Practice
and Theory in Public Key Cryptography (PKC 2001), 2001.

55

[RS91] C. Rackoff and D. Simon. Noninteractive zero-knowledge proof of knowledge and chosen
ciphertext attack. In Advances in Cryptology–Crypto ’91, pages 433–444, 1991.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology–Eurocrypt ’97, 1997.

[Sho00] V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. In Advances
in Cryptology–Eurocrypt 2000, 2000.

[Sho01] V. Shoup. OAEP reconsidered. In Advances in Cryptology–Crypto 2001, 2001.

[Sta96] M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology–Eurocrypt ’96,
pages 190–199, 1996.

56

