
Designs, Codes and Cryptography, 28, 5–31, 2003
©C 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

A New NP-Complete Problem
and Public-Key Identification

DAVID POINTCHEVAL david.pointcheval@ens.fr
Département d’Informatique, École Normale Supérieure, Paris, France

GUILLAUME POUPARD guillaume.poupard@m4x.org
Direction Centrale de la Sécurité des Systèmes d’Information, Paris, France

Communicated by: Th. Beth

Received December 8, 1997; Revised August 14, 2001; Accepted October 24, 2001

Abstract. The appearance of the theory of zero-knowledge, presented by Goldwasser, Micali and Rackoff in
1985, opened a way to secure identification schemes. The first application was the famous Fiat-Shamir scheme
based on the problem of modular square roots extraction. In the following years, many other schemes have been
proposed, some Fiat-Shamir extensions but also new discrete logarithm based schemes. Therefore, all of them
were based on problems from number theory. Their main common drawback is high computational load because
of arithmetical operations modulo large integers. Implementation on low-cost smart cards was made difficult and
inefficient.

With the Permuted Kernels Problem (PKP), Shamir proposed the first efficient scheme allowing for an imple-
mentation on such low-cost smart cards, but very few others have afterwards been suggested.

In this paper, we present an efficient identification scheme based on a combinatorial NP-complete problem:
the Permuted Perceptrons Problem (PPP). This problem seems hard enough to be unsolvable even with very small
parameters, and some recent cryptanalysis studies confirm that position. Furthermore, it admits efficient zero-
knowledge proofs of knowledge and so it is well-suited for cryptographic purposes. An actual implementation
completes the optimistic opinion about efficiency and practicability on low-cost smart cards, and namely with less
than 2KB of EEPROM and just 100 Bytes of RAM and 6.4 KB of communication.

Keywords: zero-knowledge identification, (permuted) perceptrons problem, NP-complete problem, simulated
annealing

AMS Classification: 94A60, 68Q25, 14G50

1. Introduction

An interactive identification protocol involves two entities, Alice and Bob. Alice tries to
convince Bob that she is really Alice. She has a public key that everybody knows and an
associated private key only known to her and that nobody else can compute. In order to
identify herself, Alice proves that she knows this private key. Usually the public key is an
instance of a difficult problem while the private key is one of its solutions.

The theory of zero-knowledge [18] shows that one can prove some knowledge in such
a way that the verifier gets the conviction that the prover really knows without learn-
ing anything else. The first zero-knowledge protocols were based on number theoretical



6 POINTCHEVAL AND POUPARD

problems (Fiat-Shamir [9] and its variants [19,27,28] which are based on modular roots [40],
Schnorr [41] which is based on the discrete logarithm problem). Even if they had, more or
less recently, numerous improvements [4,5,12,14,15,22,33,35–37,43], they have two major
drawbacks, both linked to the underlying problems.

• The different problems (factorization, RSA and the discrete logarithm problem), which
are used because of there strong algebraic properties, are related. Then a breakthrough
would probably involve many, and possibly, all of them. As one can remark, for the
moment, the same NFS technique provides the best algorithm against all of them.

• Modular operations using a large modulus, like multiplications or exponentiations, are
hard to perform. Even if they are practical on smart cards using arithmetical co-processors,
such devices are still expensive (at least twice or three times the price of the cheapest
chips).

1.1. Related Work

In order to circumvent the heavy computational load of previous protocols based on number
theoretical problems, new schemes have appeared since 1989. They rely on combinatorial
NP-complete problems and require only operations involving very small numbers: the Per-
muted Kernels Problem (PKP) [42], the Syndrome Decoding (SD) [44,46] or Constrained
Linear Equations (CLE) [45]. But this list is almost exhaustive.

1.2. Achievement

This paper investigates the so-called “Perceptrons Problem,” an NP-complete problem
which comes from learning machines. It has been introduced in cryptography by the
first author [31,32]. Then, Knudsen and Meier [23] improved the analysis of the problem
difficulty.

The statement of Perceptions Problem is very simple: given m vectors Xi with coordinates
equal to +1 or −1 (Xi ∈ {−1, +1}n) as constraints, one wants to find a vector V ∈ {−1, +1}n

such that all the products Xi · V , for i = 1, . . . , m, are nonnegative.

1.3. Outline of the Paper

After a more precise description of this problem and some variants, namely the Permuted
Perceptrons Problem, we study their properties in the complexity theoretic setting. Next,
we provide a more practical-oriented analysis of their difficulty in order to evaluate the
size of the parameters required for cryptographic purpose. Then, we present some zero-
knowledge interactive identification protocols based on the Permuted Perceptrons Prob-
lem, with an evaluation of their security. Finally we show that those protocols are well-
suited for smart card applications: an implementation has been realized and we present the
performance.



A NEW NP-COMPLETE PROBLEM 7

2. The Perceptrons Problems

This section is devoted to formally present the main problems from a complexity theoretic
point of view. We first study the Perceptrons Problem. Then, we focus on a sub-case, the
Permuted Perceptrons Problem.

2.1. The Perceptrons Problem

Let us first present this new problem. Then, we state several properties in the complexity
theory setting: this problem is NP-complete, and its optimization variation is MAX-SNP-
hard.

We call the following problem the Perceptrons Problem (orPP) because of its similarities
with the “Ising Perceptron Problem” in learning theory. This latter problem consists in learn-
ing a half-space given some samples in the N -dimensional unit ball classified according to
whether they are in the half-space or not. The designation “Ising” refers to the ±1 constraint,
which is present in the original Ising model of magnetism with N interacting spins.

In the following, we call an ε-matrix (resp. an ε-vector) a matrix (resp. a vector) which
components are either +1 or −1. Furthermore, all the products between matrices and vectors
are made in the ring of integers, denoted Z.

PROBLEM 1 (The Perceptrons Problem—PP).
Given: an ε-matrix A of size m ×n.
Question: is there an ε-vector Y such that A ·Y ≥ 0?

THEOREM 1. The Perceptrons Problem is NP-complete.

Proof. As usual, this proof needs two steps: first this problem lies in NP and it is further-
more NP-hard.

PP ∈ NP . First, this problem is clearly in NP . A witness is an n-dimensional ε-vector,
and its correctness can be checked, by a simple matrix multiplication, within time O(mn).

PP is NP-Hard. In order to prove that this problem is NP-hard, we polynomially reduce
an instance C = {C1, . . . , Cq} of 3-SAT into an instance of PP .

The intuition behind the reduction relies on a specific coding of clauses and truth assign-
ments, both as vectors. It is made in such a way that an unsatisfied clause provides a smaller
dot product, between its coding vector and the truth assignment coding, than a satisfied
clause. More precisely, it provides −6 whereas a satisfied one provides −2, 2 or +6. In a
second step, we add some constraints to make a PP solution vector to be a valid coding
of a truth assignment. Finally, we add some components to increase the dot products from
−2 to 0.

Initialization. A 3-SAT instance C, with parameters (q, k), consists of q 3-clauses: for
any i , the clause Ci is the disjunction of three distinct literals {�i

1, �
i
2, �

i
3} over the k boolean

variables x1, . . . , xk . More concretely, for any j , �i
j ∈ {x1, x̄1, . . . , xk, x̄k}.



8 POINTCHEVAL AND POUPARD

First Step. Each Ci is first encoded by an ε-vector Xi of size 2k which components depend
on the presence or absence of each literal: for any p ∈ {1, . . . , k},

Xi
p = Xi

p+k =
{

+1 if x p ∈ Ci ,

−1 if x̄ p ∈ Ci ,
Xi

p = −Xi
p+k = +1 otherwise.

In the same way, any truth assignment D is also encoded by an ε-vector V of size 2k: for
any p ∈ {1, . . . , k},

Vp = Vp+k =
{

+1 if x p ∈ D,

−1 if x̄ p ∈ D.

Therefore, with both encodings, one can remark that variables x p which are not in Ci do
not participate to the dot product, since whatever the related truth value, it leads to either
+1−1 = 0 or −1+1 = 0. On the contrary, a satisfied literal in Ci participates with +2,
whereas an unsatisfied literal participates with −2. As a consequence, since a clause is
satisfied if at least one of its literals is true:

Ci is satisfied under D ⇐⇒ Xi · V ∈ {−2, +2, +6},
Ci is not satisfied under D ⇐⇒ Xi · V = −6.

Second Step. However, an ε-vector V actually encodes a truth assignment if Vp = Vp+k for
any p ∈ {1, . . . , k}. Let us add further constraints with the k following ε-vectors Z1, . . . ,
Zk : for any j ∈ {1, . . . , k} and for any p ∈ {1, . . . , k},

Z j
p = −Z j

p+k =
{

+1 if p = j,

−1 if p �= j.

An ε-vector V actually encodes a truth assignment if and only if Z j · V = 0 for any
j ∈ {1, . . . , k}. Therefore, a solution V to the following system{

Xi · V ≥ −2 for i = 1, . . . , q,

Z j · V = 0 for j = 1, . . . , k.

encodes a valid truth assignment which satisfies all the clauses Ci , for i = 1, . . . , q.

Final Step. In order to make the inequalities relative to zero, we add two components to
each vector: we extend every Xi in X̃ i with two more components equal to +1, and we
force the new components of V to be +1 extending every Z j into Z̃ j

+ with (+1, −1) and
Z̃ j

− with (−1, +1):

X̃ i = (Xi , +1, +1), for any i ∈ {1, . . . , q},
Z̃ j

+ = (Z j , +1, −1) and Z̃ j
− = (Z j , −1, +1), for any j ∈ {1, . . . , k}.



A NEW NP-COMPLETE PROBLEM 9

Therefore, an ε-vector Ṽ of size 2k +2 which satisfies


X̃ j · Ṽ = X j · V + Ṽ2k+1 + Ṽ2k+2 ≥ 0 for j = 1, . . . , q,

Z̃ j
+ · Ṽ = Z j · V + Ṽ2k+1 − Ṽ2k+2 = 0 for j = 1, . . . , k,

Z̃ j
− · Ṽ = Z j · V − Ṽ2k+1 + Ṽ2k+2 = 0 for j = 1, . . . , k,

furthermore satisfies Z j · V = 0 for j = 1, . . . , k and thus Ṽ2k+1 = Ṽ2k+2 which thus leads
to X j · V ≥ −2 for i = 1, . . . , q .

Then, we have polynomially transformed an instance of 3-SAT with q clauses over k
variables, into an instance of PP of size m ×n with m = q +4k and n = 2k +2.

The problem PP is difficult to solve in the worst case, but what about its approximation?
We now claim that it cannot be efficiently approximated either. First, let us formally define
the optimization problem.

PROBLEM 2 (Optimization Problem—MAX-PP).
Given: an ε-matrix A of size m ×n.
Question: find an ε-vector Y such that the number of nonnegative

components of the vector A ·Y is maximal.

Using notations introduced by Papadimitriou and Yannakakis [29], it is clear that this
problem can be approximated within a factor 2. In fact, for a given instance A, let us denote
by k the maximal number of components of a product A ·Y that we can make simultaneously
nonnegative with a well-chosen Y . Considering a random vector and its opposite, we get
one for which the product by A admits more than n/2 nonnegative components, which is
greater than k/2, since k ≤ n.

Nevertheless, from the following theorem, there exists a constant ε > 0 for which one
cannot approximate this problem within a factor 1+ ε, unless P = NP .

THEOREM 2. MAX-PP is MAX-SNP-hard.

Proof. The proof is similar to the previous one (for Theorem 1), but we provide an
L-reduction [29] from the canonical MAX-SNP-complete problem: MAX-2-SAT . An
L-reduction is a polynomial reduction from the original problem P1 into the other problem
P2, for which there also exists a polynomial algorithm which transforms any solution of
P2 into a solution of P1 with a linear ratio. Therefore, if one can linearly approximate P2

(within a factor 1+ ε), one can also linearly approximate P1.
Basically, we encode the same way as before, a 2-clause, but this time, a satisfied 2-clause

provides a nonnegative dot product between its coding vector and the truth assignment
coding. Then, we add many constraints (which can be satisfied altogether) to enforce the
optimal solution to be a valid truth assignment coding.

With so many easily satisfied 2-clauses, one can show that any good approximation
(within a factor 1+ ε) for the obtained MAX-PP instance can be proven to satisfy all the
additional constraints, then it encodes a truth assignment. Each other satisfied inequality
exactly corresponds with a satisfied clause.



10 POINTCHEVAL AND POUPARD

3. The Permuted Perceptrons Problem

As we have just seen, the Perceptrons Problem is NP-complete. Consequently, according
to a very general result [17], it admits a zero-knowledge interactive proof of knowledge.
This latter could be turned into a zero-knowledge identification protocol. Nevertheless,
in order to get an efficient protocol, we define a variant of this problem: the Permuted
Perceptrons Problem (or PPP). For this new problem, we need the notion of multi-sets of
size m denoted by {{a1, . . . , am}}. The multisets are simply sets which may contain some
repeated elements.

PROBLEM 3 (The Permuted Perceptrons Problem—PPP).
Given: an ε-matrix A of size m ×n

and a multi-set S of m nonnegative integers.
Question: is there an ε-vector Y such that

the multi-set S is equal to {{(A ·Y )i | i = 1, . . . m}}?

THEOREM 3. The Permuted Perceptrons Problem is NP-complete.

Proof. For this proof, we reduce an instance of theNP-complete problem ONE-IN-THREE

3-SAT [10] into an instance of PPP . The ONE-IN-THREE 3-SAT problem consists in
solving a 3-SAT instance in such a way that in each 3-clause, exactly one literal is true.

More precisely, the obtained PPP instance relies in particular sub-group of instances,
namely where S = {{0, . . . , 0}}. Indeed, using exactly the same reduction as for Theorem 1,
satisfied clauses in the one-in-three sense lead to the equation Xi · V = −2 and the system
to solve becomes:{

Xi · V = −2 for i = 1, . . . , q,

Z j · V = 0 for j = 1, . . . , k.

which makes a solution V to encode a valid truth assignment which satisfies all the clauses
Ci in the one-in-three sense, for i = 1, . . . , q. Adding the same two-components, we make
a system with only equalities with 0.

Since a sub-problem of PPP is NP-complete, the general PPP problem is also
NP-complete.

4. Security of the Problem

In this section, we analyze the practical security of the two problems we have just presented.
Since they have never been used in computer science for cryptographic purposes, a careful
analysis of their complexity is necessary. Notice that the NP-complete property does not
guarantee that those problems are really well fitted for cryptographic applications because
two additional properties also have to be verified.

• First, the size of the parameters that one has to use in order to prevent known attacks must
not lead to inefficiency in terms of computation load or amount of transmission.



A NEW NP-COMPLETE PROBLEM 11

• Furthermore, the NP-completeness only guarantees the existence of worst cases which
solutions are hard to compute, but we need a much stronger property: all, but at most a
negligible part of the instances, must be hard to solve.

In the following, we only focus on odd values for m and n, for technical reasons. We note
m = 2q +1 and n = 2p +1. First, we study the link between m and n in order to have, on
average, only one solution per instance of PPP . Then we review several attacks against
PP and we extend them to PPP . Finally, we propose practical sizes for cryptographic
purpose.

4.1. Number of Solutions for PP and for PPP

As we will see in the following, the choice of the parameters m and n depends on the
efficiency of the attacks. But we can first try to find a relation between them to maximize the
complexity of any attack. On the one hand, if m is too large the system will be too constrained.
In fact, let us consider the “Ising Perceptron Problem” where a vector V ∈ {+1, −1}n

is given, it defines the half-space V · X ≥ 0 denoted HV , as well as a number m of samples
X1, . . . , Xm in the n-dimensional unit ball classified according to whether they are in HV

or not. Baum, Boneh and Garrett [2] proved that their genetic algorithm can find V for m =
O(n). On the other hand, if m is too small there will be a lot of solutions. In both cases, most
of the attacks will be more efficient, so we suggest to take m and n such that PPP admits,
on average, just one solution. To do so, we need to know the average number of solutions
for PP when we know there is at least one and the probability to get a given multi-set S.

In order to evaluate the expected number of solutions, we have to make precise the
probability distribution followed by the inputs A and V . In the sequel, we use the natural
distribution which comes from the following construction:

• one uniformly chooses random ε-vector V and ε-matrix A

• for every row Ai of A, if Ai · V < 0 then one replaces this row by its opposite.

Now, we evaluate, by a combinatorial method, the total number of solutions for such an
instance of PP which admits at least one solution: the private key. Let α ∈ {−n, . . . , n} and
X , V be two ε-vectors such that X · V = α. Let us use dH to denote the Hamming distance
between two vectors (the number of distinct coordinates), and #S to denote the cardinality
of a given set S. For any integers k and δ, and for any ε-vector W such that dH (W, V ) = k
and X · W = δ, we have

X · W = #{i | Wi = Xi } − #{i | Wi �= Xi } = δ(
n +α

2
−β +γ

)
−

(
n −α

2
−γ +β

)
= α +2γ −2β,

where every parameters are defined as described on the Figure 1, and namely with the
relation k = β +γ . Therefore, one gets

β(k, α, δ) = k

2
− δ −α

4
and γ (k, α, δ) = k

2
+ δ −α

4



12 POINTCHEVAL AND POUPARD

Figure 1. Number of solutions of PP .

with the constraints 0 ≤ β, γ ≤ k, 0 ≤ β ≤ (n +α)/2 and 0 ≤ γ ≤ (n −α)/2 then. δ lies in
the set

E(n, k, α) =
{

δ −α ∈ 4Z

−2 ·min{k, n − k +α} ≤ δ −α ≤ 2 · min{k, n − k −α}.

}
.

Let us consider the ε-vectors W at an even distance k from V (i.e., k ∈ 2N):

Pr
W

dH (V,W )=k

[X · W = δ | X · V = α] = f (n, k, α, δ)(n
k

) ,

where

f (n, k, α, δ) =
( n+α

2

β(k, α, δ)

)( n−α
2

γ (k, α, δ)

)
.

By summing over every nonnegative δ, we get the probability for W to provide a nonnegative
dot product with V . Thus, for any vector Y , the number of solutions at even distance k from
V , such that A · V = Y , is equal to

N (m, n, k, Y ) =
m∏

i=1

∑
δ∈E(n,k,Yi )

δ≥0

f (n, k, Yi , δ)(n
k

) .

Then, by summing over every possible even distance k, we get the number of solutions at
even distance from V such that A · V = Y , denoted by N (m, n, Y ).

Consequently, we can evaluate the average number of solutions N (m, n) for an instance
of size m ×n, when the known solution vector Y = A · V follows a normal distribution,
which will be the case in practice, i.e., pn,α = Pr[Yi = α] ≈ e− α2

2n
√

8/πn if α is even, and 0
otherwise.

Let Sm be a multiset with m nonnegative integers. We will use the following notations:

Notation 1. Pm,n,Sm = PrY [{{(A ·Y )i }} = Sm | A ·Y ≥ 0].

Notation 2. |Sm | j represents the number of elements of Sm equal to j .



A NEW NP-COMPLETE PROBLEM 13

If the rank of A is maximal, i.e., there exists an m-size submatrix R of A with an invertible
determinant in Z, then

Pm,n,Sm = m!
j=n∏
j=1

p
|Sm | j

n, j

/
|Sm | j !

Furthermore, it is clear that the probability Pm,n,Sm is maximal if Sm is equal to the “normal”
multiset �m , which follows a normal distribution (i.e., |�m |i = m × pn,i ). Thus, for any
multiset Sm , Pm,n,Sm ≤ Pm,n,�m .

We can conclude that the number of solutions of an instance of PPP , for a given
multiset Sm , can be approximated by N (m, n)× Pm,n,Sm and therefore upper-bounded by
N (m, n)× Pm,n,�m .

On Figure 2, one can check the correctness of this evaluation by comparing its answers
with some concrete tests:

• NPP and P�m are the above evaluations for a given size m ×n;

• E[NPPP ] is an upper-bound on the expected number of solutions for a PPP instance
of size m ×n from the above analysis;

• EC [NPP ] and EC [NPPP ] are the average numbers of solutions over 50 tests on instances
of size m ×n.

If we want only one solution (or at least very few), on average, we have to choose m and
n such that the product N (m, n)× Pm,n,�m is close to 1. We have presented such values on
Figure 3. We can notice that the “good” sizes, around 100, are of the form n = m +16.

m n NPP P�m E[NPPP ] EC [NPP ] EC [NPPP ]
11 17 148 0.017 3 181 3
13 17 65 0.013 1 76 1
13 19 212 0.010 2 238 2
15 19 65 0.007 1 82 1
17 21 107 0.004 1 141 1
19 23 105 0.003 1 119 1
21 25 160 0.002 1 170 1

Figure 2. Some examples.

n
m optimal N (m, n) Pm,n,�m

101 117 9.4×109 8.3×10−11

121 137 1.7×1011 8.6×10−12

151 169 2.1×1013 5.9×10−14

171 187 1.7×1014 5.0×10−15

191 207 2.3×1015 4.1×10−16

201 217 8.7×1015 1.2×10−16

Figure 3. Optimal dimensions for PPP .



14 POINTCHEVAL AND POUPARD

4.2. Attacks against the Perceptrons Problem

4.2.1. A New Coding

Let us now focus on how to solve the Perceptrons Problem. We can first remark that PP can
be transformed into an equivalent problem more suitable for implementations. It operates
on 0-1 bits, instead of +1 and −1, and exclusive OR together with Hamming weight w H ,
instead of dot product.

PROBLEM 4.
Given: a binary matrix A of size m ×n,
Question: find a binary vector V such that w H (Ai ⊕ V ) ≤ n/2 for all i .

This does not lead to an attack of the problem but it gives a way to improve the com-
putations, using the native internal parallelism of the XOR operation, on 32-bit and 64-bit
processors.

4.2.2. Approximation of the Solution

Even if the theoretical analysis of MAX-PP proves that it is difficult to approximate (see
Theorem 2), we can try to find a vector M such that A · M has many positive coordinates.
The first one which comes to mind, and that we call the majority vector, consists of taking
M j = +1 if there are more components Ai, j equal to+1 than to−1, and M j = −1 otherwise.
The following analysis proves two paradoxical results. First, the majority vector does not
differ so much from the solution we are looking for. But, even if we know that a large part
of the coordinates is correct, the number of vectors that still have to be tested in order to
find a solution is very large, even if the parameters m and n are small.

LEMMA 1. The Hamming distance between the solution of an instance and the majority
vector is, on average, n × ( 1

2 − 1
π

√m
n ).

Proof. We consider the same probability for A and V as described in Section 4.1, namely:
one randomly chooses an ε-matrix A′ and an ε-vector V and sets Ai = A′

i if Ai · V > 0 and
Ai = −A′

i otherwise. If m and n are chosen in order to have, on average, one solution per
PPP-instance, we can say that V is “the” solution.

Let us first recall that we assume that m = 2q +1 and n = 2p +1. Let us compare V and
the majority vector M . The probability for V and A′

i to have exactly r identical coordinates
is 1

2n (
n
r). Consequently, the average number of identical coordinates between V and Ai is

equal to 1
2n+1 ×∑

2r>n r(n
r). Using the well known identities

p∑
i=0

(
2p +1

i

)
=

2p+1∑
i=p+1

(
2p +1

i

)
= 22p

and
2p+1∑

i=p+1

i

(
2p +1

i

)
= 2p +1

2

(
22p +

(
2p

p

))
,



A NEW NP-COMPLETE PROBLEM 15

and the approximation

2−n

(
2p

p

)
≈ 1√

2πn
,

which comes from the Stirling’s approximation of n!, we obtain that the probability Fn that
Ai, j = Vj is

Fn = 1

n
×2−(n+1)

∑
2r>n

r

(
n

r

)
= 1

2
+2−n

(
2p

p

)
≈ 1

2
+ 1√

2πn
.

Let Gm,n be the probability to have more than one half of the {Ai, j }i<m equal to Vj for any
j . It can be computed, using again above equations and approximations in the following
way:

Gm,n =
2q+1∑

s=q+1

(
m

s

)
(1− Fn)

m−s Fs
n ≈ 1

2m

2q+1∑
s=q+1

(
2q +1

s

)(
1+ 2s −m√

πp

)

≈ 1

2m

(
1− m√

πp

)
2m−1 + 1

2m

2√
πp

m

2

(
2m−1 +

(
2q

q

))
,

which can be approximated by 1
2 + m

2π
√

pq . In conclusion, the Hamming distance between
the solution V and the majority vector M is about n × ( 1

2 − 1
π

√m
n ).

For example, with the sizes suggested on Figure 3, this shows that about 80% of the
coordinates of the majority vector are correct. So a first way to solve PP consists of
computing the majority vector and then testing vectors which differ in less than 20% of
the coordinates. But there are more than ( n

0.2×n) such vectors and as soon as n ≥ 91 the
time complexity of this attack is greater than 264. We can try to improve this algorithm by
first modifying the coordinates corresponding to columns which number of +1 is not very
different from the number of −1. But many wrong coordinates of the majority vector come
from non-ambiguous cases so that the efficiency is not really improved.

4.2.3. A Deterministic Attack

Another idea to solve PP is based on trying to use the structure of the matrix A and to
perform a kind of Gaussian reduction.

More precisely, if Ai · V > 0 and A j · V > 0 then (Ai + A j ) · V > 0. Furthermore, the
vector (Ai + A j )/2 has on average n/2 null coordinates. From all the pairs of rows of A,
a system of m(m −1)/2 inequalities is obtained and after the permutation of the rows and
columns we can hope to obtain a system which looks a bit like a triangular one (see Figure 4,
on the left part).

For more concreteness, let us focus on the example (m, n) = (101, 117). We obtain a
system of m(m −1)/2 = 5050 equations. The average number of rows with k zeros is
m(m−1)

2
1
2n (

n
k). As a consequence, the average number of rows with k = 77 null coordinates

is approximatively one. So, with high probability, there is a row with 77 null coordinates. It



16 POINTCHEVAL AND POUPARD

0000000000000++++–––
00000000++––+0–00–0+
00000+++00+0––+0––++
000––+0––0++00+0–0++

V

>0

+: = +1 and –: = –1

00000000++––+0–00–0+
00000+++00+0––+0––++
000––+0––0++00+0–0++

V

0000000000000++++–––

>0 ?

+: = +1 and –: = –1

Figure 4. A deterministic algorithm to solve PP .

Row 1 2 3 4 5 6 7
Number of zeros ahead 77 54 40 31 25 21 19

Figure 5. Expected system.

is chosen as the first inequality and the columns are permuted in order to have all the zeros
ahead. Then, we can make the same analysis with the remaining rows, considering only the
first 77 coordinates. This leads, with high probability, to a second row with 54 zeros ahead.
Finally, we can expect to obtain a system of the form described in Figure 5.

Once we have this system, we enumerate all the vectors of n −77 = 40 coordinates
obtained by modifying at most a fixed proportion p of the last 40 coordinates of the majority
vector (see Figure 4, on the right part). For all those vectors which product with the first
row is positive (this happens with probability about 1/2), we enumerate the 77−54 = 23
previous coordinates in the same way and so on.

Finally, this leads to an algorithm that solves the problem with an expected number of
elementary operations (product of two vectors) equal to(

40
p ×40

) [
1+ 1

2

(
23

p ×23

) [
1+ 1

2

(
14

p ×14

)
[. . .]

]]

The value of the proportion p of coordinates that have to be changed have been statistically
estimated and we obtained a complexity roughly equal to 281. Furthermore, the algorithm
can solve one instance out of ten with complexity 261.

We investigated some ways to improve this deterministic algorithm. For example the
fixed proportion of modified coordinates of the majority vector can vary from one step to
another. Furthermore, one can try to add more than two rows of A to obtain rows with more
than 77 zeros. However, we did not really improve the efficiency of the algorithm with such
modifications.

4.2.4. A Probabilistic Attack

Another way to solve PP is to use a probabilistic algorithm which tries to find a solution
by successive approximations. It starts with a random vector and modifies it in order to
reduce the Hamming distance to the solution. Many such algorithms are known, from the
simple gradient descent to genetic algorithms [8,16,21]. We have chosen to implement the



A NEW NP-COMPLETE PROBLEM 17

1. Choose a random vector V
2. Let � = �i

3. Choose V ′ ∈ Ngb(V )

4. Let � = E(V ′)− E(V )

5. If � > 0 then p = exp(−�/�)

else p = 1
6. With probability p, let V = V ′
7. Let � = �× τ

8. If E(V ) > 0 and � > � f go to 3.

Figure 6. Simulated annealing algorithm.

simulated annealing method but, because of the general lack of theoretical understanding
of its mechanism, we can just give the actual results we obtained. However, we will see in
Section 4.3 that this is actually not a real problem.

We first need to define the neighborhood Ngb(V ) of any ε-vector V , i.e., the vectors that
are considered not to be very different, and an energy function E(V ) which quantifies the
distance from the vector V to a solution of PP . The algorithm starts with a random vector
V and chooses a vector V ′ in its neighborhood. If the energy of V ′ is less than E(V ), V ′

becomes the current vector and so on. In order to avoid local minima, V ′ can also replace
V even if its energy is higher but the probability of such an event decreases with time, like
the temperature during metal annealing. A detailed description is presented on Figure 6. It
is parameterized by the initial temperature �i , the final one � f and the rate τ .

Many energy functions can be used. For example, the number of indices i such that
Ai · V < 0 is a possible choice, but the sum of −Ai · V over the indices such that Ai · V < 0
(i.e., − ∑

i,Ai ·V <0 Ai · V ) is much more efficient. The neighborhood of any vector can be
defined as the vectors obtained by changing only one coordinate.

As an example, with our implementation, the average time to find a solution for a 101×
117-size instance is 3.5 seconds with an old 50 MHz Sparc 10.

Recently, Knudsen and Meier [23] improved this attack, finding better energy functions.
As a consequence, they obtained an algorithm that solves PP 280 times faster than was
estimated in [32]. This shows how it is difficult to tune the parameters of such probabilistic
algorithms.

4.3. Attacks against the Permuted Perceptrons Problem

At first sight, the Permuted Perceptrons Problem gives much more information about the
solution than the basic Perceptrons Problem. In fact, it is straightforward to obtain one bit
of the solution based on the public data but we have not been able to use more efficiently
the knowledge of {{Si }}. Let α (resp. αi ) be the number of coordinates of V (resp. Ai )
equal to +1. We have Ai · V = n +2α +2αi mod 4. Consequently, from Si mod 4, we learn
α mod 2, i.e., one bit of the private key.
PPP is hard to solve because of the permutation of the values Si . If this permutation

were known, a single Gaussian reduction of the matrix would lead to the solution but the
guess of this permutation seems computationally infeasible. Furthermore, if we want to use



18 POINTCHEVAL AND POUPARD

simulated annealing algorithms or genetic algorithms to directly solve PPP , we have to
find a good energy function (or fitness function). One which should suit well is defined as
follows: E(V ) = ∑

i |Ti − Ri |, where T = sort(S) and R = sort(A · V ). But, on average,
the energy difference between two neighbors is similar to the energy difference between two
random points. It therefore does not provide any kind of continuity, which does not help the
algorithm to converge to the solution. So, the only way to solvePPP seems to get a solution
of the related Perceptrons Problem and test whether it solvesPPP or not. It may be possible
to make the Perceptrons Problem algorithm to more likely find aPPP solution than any one
else, as attempted to do Knudsen and Meier [23], but the improvement is not so significant.

For suggested parameters (m, n), an instance ofPPP has about one solution but there are
so many solutions for the related Perceptrons Problem that, even if we are able to compute
them efficiently, the time needed to find the good one is still very large.

According to our experiments and those of Knudsen and Meier, we therefore advise
(m, n) = (121, 137) as a minimal choice, and may be (201, 217) for very secure
applications.

Note. When the problem PP is modified into PPP , it could seem surprising to keep the
positivity constraint on the values Si . The basic reason is that this enables to have instances
with, on average, just one solution. After such an observation, and since known attacks
againstPPP are derived from attacks onPP , we could imagine to choose another constraint
on the Si to reduce the average number of solutions, for example |Si | > k instead of Si > 0.
But, doing this, we would no longer be able to generate instances with known solutions.

5. Application to Cryptography

Since small sizes of the parameters are enough to get a difficult problem, we propose to use
it for identification protocols. So, we present two schemes which security is equivalent to
the Permuted Perceptrons Problem.

5.1. The Three-Pass Identification Protocol

We first present a three-pass protocol, for a given security parameter k. Let us describe this
scheme in two phases: the initialization and the identification. In PPP , the arithmetical
operations are performed in Z, however, the protocol needs to perform those operations
in a finite set, the modular finite ring Zp. Therefore, we have to determine the smallest
value of p such that the reduction modulo p of the operations does not modify the prob-
lem. More precisely, let V be an ε-vector of odd size n and S be a positive and odd integer.
We are looking for p such that V ·Y = S is equivalent to V ·Y = S mod p, for any
ε-vector Y . Since V ·Y is odd, we require that V ·Y = S +2kp ⇐⇒ V ·Y = S. Further-
more, |V ·Y − S| < 2n so the equivalence occurs as soon as p > n.

Then, we have a public integer p > n which defines the ring in which all the computations
will be done, together with a public hash function H . Next, any user chooses his public and
private keys, (A, S) and V as described above.



A NEW NP-COMPLETE PROBLEM 19

The global identification scheme consists of k sequential iterations of the following
protocol, where any random choice is performed uniformly in the finite space:

• the Prover chooses a random permutation P to permute the rows of A, and a random
signed permutation Q, to permute and possibly change the sign of the columns. Then, he
chooses a random vector W in (Zp)

n .

• the Prover computes the new instance A′ = PAQ, with the new solution V ′ = Q−1V . The
multi-set remains unchanged.

• the Prover masks V ′ with the (previously randomly chosen) vector W into the vector
R = V ′ + W .

• Then, he begins interactions with the Verifier:
– the Prover computes the commitments of all the elements randomly chosen above

h0 = H(P | Q) and h1 = H(W ) as well as the following commitments, h2 = H(R),
h3 = H(A′W ) and h4 = H(A′ R). Then, he sends all of them, h0, h1, h2, h3 and h4, to
the Verifier.

– the Verifier chooses a random question c ∈ {0, 1, 2, 3}, and sends it to the Prover.
– the Prover answers according to the query c

if c = 0, he sends P , Q and W ;
if c = 1, he sends P , Q and R;
if c = 2, he sends A′W and A′V ′;
if c = 3, he sends the vectors W and V ′;

– the Verifier accepts after having checked, according to his query c:
for c = 0, if h0 = H(P | Q), h1 = H(W ) and h3 = H(PAQW);
for c = 1, if h0 = H(P | Q), h2 = H(R) and h4 = H(PAQR);
for c = 2, if h3 = H(A′W ), h4 = H(A′W + A′V ′) and {{(A′V ′)i }} = S;
for c = 3, if h1 = H(W ), h2 = H(W + V ′) and V ′ ∈ {−1, +1}n .

If the Verifier accepts the k iterations, then he accepts the identification, otherwise, he
rejects it.

We first state a lemma which proves the soundness of this interactive proof system.

LEMMA 2. Let A be a probabilistic polynomial time Turing machine which can perform
an impersonation with probability π = ( 3

4 )k +ν, for some ν > 0. Then there is another
machine which has control over A and solves the Permuted Perceptrons Problem, or finds a
collision for the hash function, with probability greater than 3ν2/14 after less than 1+4k
calls to A.

Proof. This proof is mostly inspired by [46], where one assumes that an attacker A can
perform an impersonation with probability π = ( 3

4 )k +ν for some ν > 0. Let us denote by ω

and ω′ the random tapes of this adversary and of the Verifier respectively, and by I the list of
the challenges asked by the Verifier. It is clear that I is a random variable which may depend
on both ω and ω′. However, in that proof, we only consider honest verifiers who uniformly,
and independently from anything else, chooses I . We can therefore identify ω′ and I . Let
us denote by S the set of the pairs (ω, I ) which lead to acceptance: Pr[(ω, I ) ∈ S] = π .



20 POINTCHEVAL AND POUPARD

Let us define the set � = {ω | PrI [(ω, I ) ∈ S] ≥ π −ν/2}. If we assume that Pr[�] < ν/2,
then

π = Pr[S] = Pr[S | �] ·Pr[�]+Pr[S | �̄] ·Pr[�̄] < ν/2+ (π −ν/2) = π,

which implies a contradiction, so Pr[�] ≥ ν/2. Furthermore, using Bayes’ law one can
show that

Pr[� |S] = 1−Pr[�̄ |S] = 1−Pr[S | �̄]×Pr[�̄]/Pr[S] ≥ 1− (π −ν/2)/π = ν/2π.

Consequently, if we run an attack for randomly chosen (ω, I ), with probability greater
than π , (ω, I ) ∈ S. In that latter case, with probability ν/2π , we furthermore have ω ∈ �.
Let us assume that holds in the following of the proof, therefore, PrI [(ω, I ) ∈ S] ≥ π −ν/2.
Let us consider the execution tree T (ω) corresponding to all accepted I , with above ω. Using
arguments analogous to [46], we denote by ni the number of nodes at depth i . We know that
n0 = 1 and nk = 3k +4kν/2 (since nk/4k = PrI [(ω, I ) ∈ S] ≥ π −ν/2). Using a convexity
relation on the logarithm of the following relation,

k−1∏
i=0

ni+1

ni
= nk

n0
≥ 3k + ν

2
·4k ≥

(
1− ν

2

)
·3k + ν

2
·4k,

one obtains
k−1∑
i=0

log
ni+1

ni
≥

(
1− ν

2

)
log 3k + ν

2
log 4k ≥ k

(
log 3+ ν

2
log(4/3)

)
.

Hence, there exists i < k such that

ni+1

ni
≥ 3 · (4/3)ν/2 = 3 · e

ν
2 ·log(4/3) ≥ 3 ·

(
1+ ν

2
· log(4/3)

)
≥ 3 ·

(
1+ ν

7

)
.

Let us respectively denote by fi and ti the number of nodes at depth i with exactly 4 sons
and the number of nodes at depth i with at most 3 sons:

ni = fi + ti and ni+1 ≤ 4 fi +3ti = fi +3ni .

Therefore, 3+ fi/ni ≥ 3+3ν/7, which implies fi/ni ≥ 3ν/7. And so, with probability
greater than 3ν/7, the path I contains a node with 4 sons. In that case, we can find it by
trying the 4k possible nodes along this path.

Finally, after less than 4k +1 calls to the machine A, with probability greater than
π ×ν/2π ×3ν/7 = 3ν2/14, we have found a node with 4 sons. Such a node corresponds
to the situation where the five commitments h0, h1, h2, h3 and h4 have been made and the
attacker can answer the four questions of the verifier:

c = 0 H(P0 | Q0) = h0 = H(P1 | Q1) c = 1 (1)

c = 0 H(W0) = h1 = H(W3) c = 3 (2)

c = 1 H(R1) = h2 = H(W3 + V ′
3) c = 3 (3)

c = 0 H(P0AQ0W0) = h3 = H(Y2) c = 2 (4)

c = 1 H(P1AQ1 R1) = h4 = H(Y2 + Z2) c = 2 (5)



A NEW NP-COMPLETE PROBLEM 21

Unless we have found a collision for the hash function H , we can consider that

(1) ⇒ P = P0 = P1,

(1) ⇒ Q = Q0 = Q1,

(2) ⇒ W = W0 = W3,

(3) ⇒ R = R1 = W3 + V ′
3 = W + V ′ mod p,

(4) ⇒ Y = Y2 = P0AQ0W0 = PAQW mod p,

(5) ⇒ Y + Z = Y2 + Z2 = P1AQ1 R1 = PAQR mod p

such that V ′ ∈ {−1, +1}n and {{Zi }} = S mod p. Then,

Y + Z = PAQR = PAQW + Z = PAQW +PAQV ′ mod p,

consequently, Z = PAQV ′ mod p. If we let V = QV ′, we have Z = PAV mod p, hence
{{(AV)i }} = S mod p. Since p > n, we have also {{(AV)i }} = S. Finally, we have solved
the Permuted Perceptrons Problem instance in time 4k +1, with probability greater than
3ν2/14.

Hence the following Theorem:

THEOREM 4. If p > n, this protocol is an interactive proof system for PPP .

Proof. This protocol is clearly complete, and the previous lemma proves the soundness:
if there exist a polynomial P and an attacker A which can perform an impersonation, for
any security parameter k, in time t , with probability greater than (3/4)k +1/P(k), then
there exists a machine which can either extract the secret key or find a collision, in time
(4k +1)× t , with probability greater than 3/14P2(k).

We now assume that m ≤ n and that the rank of the matrix A is equal to m, i.e., there
exists an m ×m-sub-matrix K of A with an invertible determinant in Zp.

THEOREM 5. In the random oracle model, or with a secure commitment scheme, if the rank
of the matrix A is equal to m, this interactive proof system is zero-knowledge.

Proof. We want to prove that the interaction between the prover and a possibly crooked
verifier can be simulated by a probabilistic polynomial time Turing machine without the
secret, with an indistinguishable distribution.

Let us denote by � the strategy of the crooked verifier: for any history tape hist, and the
view of the five commitments h0, h1, h2, h3, h4, this strategy is used to get an optimal query
c: �(ω, hist, h0, h1, h2, h3, h4) outputs a query between 0 and 3. In the case of an honest
verifier, this strategy would be independent of hist, h0, h1, h2, h3, h4, but more generally
we consider a crooked one.

Let us describe a probabilistic polynomial time Turing Machine S which builds commu-
nication tapes with an indistinguishable distribution from the real ones. Once again, any
random choices are performed according to uniform distributions in the respective finite
sets.



22 POINTCHEVAL AND POUPARD

1. S chooses a uniformly random query C ∈ {0, 1, 2, 3}
if C = 0,S randomly chooses P , Q and W . It computes the commitments h0 = H(P | Q),
h1 = H(W ) and h3 = H(PAQW) and randomly chooses the strings h2 and h4. Then, it
lets x = (h0, h1, h2, h3, h4) and y = (P, Q, W).

if C = 1,S randomly chooses P , Q and R. It computes the commitments h0 = H(P | Q),
h2 = H(R) and h4 = H(PAQR) and randomly chooses the strings h1 and h3. Then, it
lets x = (h0, h1, h2, h3, h4) and y = (P, Q, R).

if C = 2, S randomly chooses a vector Y such that {{Yi }} = S, and another vector X .
Y is supposed to be PAV and X is supposed to be PAQW. It is clear that Y follows the
same distribution as PAV. But what about the distribution of PAQW? Let Z ∈ (Zp)

m . We
assume that Y = PAV is fixed, which fixes the permutation P . The probability for PAQW
to be equal to Z , over uniformly distributed Q and W , is equal to∑

Q #{W | AQW = P−1 Z}
2nn!pn

=
∑

Q #{W | AW = P−1 Z}
2nn!pn

,

since the Q are invertible. Randomly choosing the (n −m) coordinates, not correspond-
ing to the sub-matrix K , there is only one solution for the m others. Then the previ-
ous probability is equal to

∑
Q pn−m/(2nn!pn) = 1/pm . S computes the commitments

h3 = H(X), h4 = H(X +Y ) and randomly chooses the strings h0, h1 and h2. Then, it
sets x = (h0, h1, h2, h3, h4) and y = (X, X +Y ).

if C = 3, S randomly chooses a vector W and an ε-vector E , computes the commitments
h1 = H(W ), h2 = H(W + E) and randomly chooses the strings h0, h3 and h4. Then, it
lets x = (h0, h1, h2, h3, h4) and y = (W, W + E).

2. S evaluates c = �(ω, hist, x).

3. If c = C then S writes x , c and y, otherwise S rewinds the history tape and goes back
to 1 (reset [18]).

Consequently, if H is a random oracle [3], or represents a secure commitment scheme
[7,20], S simulates communication tapes with an indistinguishable distribution from a real
identification of k rounds after an expected number of steps bounded by 4× k.

These results prove the security of this identification scheme even against active attacks
relative to the Permuted Perceptrons Problem.

5.2. The Five-Pass Identification Protocol

As we have seen, the probability of impersonation is only upper bounded by 3/4 at each
round. In order to obtain an acceptable security level (say probability of impersonation less
than one over a million), we have to iterate the protocol 48 times.

The following protocol, the five-pass one, provides a better security level, since the
probability of impersonation is roughly upper bounded by 2/3 at each round.



A NEW NP-COMPLETE PROBLEM 23

For any security parameter k, the initialization is the same as before. The identification
consists of k repetitions of the following protocol, where any random choices follow uniform
distributions:

• the Prover chooses a random permutation P to permute the rows of A and a random
signed permutation Q to permute and possibly change the sign of the columns. Then he
chooses a random vector W in (Zp)

n .

• the Prover computes the new instance A′ = PAQ, together with the new solution V ′ =
Q−1V . The multi-set remains unchanged.
Until this stage, everything is the same as in the three-pass protocol, but the Prover waits
before computing R.

• Then, he begins interactions with the Verifier:
– the Prover computes the commitments h0 = H(P | Q), h1 = H(W | V ′) and h2 =

H(A′W | A′V ′), and sends them to the Verifier.
– the Verifier chooses a random t between 1 and p −1, and sends it to the Prover.
– the Prover masks V ′ with W into the vector R = tW + V ′ and computes h3 = H(R)

and h4 = H(A′ R). He sends h3 and h4 to the Verifier.
– the Verifier chooses a random question c ∈ {0, 1, 2}, and sends it to the prover.
– the Prover answers according to the query c

if c = 0, he sends P , Q and R;
if c = 1, he sends A′W and A′V ′;
if c = 2, he sends W and V ′.

– the Verifier accepted after having checked, according to his query c
for c = 0, if h0 = H(P | Q), h3 = H(R) and h4 = H(PAQR);
for c = 1, if h2 = H(A′W | A′V ′), h4 = H(t A′W + A′V ′) and the multi-set {{(A′V ′)i }}
is equal to S;
for c = 2, if h1 = H(W | V ′), h3 = H(tW + V ′) and V ′ ∈ {−1, +1}n .

If the Verifier accepts k iterations, then he accepts the identification, otherwise, he rejects
it.

THEOREM 6. If p is a prime number greater than n, this protocol is an interactive proof
system for PPP .

Proof. The same proof as for the three-pass scheme establishes this Theorem. How-
ever, for the soundness, we need p to be prime, so that any non-zero element in Zp is
invertible.

In the reduction, we try to extract two distinct t for which the adversary can answer
the three values for the challenge c. This is not possible if the adversary can answer the
three values of c for just one t , and just two challenges for the other t : which represents
3+2(p −2) successful situations, and therefore 2(p −1)+1 among the 3(p −1) possible
challenges. One more possible success would give us the possibility to extract what we are
looking for.

LEMMA 3. If there exist a polynomial P and an attacker A which can perform an imper-
sonation, for any security parameter k (the number of iterations), with probability greater



24 POINTCHEVAL AND POUPARD

than ((2p −1)/(3(p −1)))k +1/P(k), then there exists a machine which can either extract
the secret key or find a collision, after less than 3pk calls to A, with probability greater
than 3/14P2(k).

That Lemma proves the Theorem.

THEOREM 7. In the random oracle model, or with a secure commitment scheme, if the rank
of the matrix A is equal to m, for any fixed prime p greater than n, this interactive proof
system is zero-knowledge.

6. Practical Identification Scheme

In this section, we first study secure and efficient strategies to choose the system parame-
ters and the “per-entity” secrets. Next we describe a practical version of the identification
schemes theoretically analyzed in the previous section. Then, we summarize the results we
obtained with an actual implementation of this protocol on a low-cost smart card. Finally, we
compare the Permuted Perceptrons based schemes with others also based on NP-complete
problems.

6.1. Selection of the System Parameters

We first need to choose the parameters m and n. In order to have on average one solution per
instance, those parameters have to verify the heuristic relation n ≈ m +16. The choice of
one of the convenient pairs (m, n) will immediately fix the level of security of the underlying
problem. As a conclusion of the analysis of Section 4.3, we can advise (m, n) = (121, 137)

as a minimal choice and larger sizes, as (m, n) = (201, 217) for a higher level of security
(since it seems a million times harder to solve).

Next, as we have previously seen, we need to perform mathematical operations in a finite
field in order to hide information. So, we have to choose a prime p > n.

Finally, let A be a publicly known ε-matrix. The public keys of all the users will be derived
from this single matrix. For security and efficiency reasons, the matrix can be generated
in the following way: let g0 be a seed used by a pseudo-random generator to produce m
secondary seeds g1, . . . , gm . Then each gi is used to produce the i th row Ai of the matrix
A using again a pseudo-random generator. This way, the matrix can be stored using about
10 bytes and furthermore this is a guarantee of its (pseudo)-randomness.

6.2. Selection of “Per-Entity” Secrets

Each user can choose his own private key V and compute the related public key. To achieve
this goal, he computes the unique vector L , defined by Li = sign(Ai · V ) for all i , and the
multi-set S = {{Li × (Ai · V )}}.

We now show how to store efficiently the public key (L , S). First notice that, even if the
elements of S can be as large as n, usually, they are much smaller so we can assume that



A NEW NP-COMPLETE PROBLEM 25

k 1 3 5 7 9 11 13 15
Average 16 16 15 14 12 11 9 7

k 17 19 21 23 25 27 29 ≥31
Average 6 4 3 2 2 1 1 0

Figure 7. Function Average for (m, n) = (121, 137).

Percentage of instances which can be coded for
(m, n) = (121, 137)

�\t 3 4 5 ∞
31 2 24 29 29
33 4 39 48 48
35 5 54 65 66
37 7 65 78 78
39 8 73 87 88
41 9 78 93 93
∞ 9 84 99 100

Key size (bits)
Public Secret

m n t � (= �(t−1)
2 +m) (= n)

121 137 35 4 189 137
141 157 39 4 217 157
161 177 43 4 245 177
181 197 45 4 269 197
201 217 45 5 311 217

Figure 8. Practical parameters.

they are less than a constant t . Furthermore, the average number of elements of S equal to
k is m

2n−1 (
n

(n + k)/2 ). Let us define the function

Average(m, n, k) =
⌈

m

2n−1

(
n

(n + k)/2

)⌋
,

where for any real number x , �x� denotes the nearest integer from x . The values of this
function for (m, n) = (121, 137) are shown on Figure 7. We can assume that for any
odd k less than t , the number of elements of S equal to k lies in [Average(m, n, k)−
2�−1, Average(m, n, k)+2�−1]. Figure 8 presents the fraction (in percents) of the instances
which can be coded for given t and �, for the parameters (m, n) = (121, 137). Then, the
second table shows that, if we just consider an half of the keys, the public key can be stored
very efficiently.

Of course this technique does not enable to use any instance as a pair of secret and
public keys but one can remark that the excluded instances are very special cases, which are
probably easier to break. For example, if too many products Ai · V have identical values,
this drastically reduces the difficulty of finding a permutation of the set S equal to A · V .



26 POINTCHEVAL AND POUPARD

Furthermore, if an element of S is too large, it means that V is not very different from one
of the Li Ai ’s, so it may be found quite easily. Therefore, the optimization of key storage is
not a drawback but it is even a way to avoid the choice of weaker keys.

6.3. Practical Protocol

We now describe a practical version of the three-pass identification scheme. It differs from
the original one in the use of hash trees as commitment and of pseudo-random generators.
These techniques allow a huge reduction of the communication. We have chosen to focus on
the three-pass version. Indeed, even if the communication load is a little larger than for the
five-pass version, it is more efficient from a computational point of view and furthermore
easier to implement: the size of the program is much smaller, which is important for an
implementation on a smart-card.

Let us assume that Alice wants to identify herself to Bob. First she randomly chooses
two seeds g1 and g2. The seed g1 is used to generate the permutation P of {0, . . . ,

m −1} and the signed permutation Q of {0, . . . , n −1}. The seed g2 generates the vector
W in (Zp)

n . Then she computes the following hash values: h0 = H(g1), h1 = H(g2), h2 =
H(Q−1V + W ), h3 = H(PAQW) and h4 = H(PAQW +PAV). Finally she sends the single
commitment, which can be seen as the root of a hash tree, C = H(H(h0, h1, h2), H(h3, h4))

(see Figure 9). Then, Bob answers a challenge c ∈ {0, 1, 2, 3}, and Alice answers according
to this query

• if c = 0, Alice sends g1, g2, h2 and h4.

• if c = 1, Alice sends g1, R = W + Q−1V , h1 and h3.

• if c = 2, Alice sends X = PAQW, Y = PAV and h012 = H(h0, h1, h2).

• if c = 3, Alice sends g2, V ′ = Q−1V , h0 and h34 = H(h3, h4).

And Bob accepts if

• for c = 0, C = H(H(H(g1), H(g2), h2), H(H(A′W ), h4)), where A′ = PAQ.

• for c = 1, C = H(H(H(g1), h1, H(R)), H(h3, H(A′ R))), where A′ = PAQ.

• for c = 2, C = H(h012, H(H(X), H(X +Y ))) and S = {{Yi }}.
• for c = 3, C = H(H(h0, H(W ), H(W + V ′)), h34) and V ′ ∈ {−1, +1}n .

Figure 9. Hash tree.



A NEW NP-COMPLETE PROBLEM 27

Let us denote respectively by |x |, |H | and |g| the number of bits needed to represent any
x , the size of the hash values and the size of the seeds. Then, the number of bits transmitted
during each round is |H | for the first commitment, plus 2 bits for the query and

• if c = 0, 2|g|+2|H |.
• if c = 1, |g|+2|H |+n|p|.
• if c = 2, m|p|+m|(t −1)/2|+ |H |.
• if c = 3, |g|+n +2|H |.
Globally, this amounts to |H |+2 plus a quarter, on average, of the sum of each case:
4|g|+7|H |+n(|p|+1)+m(|p|+ |(t −1)/2|), that is

11

4
|H |+ |g|+ |p|+1

4
n + |p|+ |(t −1)/2|

4
m +2.

For m = 121, n = 137, |p| = 7, t = 35, |H | = 128 and g = 120, this is equal to 1084 bits.
If the protocol needs 48 rounds to achieve a requested level of security, the average size of
the communications with those parameters is 6.34 KBytes.

6.4. Pseudo-Random Generators

The identification protocol needs the random generation of mathematical objects. First, in
order to randomly choose objects like vectors or permutations and then to store them effi-
ciently, a very convenient technique consists of choosing a random seed and then generating
an object of the accurate format with a pseudo-random generator. As a first application, we
have already said that the matrix A was generated from a single seed. We just want the ma-
trix to look random so we can use very simple pseudo-random generators like the truncated
congruential linear one [24].

The same technique can also be used with the seeds g1 and g2 of the practical identification
scheme to generate the objects needed to hide information. We insist on the fact that we
do not need the pseudo-random generator to be cryptographically secure; we just need a
procedure to pick mathematical objects “uniformly” in a large set. For example, if we use
seeds of 64 bits to generate a permutation of {0, . . . , 2117 −1}, we immediately see that
we cannot produce all the permutations but we want the subset of permutations that can be
generated to look like any subset of cardinality 264 randomly chosen in the large set. A very
efficient way to generate pseudo-random permutations, studied by Luby and Rackoff [25],
uses the well-known structure proposed by Feistel.

6.5. Actual Implementation on a Low-Cost Smart Card

We have implemented this protocol on a low-cost smart card based on a Motorola 6805
microprocessor running at 3.57 MHz. This is a very simple chip, performing classical
operations on 8 bits. A smart card possesses three kinds of memory, a ROM of 4 KBytes,



28 POINTCHEVAL AND POUPARD

an EEPROM of 2 KBytes where the program and the static data are stored and a 160-Bytes
RAM, among which only 120-Bytes can be used to store variables. The communication
rate is 19200 bit/s and the verifier is a simple PC.

At first sight, due to the size of the objects, it seems difficult to implement the protocol
with such a small RAM. Furthermore, the stack is automatically set in the middle part
of the RAM, and consequently the available memory is even not contiguous. But, using
pseudo-random generators, it becomes possible to implement the scheme with sufficiently
large parameters. We have chosen the parameters m = 121, n = 137 with p = 127, t = 35.
Moreover, we have implemented a version of SNEFRU [38] as a hash function; it works with
12 bytes long blocks of data and is based on 4 repetitions of an elementary round. Even if
this primitive cannot be advised for a secure application, the use of SHA-1 [26] or MD5 [39]
in real applications would even save some EEPROM since they are implemented in ROM
of most of the actual smart-cards.

Let us now focus on the performance. First notice that, whatever the performance may be,
it is already an interesting result to prove the feasibility of implementing a zero-knowledge
identification scheme without precomputation and just using an 8-bit microprocessor. It
would be impossible to do such a thing with a number theoretical based protocol that needs
to perform modular arithmetic with large integers.

In order to perform 48 rounds of identification and consequently to be able to iden-
tify a cheater with probability 1−10−6, the card needs 23 seconds of computation and
the communication takes 5 seconds. So finally a complete identification needs less than
30 seconds. A few comments are in order. First, 40% of the computation time is used by the
hash function and 35% by the computation of products of matrices and vectors. Further-
more, the implementation has been done with a low-end smart-card, presently obsolete, and
an implementation on current low-cost smart cards would be much more efficient, mainly
because the time needed by the computation could be greatly reduced

• because of a higher internal frequency (up to 10 MHz)

• because of a faster communication rate (up to 115200 bit/s)

• with just a little more EEPROM.

Consequently, a complete authentication could be performed in about 10 seconds.
Finally, in many applications like pay-TV or pay-phone for which it does not matter

if a lucky cheater is able to use a resource during a few seconds, the identification can
be performed as a background job. In fact, each iteration of the protocol takes less than
a second, and the RAM can be completely cleared between two iterations, and freed to
another application.

7. Comparison with Other Protocols

It is interesting to compare the known protocols based on non-number-theoretical, NP-
complete problems. The first one, PKP, has been proposed by Shamir [42]. Then Stern pro-
posed SD [44,46], a scheme based on error-correcting codes, and CLE [45]. The
Figure 10 summarizes the size of the public and secret keys and of the communication



A NEW NP-COMPLETE PROBLEM 29

Scheme PKP CLE SD PPP
3p 5p 3p 5p 3p 5p

Matrix size 16×34 24×24 256×512 121×137
On the field F251 F257 F2 F2

Number of rounds 35 20 35 20 35 48 35
Public key size (bits) 272 96 256 189
Secret key size (bits) 141 96 512 137
Communication (KB) 2.20 1.63 2.41 1.95 3.62 6.34 6.40

Figure 10. Comparison of NP-complete problems based identification schemes in terms of communication
complexity.

for those schemes with parameters chosen in such a way that the security is about the
same [1,6,11,30,34], using hash functions of 128 bits like MD5 and seeds of 120 bits. The
communication needed by PPP seems to be its main drawback but this is not very important
for many applications. Furthermore, 6.4 KBytes take only 2.8 seconds to be transmitted at
19200 bit/s, and less than 0.5 second if transmitted at 115200 bit/s.

All those NP-complete problem based schemes can be implemented on the smart card
we used, i.e., using about 100 Bytes of RAM and a few KB of EEPROM. In comparison,
it would be much more difficult to implement classical schemes like Fiat-Shamir [9] or
Schnorr [41] since they need the implementation of a modular exponentiation. Notice that
some variants like GPS [13,35] partially solve this problem by using precomputed coupons.

8. Conclusion

In this paper, we have presented a new combinatorial problem, the Permuted Perceptrons
Problem. We have studied its complexity properties, both theoretically and practically.
The results we have obtained prove that this problem is well suited for cryptographic
applications. In fact, no efficient algorithm can solve it, even for small sizes. Furthermore,
we have proposed two efficient zero-knowledge identification schemes which security relies
on this problem. The performances of those protocols are comparable with those of other
identification schemes based on NP-complete problems.

Acknowledgments

We thank Louis Granboulan for the results about the majority vector, as well as Jacques
Stern for having proposed the perceptrons problem as a candidate for efficient identifica-
tion schemes and for many fruitful discussions. We also thank Russell Impagliazzo for
discussions about probabilistic algorithms and the reviewers for their valuable feedback.

References

1. T. Baritaud, M. Campana, P. Chauvaud and H. Gilbert, On the security of the permuted kernel identification
scheme, In Crypto ’92, LNCS, Vol. 740, Springer-Verlag, Berlin (1992) pp. 305–311.

2. E. B. Baum, D. Boneh and C. Garrett, On Genetic Algorithms, In Proc. of the 8th COLT, ACM Press, New
York (1995) pp. 230–239.



30 POINTCHEVAL AND POUPARD

3. M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, In
Proc. of the 1st CCS, ACM Press, New York (1993) pp. 62–73.

4. E. F. Brickell and K. S. McCurley, An interactive identification scheme based on discrete logarithms and
factoring, In Eurocrypt ’90, LNCS, Vol. 473, Springer-Verlag, Berlin (1991) pp. 63–71.

5. E. F. Brickell and K. S. McCurley, An interactive identification scheme based on discrete logarithms and
factoring, Journal of Cryptology, Vol. 5 (1992) pp. 29–39.

6. F. Chabaud, On the security of some cryptosystems based on error-correcting codes, In Eurocrypt ’94, LNCS,
Vol. 950, Springer-Verlag, Berlin (1995) pp. 131–139.

7. I. B. Damgård, T. P. Pedersen and B. Pfitzmann, On the existence of statistically hiding bit-commitment
schemes and fail-stop signatures, In Crypto ’93, LNCS, Vol. 773, Springer-Verlag, Berlin (1994) pp. 250–267.

8. L. Davis (ed.), Genetics Algorithms and Simulated Annealing, Pitman, London (1987).
9. A. Fiat and A. Shamir, How to prove yourself: practical solutions of identification and signature problems,

In Crypto ’86, LNCS, Vol. 263, Springer-Verlag, Berlin (1987) pp. 186–194.
10. M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness,

Freeman, San Francisco, CA (1979).
11. J. Georgiades, Some remarks on the security of the identification scheme based on permuted kernels, Journal

of Cryptology, Vol. 5, No. 2 (1992) pp. 133–137.
12. M. Girault, An identity-based identification scheme based on discrete logarithms modulo a composite num-

ber, In Eurocrypt ’90, LNCS, Vol. 473, Springer-Verlag, Berlin (1991) pp. 481–486.
13. M. Girault, Self-certified public keys, In Eurocrypt ’91, LNCS, Vol. 547, Springer-Verlag, Berlin (1992)

pp. 490–497.
14. M. Girault and J.-C. Paillès, An identity-based identification scheme providing zero-knowledge authentica-

tion and authenticated key exchange, In ESORICS ’90, LNCS, Springer-Verlag, Berlin (1990) pp. 173–184.
15. M. Girault and J. Stern, On the length of cryptographic hash-values used in identification schemes, In Crypto

’94, LNCS, Vol. 839, Springer-Verlag, Berlin (1994) pp. 202–215.
16. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Read-

ing, MA (1989).
17. O. Goldreich, S. Micali and A. Wigderson, How to prove all NP statements in zero-knowledge and a

methodology of cryptographic protocol design, In Crypto ’86, LNCS, Vol. 263, Springer-Verlag, Berlin
(1987) pp. 171–185.

18. S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive proof systems, In Proc.
of the 17th STOC, ACM Press, New York (1985) pp. 291–304.

19. L. C. Guillou and J.-J. Quisquater, A practical zero-knowledge protocol fitted to security microprocessor
minimizing both transmission and memory, In Eurocrypt ’88, LNCS, Vol. 330, Springer-Verlag, Berlin
(1988) pp. 123–128.

20. S. Halevi and S. Micali, Practical and provably-secure commitment schemes from collision-free hashing, In
Crypto ’96, LNCS, Vol. 1109, Springer-Verlag, Berlin (1996) pp. 201–215.

21. J. H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press (1975).
22. H. J. Knobloch, A smart card implementation of the fiat-shamir identification scheme, In Eurocrypt ’88,

LNCS, Vol. 330, Springer-Verlag, Berlin (1988) pp. 87–95.
23. L. Knudsen and W. Meier, Cryptanalysis of an identification scheme based on the permuted perceptron

problem, In Eurocrypt ’99, LNCS, Vol. 1592, Springer-Verlag, Berlin (1999) pp. 363–374.
24. D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison–Wesley, London (1969).
25. M. Luby and Ch. Rackoff, How to construct pseudorandom permutations from pseudorandom functions,

SIAM Journal of Computing, Vol. 17, No. 2 (1988) pp. 373–386.
26. NIST, Secure Hash Standard (SHS), Federal Information Processing Standards Publication (180-1), April

(1995).
27. K. Ohta and T. Okamoto, A modification of the fiat-shamir scheme, In Crypto ’88, LNCS, Vol. 403, Springer-

Verlag, Berlin (1989) pp. 232–243.
28. H. Ong and C. P. Schnorr, Fast signature generation with a fiat-shamir-like scheme, In Eurocrypt ’90, LNCS,

Vol. 473, Springer-Verlag, Berlin (1991) pp. 432–440.
29. C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes, Journal of

Computer and Systems Sciences, Vol. 43 (1991) pp. 425–440.



A NEW NP-COMPLETE PROBLEM 31

30. J. Patarin and P. Chauvaud, Improved agorithms for the permuted kernel problem, In Crypto ’93, LNCS,
Vol. 773, Springer-Verlag, Berlin (1994) pp. 391–402.

31. D. Pointcheval, Neural networks and their cryptographic applications, In Eurocode ’94, INRIA (1994)
pp. 183–193.

32. D. Pointcheval, A new identification scheme based on the perceptrons problem, In Eurocrypt ’95, LNCS,
Vol. 921, Springer-Verlag, Berlin (1995) pp. 319–328.

33. D. Pointcheval, The composite discrete logarithm and secure authentication, In PKC 2000, LNCS, Vol. 1151
Springer-Verlag, Berlin (2000) pp. 113–128.

34. G. Poupard, A realistic security analysis of identification schemes based on combinatorial problems,
European Transactions on Telecommunications, Vol. 8, No. 5 (1997) pp. 471–480.

35. G. Poupard and J. Stern, Security analysis of a practical “on the fly” authentication and signature generation,
In Eurocrypt ’98, LNCS, Vol. 1403, Springer-Verlag, Berlin (1998) pp. 422–436.

36. G. Poupard and J. Stern, On the fly signatures based on factoring, In Proceedings of 6th ACM-CCS, ACM
press (1999) pp. 37–45.

37. G. Poupard and J. Stern, Short proofs of knowledge for factoring, In PKC 2000, LNCS, Vol. 1751, Springer-
Verlag (2000) pp. 147–166.

38. B. Preneel, Analysis and Design of Cryptographic Hash Functions, Ph.D. Thesis, Katholieke Universiteit
Leuven, Departement Elektrotechniek, January (1993).

39. R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321, The Internet Engineering Task Force, April
(1992).

40. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosystems,
Communications of the ACM, Vol. 21, No. 2 (1978) pp. 120–126.

41. C. P. Schnorr, Efficient identification and signatures for smart cards, In Crypto ’89, LNCS, Vol. 435, Springer-
Verlag, Berlin (1990) pp. 235–251.

42. A. Shamir, An efficient identification scheme based on permuted kernels, In Crypto ’89, LNCS, Vol. 435,
Springer-Verlag, Berlin (1990) pp. 606–609.

43. V. Shoup, On the security of a practical identification scheme, In Eurocrypt ’96, LNCS, Vol. 1070, Springer-
Verlag, Berlin (1996) pp. 344–353.

44. J. Stern, A new identification scheme based on syndrome decoding, In Crypto ’93, LNCS, Vol. 773, Springer-
Verlag, Berlin (1994) pp. 13–21.

45. J. Stern, Designing identification schemes with keys of short size, In Crypto ’94, LNCS, Vol. 839, Springer-
Verlag, Berlin (1994) pp. 164–173.

46. J. Stern, A new paradigm for public-key identification, IEEE Transaction on Information Theory, IT–42
(1996) pp. 1757–1768.


