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Mutual learning in a tree parity mahine and its appliation to ryptographyMihal Rosen-Zvi1, Einat Klein1, Ido Kanter1 and Wolfgang Kinzel2
1Minerva Center and Department of Physis, Bar-Ilan University, Ramat-Gan, 52900 Israel, and
2Institut für Theoretishe Physik, Universität Würzbur, Am Hubland 97074 Würzbur, GermanyMutual learning of a pair of tree parity mahines with ontinuous and disrete weight vetors isstudied analytially. The analysis is based on a mapping proedure that maps the mutual learningin tree parity mahines onto mutual learning in noisy pereptrons. The stationary solution of themutual learning in the ase of ontinuous tree parity mahines depends on the learning rate wherea phase transition from partial to full synhronization is observed. In the disrete ase the learningproess is based on a �nite inrement and a full synhronized state is ahieved in a �nite numberof steps. The synhronization of disrete parity mahines is introdued in order to onstrut anephemeral key-exhange protool. The dynami learning of a third tree parity mahine (an attaker)that tries to imitate one of the two mahines while the two still update their weight vetors is alsoanalyzed. In partiular, the synhronization times of the naive attaker and the �ipping attakerreently introdued in [9℄ are analyzed. All analytial results are found to be in good agreementwith simulation results.PACS numbers: 87.18.Sn, 89.70.+I. INTRODUCTIONArti�ial neural networks are known for their ability tolearn [1, 2℄. They produe an output from a given inputaording to some weight vetor and a transfer funtion.Traditionally, there are two types of learning. One typeis unsupervised learning where a network reeives inputand tries to learn about the input distribution. The othertype is the teaher-student senario, when the so-alledteaher reeives inputs, produes outputs and gives an-other mahine, the so-alled student, both the inputs andtheir assigned outputs. In suh a senario the teaher isstati, i.e., its weight vetor does not hange during thelearning, and the student tries to imitate the teaher soas to produe the same output in a new unknown exam-ple by dynamially updating its weight vetor. The statein whih the student ahieves the same weight vetor asthat of the teaher and an therefore perform the sameoutput as that of the teaher is referred to as perfetlearning.During the last few years a new type of learning se-nario has been introdued and is under disussion: themutual learning proedure. In the mutual learning pro-edure there is no distintion between the teaher roleand the student role; both networks funtion the sameway. They reeive inputs, alulate the outputs and up-date their weight vetor aording to the math betweentheir mutual outputs [3, 4℄. This is an online learningproedure where in eah step one input vetor is given,the output in both mahines is alulated and the re-sulting inrement of eah weight vetor is added aord-ingly. It was found that pereptrons that undergomutuallearning might end up in a synhronized state when theweight vetors of both mahines are either parallel - ex-atly the same, or anti-parallel - exatly the opposite (de-pending on their spei� updating rule). The stationarysynhronized solution is equivalent to the stationary per-fet learning solution in the teaher-student senario. We

extend the analysis of mutual learning between perep-trons to mutual learning between parity mahines . Weintrodue a generi method of analyzing mutual learningin feedforward tree multi-layer networks where we on-entrate on the tree parity mahine (TPM)[5, 6, 7℄. Themethod is based on a mapping proedure that maps themutual learning in TPMs onto mutual learning in noisypereptrons.A novel ryptosystem omposed of two parity mahinesthat synhronize has reently attrated muh attention[8, 9, 10, 11℄. A host of simulation results show thatdisrete TPMs an synhronize very fast and a third ma-hine that tries to learn their weight vetor ahieves onlypartial suess. These properties make mutual learningin TPMs attrative for appliations in seure ommuni-ations, as an information-bearing message an be hid-den within a ompliated struture of the TPM's weightvetors and still be reonstruted at the reeiver usinganother TPM whose parameters are exatly mathed tothose of the �rst one. This type of ryptosystem anprovide a new basis for seurity muh di�erent from ur-rently used ryptosystems that involve large integers andare based upon number theory [12℄.The disrete mahines studied arried out an updat-ing proedure di�erent from the onventional learningproedures analyzed in neural networks. In the disretemahine proedure the inrement of the weight vetor ineah step is �nite and not in�nitesimally small. Sine themethods of analyzing disrete on-line learning in ontem-porary researh, see [13, 14, 15, 16, 17℄, are not appliableto this ase, we introdue here a novel method for ana-lyzing mutual learning in networks with disrete weightvetors and a learning proess that is based on a �nite in-rement. First, we desribe mutual learning with disretepereptrons, and then we exploit the method of mappingmutual learning between TPMs onto mutual learning be-tween noisy pereptrons and analyze mutual learning indisrete TPMs.



2In ryptography, one of the most important aspetsof the hannel is its seurity. Therefore, potential al-gorithms of eavesdroppers are inluded in our analy-sis. Suh algorithms are atually sophistiated learningproedures where the parties are the teahers and theirweights are time dependent, and the eavesdropper is thestudent. In the following we name this time-dependent-teaher-student senario dynami learning.In this Paper we analyze mutual learning and dynamilearning in TPMs of two kinds: mahines with ontinuousweight vetors (the spherial onstraint - see Eq. (2) be-low) and with disrete weight vetors and �nite inrement(see Eq. (3) below). We introdue a method that mapsmutual learning in two layered parity mahines onto mu-tual learning in noisy pereptrons. The spherial treeparity mahine is studied using the same tool box usedfor studying mutual learning in the pereptron [3℄. Theinteresting behavior of full synhronization for a ertainregime in the learning rate spae and partial synhro-nization in the other regime is also found in the mutuallearning of TPMs. Mutual learning in a TPM when theweight vetors are ontinuous is desribed by equationsof motion that reveal the evolution of the order parame-ters in time. The derivation of the equations of motion isbased on the assumption that the order parameters areself-averaging quantities [18, 19℄. This assumption is vi-olated when the inrement of the weight vetors in eahstep is �nite and not in�nitesimally small, as in the aseof the disrete weight vetor studied here. Therefore wedevelop di�erent analytial tools for the ase of disreteweight vetors.This Paper is an extension of [10℄. It ontains a full,detailed desription of the analytial methods and dis-ussions that were not inluded in [10℄. An advanedattak suggested reently by Shamir et al [9℄ - the �ip-ping attak - is also analyzed. The paper is organizedas follows: in setion II we introdue the TPM model.We employ a general framework to present its applia-tion to Cryptography in IIA. The dynamis studied arepresented in II B and the order parameters and loal �elddistributions are disussed in II C. The mapping proe-dure is detailed in III. The learning in ontinuous TPMsis given in IV, where we divided the setion into mutuallearning (setion IVA), and dynami learning (setionIVB). The setion is summarized and the results aredisussed in IVC. Disrete learning is presented in se-tion V. We �rst desribe mutual learning in pereptronsin VA. The extension to mutual learning in parity ma-hines is given in VB. Two dynami learning attaks arestudied, the naive attaker (in VC), and the �ipping at-taker (in VD). A disussion and an overview are givenin VE. All analytial results are found to be in goodagreement with simulation results as indiated in eahsetion.

Figure 1: A tree parity mahine N : 3 : 1II. THE MODELWe onsider a TPM with K binary hidden units τi =

±1, i = 1, ..., K feeding a binary output, σ =
∏K

i=1 τi,see Figure 1. The networks onsist of either a ontinu-ous or a disrete oupling vetor wi = W1i, ..., WNi anddisjointed sets of inputs xi = X1i, ..., XNi ontaining Nelements eah. The input elements are random variableswith zero mean and unit variane. We on�ne the inputomponents to xji = ±1 without losing generality. Theloal �eld in the ith hidden unit is de�ned as
hi =

1
√

N/3
wixi, (1)and the output in the ith hidden unit is derived by takingthe sign of the loal �eld. The output of the tree paritymahine is therefore given by

σ =

K
∏

i=1

sign(hi) =

K
∏

i=1

τi.Our analysis is limited to TPMs with three hidden units,
K = 3, merely for simpliity of the representation of theanalysis. The extension of the formalism to any numberof hidden units is straightforward.The weight vetors of the TPMs are initiated at ran-dom aording to a ertain onstraint. We studied twodi�erent ases: the ase when the weight vetors are on-�ned to a sphere,

N
∑

j=1

W 2
ji = N, (2)and are initiated randomly aording to a Gaussian dis-tribution; and the ase when there are a �nite number



3of available integer values that eah omponent of theweight vetor an take,
Wji = ±L,±(L − 1), ...,±1, 0, (3)and the weight vetor omponents are initiated at ran-dom from a �at distribution with equal probability foreah value. These two senarios are referred to as theontinuous ase and the disrete ase.We studied the mutual and dynami learning of suhTPMs in various senarios where the initial random se-leted weight vetor is the unknown seret information.Two mahines A and B, perform mutual learning andtry to synhronize by updating their weights aordingto the math between their output suh that at the endthey ahieve full synhronization. The third mahine, C,performs dynami learning by trying to learn the weightvetors of one of the two mahines, say A, and uses anattak strategy to update its weight vetors suh thatat the end of the proedure they will be idential to theweight vetor of player A. The appliation of these pro-edures to the �eld of Cryptography is disussed in thefollowing setion.A. Cryptography Based on Synhronization:General FrameworkBefore we develop the detailed equations for mutuallearning in TPMs, we introdue the general oneptof synhronization and learning in disrete parity ma-hines in terms of a mean-�eld-like approah, and dis-uss the qualitative ability to onstrut an ephemeralkey-exhange protool based on mutual learning betweenTPMs.First, let us onsider two parties A and B who wish toagree on a seret key over a publi hannel. The weightvetors, w

A/B
i , are the parameters of eah unit whihare hanged during the training proedure. Both partiesstart with seret initial parameters w whih may be gen-erated randomly. After a number of training steps, theset of parameters is synhronized and beomes the time-dependent ommon key. At eah training step a ommonrandom input xi is generated for both of the parties; itis publi and known to possible eavesdroppers.Eah party of the seure hannel onsists of three hid-den units with orresponding three parameter vetors.For a given input xi eah party alulates an output bit

σA/B and sends it over the publi hannel. A trainingstep is performed only if the two output bits disagree andonly for the hidden units whih agree with their output
∆w

A/B = g
(

σA/B
xi

)

θ
(

−σAσB
)

θ
(

σA/Bτ
A/B
i

)

, (4)where g is an odd funtion. As an example onsider thefollowing on�guration of the hidden units: + + + forTPM A and − + + for TPM B. The output bits havethe values σA = 1, σB = −1. Hene A trains all of its

units aording to xi, while B hanges only the weightvetor of its �rst unit aording to −xi.Synhronization between the two mahines indiatesa full anti-parallel state where eah mahine produesexatly the opposite output of the other for any giveninput. The suess of synhronization an be measuredby the probability of an inoherent state, i.e., the proba-bility of having the same output instead of the oppositeone. The probability for an inoherent state, ǫin, that twoorresponding hidden units are mistaken and instead ofproduing exatly the opposite output they agree on arandom input, is given by
ǫin = Prob

(

τA
i

(

xi,w
A
i

)

= τB
i

(

xi,w
B
i

))

. (5)The funtion g used for training must be hosen so thaton the average (over random input) ǫin is dereased. Inthis setion we simplify the presentation by assumingsymmetry among the three hidden unit, ǫin
i = ǫin. Thefull detailed desription of the dynamial proess beyondthis mean-�eld-like framework is given in V.It is now easy to see that as soon as the TPMsare synhronized they will remain synhronized, i.e., if

w
A
i = −w

B
i for all i, then σA = −σB and will remain so.A training step in a unit i is performed only if both out-put bits disagree and if the two τi disagree aordingly.Hene, after the synhronization state is ahieved theyeither perform a oherent training step or they do nothange their parameters (referred to as a quiet step). Apair of synhronized hidden units performs a kind of ran-dom walk in parameter spae but remains synhronized.This is di�erent when the two hidden units are notidential. Let us onsider the �rst hidden unit, wherethere are four distint ases:(a) σA = σB : nothing moves and the next step isperformed.(b) τA

1 = σA, τB
1 = σB , σA = −σB: both parametervetors w

A
1 and w

B
1 are oherently hanged.() τA

1 = σA, τB
1 6= σB , σA = −σB or τA

1 6= σA,
τB
1 = σB , σA = −σB: only one parameter vetor ishanged and moves inoherently, hene ǫin

1 inreases.(d) τA
1 6= σA, τB

1 6= σB , σA = −σB: both parametervetors are not hanged.The probability of �nding these four ases an be alu-lated from the knowledge of ǫin. For example, the prob-ability of �nding the on�guration shown above, + + +and − + +, is 1
8

(

1 − ǫin
) (

ǫin
)2. All 64 on�gurationsan be divided into three ategories: the probability ofhaving an attrative step, pa (ase (b)); the probabilityof having a repulsive step, pr (ase ()); or the probabil-ity of having a quiet step, pq (ases (a) and (d)). Theseprobabilities are found to be

pa =
1

2

[

(

1 − ǫin
)3

+
(

1 − ǫin
) (

ǫin
)2

]

, (6)
pr = 2

(

1 − ǫin
) (

ǫin
)2

, pq = 1 − pa − pr.In the remainder of this setion the three probabilitiesabove are employed in order to explain the synhroniza-



4tion phenomenon, and to demonstrate the superiority ofthe synhronization proess over a possible attaker thatalso tries to synhronize with A and B.Close to synhronization, ǫin ∼ 0, the probability ofhaving a repulsive step is proportional to pr ∼
(

ǫin
)2whereas the probability of having an attrative step is

pa ∼ 1
2 (quiet steps are always possible). Let us assumethat the hange of the error, ǫin depends only on a fun-tion of ǫin itself. Later we will derive the exat equations,whih are more omplex. Then, the average hange in ǫinin one step is obtained by

∆ǫ = a
(

ǫin
)

pa − r
(

ǫin
)

pr. (7)Close to synhronization a repulsive step a�ets all of theparameters while an attrative step an only synhronizethe few parameters whih are not yet idential. Henewe expet for small values of ǫin:
a

(

ǫin
)

∼ a0ǫ
in, r

(

ǫin
)

∼ r0. (8)Therefore, in the leading order one obtains ∆ǫ ∝ a0ǫ
in.Close to synhronization the attrative fore is dominate,independent of the detailed mehanism of learning. Theparity mahine suppresses the repulsive steps by reduingtheir appearane frequeny.This relation does not hold for the ommittee mahinewhih maps the hidden units to their majority vote, σ =

sign (τ1 + τ2 + τ3) [20, 21℄. For this ase one �nds
pa =

3

4

(

1 − ǫin
)3

+
(

1 − ǫin
)2 (

ǫin
)

+
1

2

(

1 − ǫin
) (

ǫin
)2

,(9)
pr =

1

2

(

1 − ǫin
)2 (

ǫin
)

+
(

1 − ǫin
) (

ǫin
)2

.Now, lose to synhronization pr ∼ ǫin and repulsion andattrative fores are of the same order, Eq. (7). Thisompetition between attration and repulsion supportspossible attakers, as disussed below.Let us go bak to the parity output and onsider anattaker C who knows all the details of the algorithmand an listen to the ommuniation between A and B.We know that the initial on�gurations of the parame-ters of A and B are unknown. The attaker C has thesame arhiteture (TPM), the same number of hiddenunits (3) and uses the same learning algorithm, Eq. (4).What is a good algorithm for C to synhronize, i.e., tolearn A and to be anti-parallel to B? If C is synhro-nized then she should remain so. Hene she should usethe idential training step in ase of agreement with A.Let us onsider an attaker C who simulates party Aafter synhronization between A and B is ahieved. Cuses the omplete algorithm explained above for party
A. This means that A always makes some moves of herparameters while C moves her parameters orrespondingto the units whose output bit τC

i are idential to σA (inthe following we named this attak the naive attak - seeVC). This strategy for C generates many repulsion stepsbetween C and A. In fat, assuming the error between
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Figure 2: The ratio between pr and pa as a funtion of ǫin inthe ase of mutual learning in TPMs, Eq. (6) (solid line) andin ase of the naive attak, Eq. (10) (dashed line).all mathing units is the same, ǫin = Prob
(

τC
i 6= τA

i

)(where we use the same symbol for ǫin as in Eq. (5), al-though seemingly di�erent, in both ases it refers to theerror, see II C and Eq. (17) below) and summing up allpossibilities yields
pa =

1

2

(

1 − ǫin
)3

+
1

2

(

1 − ǫin
) (

ǫin
)2

+
(

1 − ǫin
)2

ǫin,(10)
pr =

(

1 − ǫin
)2

ǫin + 2
(

1 − ǫin
) (

ǫin
)2

+
(

ǫin
)3

.The essential di�erene between party A and attaker Cis that the probability of �nding a repulsive step saleswith (

ǫin
)2 in the mutual learning between A and B andsales with ǫin in the dynami learning between C and A,lose to synhronization. A and B reat to their mutualoutput while C annot in�uene A; this yields a di�erentbehavior for small values of the error ǫin.The full sheme of the ratio, pr/pa, derived from Eqs.(6) and (10) as a funtion of ǫin is presented in Figure2. It is lear that at any value of ǫin the performaneof the mutual learning is better than the performaneof the naive attaker that performs many more repulsivemoves ompared to hers attrative moves. Therefore,a more sophistiated attaker was reently suggested in[9℄ - the �ipping attaker. Hers performane annot bemeasured in the sope of this general framework sinehers strategy depends on the loal �elds in the hiddenunits and therefor an not be inluded under the rubriof Eq. (4), where g depends only on σxi .In the following, before delving into details we intro-due the dynami (Eq. (4)) more spei�ally. We disusssome of the relevant order parameters and their distribu-tions. We present the strategy of the �ipping attakerand an intuitive explanation for her suess.



5B. The DynamisIn priniple, one an onsider the following lasses ofdynamis that lead to a synhronized state:(A) The parties update their weight vetors whenevertheir outputs mismath (σA 6= σB , as appears in Eq.(4)), and eah unit updates aording to the input mul-tiplied by the opposite of its output.(B) The parties update their weight vetors whenevertheir outputs mismath (σA 6= σB , as appears in Eq.(4)), and eah unit updates aording to the input mul-tiplied by its output.(C) The parties update their weight vetors whenevertheir outputs math (σA = σB), and eah unit updatesaording to the input multiplied by the opposite of itsoutput.(D) The parties update their weight vetors whenevertheir outputs math (σA = σB), and eah unit updatesaording to the input multiplied by its output.In all the dynamis mentioned above, the ith hiddenunit is updated only if it mathes the overall output inthat party, if τi = σ. The two parties that try to syn-hronize might end up in an anti-parallel state (ases (A)and (B)), or in a parallel state (ases (C) and (D) ). Al-though Eq. (4) does not desribe ases (C) and (D), thedisussion in setion IIA is relevant to all ases.In this Paper we introdue a detailed presentation ofase (A). In eah step an update is made only if bothmahines, A and B, disagree, σA 6= σB , and eah unitupdates aording to the input multiplied by the oppositeof its output. In the spherial ase we normalize theweight vetor after eah updating suh that its norm doesnot hange. The dependene of the weight vetor in anew step on the weight vetor in the former one in theontinuous ase is
w

A+
i =

w
A
i + η

N xiθ(−σAσB)θ(σAτB
i )σB

∥

∥w
A
i + η

N xiθ(−σAσB)θ(σAτB
i )σB

∥

∥

, (11)
w

B+
i =

w
B
i + η

N xiθ(−σAσB)θ(σBτB
i )σA

∥

∥wB
i + η

N xiθ(−σAσB)θ(σBτB
i )σA

∥

∥

,where θ(y) is the Heavyside funtion, i.e., equals zerofor y < 0 and 1 otherwise, η is the learning rate and
i = 1, ..., K. The analysis of the dynami is in the ther-modynami limit where N → ∞ and the weight vetorsare updated by an in�nitely small quantity in eah step.In the disrete senario, the update is made in a similarmanner, yet there are two important di�erenes from thedynamis point of view. One is that in eah step the ve-tors' omponents are hanged to the next integer valueand not by an in�nitesimally small one as in the ontin-uous ase (Eq. (11)). The seond di�erene is that whenthere is an update, the omponents whih have reahedthe boundary value Wi = ±L , and their absolute valueshould be inreased W+

i = ±(L + 1), are not hanged,and remain with the boundary value. Mathematially,

the learning is phrased as follows
w

A+
i = w

A
i + D(wA

i xiσ
B)xiσ

Aθ(σAτA
i )θ(−σAσB),(12)

w
B+
i = w

B
i + D(wB

i xiσ
A)xiσ

Aθ(σBτB
i )θ(−σAσB),where D(y) = 1− δL,y and δ is the Kroneker delta fun-tion.C. Order Parameters and Joint ProbabilityDistributionsThe analysis of learning in neural networks with an in-�nite number of weight vetor omponents is based uponstatistial mehanis analysis of several order parameters.The standard order parameters used are

Qm
i =

1

N/3
w

m
i · wm

i , (13)
Rm,n

i =
1

N/3
w

m
i · wn

i ,where the index i represents the ith hidden unit, i =
1, ..., K and m, n denote the spei� party, m, n ∈
{A, B, C}. The angle between eah pair of weight vetors
θ, is given by the normalized overlap between the weightvetors

ρm,n
i = cos θm,n

i =
w

m
i ·wn

i

‖wm
i ‖ ‖wn

i ‖
. (14)We assume that there are no diret orrelations betweendi�erent hidden units due to the tree arhiteture andtherefore the overlaps between di�erent units is zero.In the framework of statistial mehanis analysis ofon-line learning the order parameters play an impor-tant role in taking the averages over the random in-puts, or equivalently over the loal �eld distribution.Aording to the entral limit theorem, the joint prob-ability distribution of the loal �elds in eah triplet ofmathing hidden units taken from the three di�erentmahines depends only on the set of order parameters,

P (hA, hB, hC | {R, Q}) (where we omitted the subsript ifrom all parameters) and an be found from the orre-lation matrix. When all weight vetors are normalized,
Qm = 1, it is found to be

P =
exp(− F

2E )

(2π)3/2
√

E
, (15)where F =

(

hC
)2

GC +
(

hA
)2

GA +
(

hB
)2

GB −
2hAhBDC − 2hAhCDB − 2hChBDA, E = 1−

(

ρA,B
)2 −

(

ρA,C
)2 −

(

ρB,C
)2

+ 2ρA,BρA,CρB,C , Gk = (1 − ρl,m)2,
Dk = ρl,m − ρk,mρk,l and k, l, m ∈ {A, B, C}. This om-pliated expression an be muh simpli�ed if we assumethat the two mahines, A andB, are already anti-parallel.In that ase the joint probability distribution of the loal



6�elds is given by
P =

e
− 1

2

(hC)2
+(hA)2

−2hAhCρA,C

1−(ρA,C)2

2π
√

1 − ρA,C
δ(hA + hB), (16)where δ() stand for the Dira delta funtion.At this stage it is possible to alulate the probabilitiesde�ned in setion IIA and to show that indeed ǫin has thesame meaning and the same dependeny on ρ in the twoases: Eq. (5) and later when the attaker is introdued.Averaging over the loal �eld distributions results in thease of mutual learning in ǫin = 1 − 1
π cos−1 ρA,B and inthe ase of dynami learning we �nd ǫin = 1

π cos−1 ρA,C .In order to ompare these two errors, where in the �rstone learning is desribed by negative ρ and in the seondby positive, we de�ne ρ̄ = |ρA,B| = |ρA,C |. Substituting
ρ̄ into both funtions above, we get

ǫin =
1

π
cos−1 ρ̄. (17)We present in this Paper a �ipping attaker, whihmakes use of the absolute value of the loal �eld. Theattaker estimates that the unit with the smallest abso-lute loal �eld is the one that is most probably wrong -that has di�erent outputs, τC
i 6= τA

i . The origin of thisassumption an be easily explained by averaging over theloal �eld distribution. The average of the absolute valueof the loal �eld, 〈∣

∣hC
∣

∣

〉, given an overlap ρA,C betweentwo mathing hidden units and norm QC of the weightvetor in this unit is found to be
〈∣

∣hC
∣

∣

〉

=
1

2

√

QC

2π

(

1 ± ρA,C
)

, (18)where the sign in the right hand-side of the equation isplus for agreement between the outputs and minus fordisagreement. Sine ρ varies between −1 and 1 and in astate of partial learning 0 < ρ < 1, a small absolute loal�eld signals a mistake in the unit's output. The �ippingattaker uses this knowledge in her learning proedure,as disussed in setion VD.The analytial study of this attaker inludes averagesover probability distribution of the loal �eld in the thirdparty, the attaker C, given the loal �elds of the twomahines. This probability is given by
P (hC |hB, hA, {ρ, Q}) =

P (hC , hB, hC | {ρ, Q})
P (hA, hB| {ρ, Q}) (19)where P (hC , hB, hC | {ρ, Q}) and P (hC , hB| {ρ, Q}) arethe joint probability distributions of the three loal �eldsand two loal �elds respetively, and they are derivedfrom the orrelation matrix similar to Eq. (15).In the disrete ase, when the inrement is �nite (seefor instane Eq. (12)), the above order parameters no

longer su�e for the marosopial desription of the dy-namis even in the thermodynami limit, N → ∞. How-ever, the distributions above do hold. The dynami an-not be analyzed with the standard equations of motionbased on di�erential equations of the order parameterswith respet to α, the number of examples per input di-mension. We introdue a generi method for analyzingthe disrete ase by extending the marosopial param-eters and deriving maro-dynamial updating equations(see setion V).III. MAPPING PROCEDUREOne an map mutual learning in the parity ase ontomutual learning in K pereptrons. The mapping to noisypereptron introdued for analyzing on-line learning inTPM [22℄ is inadequate in the ase of mutual learningwhere the updating depends on the mathing betweenthe outputs but is independent of their spei� sign. Nev-ertheless, a di�erent mapping from TPM to noisy per-eptrons an be used for the mutual learning ase. Themapping presentation is muh simpli�ed in the ontinu-ous ase sine assuming random initial onditions to allhidden units results in the same overlap for all hiddenunits, ρi = ρ ∀i. Therefore, we �rst assume that all theoverlaps between mathing hidden units are the same.Hene, updating K pereptrons is equivalent to one up-dating in the TPM. The presentation of the mappingbelow is simpli�ed by the restrition of K = 3 and thegeneralization to any K is straightforward.We have TPMs that onsist of non-overlapping reep-tive �elds with random inputs. Hene in eah of theTPMs all 8 internal representations appear with equalprobability. A spei� hidden unit is updated when thefollowing two onditions are ful�lled; (a) there is a mis-math between the results of the two TPMs, and (b) thestate of the hidden unit is the same as the output of theTPM. We make use of ǫ, the probability of having dif-ferent results in the two hidden units that the overlapbetween them is ρ and is given by
ǫ =

1

π
cos−1 ρ. (20)We onentrate on a spei� pair of mathed hiddenunits. Given that the outputs of the hidden units aredi�erent, there is a probability, P1, that the TPMs re-sults are di�erent and in one half of the ases the TPMoutput has the same output as its hidden unit and there-fore both hidden units in both mahines are updated.This probability is given by

P1 = P (σA 6= σB|τA
i 6= τB

i ) = ǫ2 + (1 − ǫ)2. (21)Similarly, the probability that there is a mismath be-tween the two TPMs given that there is agreement be-tween two hidden units, is given by
P2 = P (σA 6= σB|τA

i = τB
i ) = 2ǫ(1 − ǫ). (22)



7In this ase only one of the hidden units has the samesign as the output in its TPM and only that hidden unitis updated.These probabilities are introdued into the updatingproedure of the hidden units - the pereptrons. In theontinuous ase they a�et the form of the equations ofmotion (see Eq. (23)). In the disrete ase they areintrodued in a di�erent manner, as desribed in setionV.IV. CONTINUOUS TREE PARITY MACHINESCounting on the mapping proedure desribed above,mutual and dynami learning in ontinuous TPMs anbe mapped onto learning senarios in ontinuous perep-trons. The updating rule an be rede�ned so that it willbe suitable for a pereptron where the kind of updatingdepends on the above probabilities, P1 and P2, Eqs. (21)and (22). The standard on-line equations onsist of anaverage over the order parameters [2℄, and now ontainadditional random variables. The average over these ad-ditional variables is taken by introduing auxiliary ran-dom parameters, as desribed in the following setion.A. Anti-Parallel LearningIn this senario the updating rules of the TPMs aregiven in Eqs. (11) where we have three hidden units,
K = 3. Mapping the rules onto a pereptron learningby employing the probabilities above is done by intro-duing auxiliary random parameters, pα, pβ, pγ , whihare equally distributed between 0 and 1. The updatingrule is alulated as a funtion of these parameters in thefollowing manner,
w

A+ =
w

A + η
N xτB∆A

|wA + η
N xτB∆A|

, w
B+ =

w
B + η

N xτA∆B

|wB + η
N xτA∆B | ,(23)where

∆A = θ(−τAτB)θ(
P1

2
− pα) − θ(τAτB)θ(P2 − pβ)θ(

1

2
− pγ) ,

∆B = θ(−τAτB)θ(
P1

2
− pα) − θ(τAτB)θ(P2 − pβ)θ(pγ − 1

2
) .The introdution of the auxiliary random variables isdone aording to the following logi: in one half of theases of disagreement between the units and disagree-ment between the TPMs, no update ours in the units(sine their sign does not math the TPM's sign) andhene P1 is divided by 2 in the equation above. Theseond senario where updating ours is when the unitshave the same sign, the TPMs disagree and thereforeone of the units is updated and the other is not. Theauxiliary random number pγ is the one that determines(randomly) whih unit of the two is updated.
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Figure 3: The �xed point ρf as a funtion of η for the on-tinuous TPM as obtained from the solution of Eq. (25) (solidline). Simulation results in some instanes of η are presentedby stars. Inset: Analytial (solid lines) and simulation resultsin the ase of η = 2 (triangles) and η = 3 (irles) for 〈ρ〉 as afuntion of α. All simulations are arried out with N = 5000and averaged over 20 samples.In order to alulate the equations of motion, one hasto multiply the updated vetors, Eq. (23), �rst, andthen to perform the two averages; average over the jointprobability distributions of the loal �elds and over therandom parameters, pα, pβ and pγ . The result of thesetwo averages is an equation over the normalized overlap
ρ, that depends only on ρ or equivalently on the angle,
θ, (see Eq. (14))

dρ

dα
= η[

θ2

π2
+ (1 − θ

π
)2][

1√
2π

(1 − ρ) − ηθ

2π
](1 + ρ) (24)

− 2η√
2π

(1 − ρ2)
θ

π
(1 − θ

π
) − η2ρ

θ

π
(1 − θ

π
)2,where α is the number of examples per input dimension.The points ρ = ±1 are �xed points of the equation of mo-tion above. Both are repulsive when the learning rate,

η, is small. As soon as η > ηc ∼ 2.68 a phase transitionours, the ρ = −1 �xed point beomes an attrative oneand a new phase arises, where the two mahines are fullysynhronized. The asymptoti deay of ρ to synhroniza-tion sales exponentially with α, as an be found by ex-panding the terms in Eq. (24) around θ = π. Apart fromthe �xed points disussed above, for any η smaller than ηcthere is a di�erent attrative �xed point, as an be foundby solving numerially Eq. (24). The �xed point θf (ρf )is the exat angle(overlap) in a spei� learning rate, η,



8in whih the right hand side of equation 24 beomes zero:
η =

√
2π

θf
sin 2θf (1 − 2θf

π )2

(1 + cos θf )(
θ2

f

π2 + (1 − θf

π )2) + 2 cos θf (1 − θf

π )2
.(25)In Figure 3 we plotted the �xed points as a funtion of

η, as was found numerially from Eq. (25). Simulationresults for spherial TPMs with N = 5000 and averagedover 20 samples are in agreement with the analysis as in-diated by the few tested ases presented by the symbols.Clearly, the system undergoes a phase transition from apartial to a perfet anti-parallel state at ηc ∼ 2.68. Oneinstane for eah of the phases is given in the inset ofFigure 3. The development of the averaged 〈ρ〉, averagedover the three hidden units and 20 samples, in the aseof partial mutual learning, η = 2 (triangles), and thease of anti-parallel synhronization, η = 3 (irles), as afuntion of α is presented in the inset of Figure 3. Nu-merial alulations of the analytial equation, Eq. (24),are presented by the solid lines.B. Dynami LearningIn the last setion we show a proedure that leads tofull synhronization. In the following we hek the abilityof a third TPM, an attaker, to learn the weight vetorsof the two parties. The third mahine, C, that tries toimitate A, updates its weight vetor only when the twoparties are updated and only the hidden units that maththe output of party A. Mathematially, this is de�ned asfollows
w

C+
i =

w
C
i + η

N xiθ(−σAσB)θ(σAτC
i )σB

∥

∥w
C
i + η

N xiθ(−σAσB)θ(σAτC
i )σB

∥

∥

. (26)Continuing the same line of introduing probabilities inthe mutual learning proedure, one an write a set ofupdating rules for the dynami and mutual learning inpereptrons whih is equivalent to TPMs learning. Thisis given by
w

A+ =
w

A + η
N xτB∆̃A

∥

∥

∥wA + η
N xτB∆̃A

∥

∥

∥

, (27)
w

B+ =
w

B + η
N xτA∆̃B

∥

∥

∥wB + η
N xτA∆̃B

∥

∥

∥

,

w
C+ =

w
C + η

N xτB∆C
∥

∥wC + η
N xτB∆C

∥

∥

,

where
∆̃A = θ(−τAτB)θ(P1 − pα)θ(

1

2
− pδ)

+θ(τAτB)θ(P2 − pβ)θ(
1

2
− pγ),

∆̃B = θ(−τAτB)θ(P1 − pα)θ(
1

2
− pδ)

+θ(τAτB)θ(P2 − pβ)θ(pγ − 1

2
),

∆C = θ(−τAτB)θ(τAτC)θ(P1 − pα)θ(
1

2
− pδ)

+θ(τAτB)θ(τAτC)θ(P2 − pβ)θ(
1

2
− pγ)

−θ(−τAτB)θ(−τAτC)θ(P1 − pα)θ(pδ −
1

2
)

+θ(τAτB)θ(−τAτC)θ(P2 − pβ)θ(pγ − 1

2
).We introdue another random parameter, pδ, whih isredundant when one alulates only the mutual learning,Eq. (23), and it is neessary for deriving equations ofmotion for the order parameters in the ase of dynamilearning. The four terms in ∆C represent the four pos-sibilities that ause an updating in the attaker hiddenunit. For instane, the �rst term of ∆C represents thease where the hidden unit in the attaker and in the �rstTPM have the same state, the TPMs' outputs are di�er-ent (indiated by P1) and the outputs in the hidden unitsof A and B are the same as their TPMs, (the probabilityfor suh an event is 1

2 ).The equation of motion after synhronization, i.e.,when ρA,B = −1, ρA,C = −ρB,C , is derived by aver-aging Eqs. (27) over the joint probability distributionsthat is given in Eq. (16). It depends on the learning rateand the overlap ρA,C and is given expliitly by
dρA,C

dα
=

η2

2

(

1 − 1

π
cos−1 ρA,C − ρA,C

)

. (28)This equation desribes the development of the overlapbetween the attaker and one of the two mahines thatare synhronized in both ases, when eah mahine learnsthe opposite of its result, Eq. (26).As an be derived from Eq. (28), independent of thelearning rate, η, there is a unique �xed point ρf ∼ 0.79.The point ρ = 1 is not a �xed point at all. Note that this�xed point desribes only the failure of the ontinuousattaker, the equivalent disrete attaker might synhro-nize and gain ρ = 1, as disussed in setion VC. InFigure 4 we present analytial (solid lines) and simula-tion results (symbols) for the overlap between that at-taker and player A, ρAC . We arried out simulationswith N = 5000, and eah result averaged 20 times. Agood agreement between simulation results and analyti-al results is presented in Figure 4 in both ases; when theoverlap is initialized zero, ρAC = 0 and in the inset, whenthe initial value of the overlap is almost 1, ρAC = 0.98.All results are for full synhronization between A and B,
ρAB = −1.
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Figure 4: The analytial urve of the averaged overlap, 〈ρ〉, ina dynami learning of TPMs as obtained from Eqs. (28) (solidline), with η = 10. The initial state is ρ = 0. Inset: Analytialresults for the dynami learning with the initial state ρ = 0.98.Symbols represent the orresponding simulations, arried outwith N = 5000 and averaged over 20 runs.C. SummaryIn summary, we showed that an initiated pair of ran-dom TPMs that perform mutual learning results in a fullsynhronization state for η > ηc. We introdue here aspei� dynami where the parties update only in a mis-math between the outputs, the updating is in oppositediretions of eah other and they are normalized in eahstep (ase A in II B). Analyzing ase B, for instane,reveals that for all η, the stationary solution is a syn-hronized state. Using the dynamis appearing in II Bbut without normalizing the weight vetors does not endin a synhronization state at all. The spei� algorithmwe hose ontains the reah phenomenon of phase tran-sition [23℄. Moreover, its synhronization abilities arelosely related to the disrete synhronization studied inthe following setion.The attaker tries to learn the parties' weight vetorsbut manages to ahieve only partial suess. This di�-ulty in learning that suh a naive attaker faes as in-diated by the �xed point that di�ers from 1, also har-aterizes the naive attaker in the other ases presentedin II B. However, the analysis is not relevant for the dis-rete ase studied below. In the disrete ase the naiveattaker performane is restrited too but perfet learn-ing is possible, see VC. The �ipping attaker that makesuse of the loal �elds (see VD) has a better performanein the disrete ase. An open question whih deservesfurther researh, is how to analyze the ontinuous �ip-ping attaker.

V. DISCRETE MACHINESThe study of disrete networks requires di�erent meth-ods of analysis than those used for the ontinuous ase.We found that instead of examining the evolution of Rand Q, we must examine (2L+1)× (2L+1) parameters,whih desribe the mutual learning proess. By writinga Markovian proess that desribes the development ofthese parameters, one gains an insight into the learningproedure. Thus we de�ne a (2L + 1) × (2L + 1) ma-trix, F
µ, in whih the state of the mahines in the timestep µ is represented. The elements of F, are fqr, where

q, r = −L, ...−1, 0, 1, ...L. The element fqr represents thefration of omponents in a weight vetor in whih the
A's omponents are equal to q and the mathing om-ponents in d unit B are equal to r. Hene, the overlapbetween the two units as well as their norms are de�nedthrough this matrix,

R =

L
∑

q,r=−L

qrfqr , (29)
QA =

L
∑

q=−L

q2fqr QB =
L

∑

r=−L

r2fqr.The matrix elements are updated, if and only if, anupdate of the weight vetors ours.A. Learning with Disrete PereptronsThe mutual learning senario is muh simpli�ed in thease of the pereptron, therefore we present here the fulldesription of the analytial proedure used for this ase.Updating is done in the ase of a mismath, and the aimis to arrive at a state in whih the weight vetors areanti-parallel, ρ = −1 (we ould aim at ρ = 1 instead, seethe manifold of possible dynamis in IIA, and the resultswould be equivalent). The dependene of the weight ve-tor in a new step on the weight vetor in the former oneis given by:
w

A+
i = w

A
i + D(wA

i xiσ
B)xiσ

Bθ(−σAσB), (30)
w

B+
i = w

B
i + D(wB

i xiσ
A)xiσ

Aθ(−σAσB),where σA/B represents the output of TPM A/B, and
w

A/B represents its weight vetor.The update of the elements of the matrix F, is al-ulated diretly from Eq. (30), where one must averageover the input omponents Xij . On the average, halfof the updated weights in one mahine are inreased by1, while the mathing weights in the other mahine aredereased by 1 and vie versa.The possibility for agreement/disagreement betweenthe parties is a funtion of the urrent overlap betweenthem, alulated using the matries (see Eq. (29)). Thisprobability is implemented by hoosing a random param-eter, pα between [0, 1]. If it is smaller than ǫ, as de�ned in



10Eq. (20), the parties disagree, otherwise they agree. Theupdating of matrix elements is desribed as follows: forthe elements with q and r whih are not on the boundary,(q 6= ±L and r 6= ±L) the update an be written in asimple manner,
f+

q,r = θ (pα − ǫ) fq,r+θ (ǫ − pα)

(

1

2
fq+1,r−1 +

1

2
fq−1,r+1

)

.(31)For elements with both indies on the boundary, the up-date is
f+

L,L = θ (pα − ǫ) fL,L, (32)
f+
−L,−L = θ (pα − ǫ) f−L,−L,

f+
L,−L = θ (pα − ǫ)

(

1

2
fL,−L

)

+ θ (ε − pα) ×
(

1

2
fL−1,−L+1 +

1

2
fL−1,−L +

1

2
fL,−L+1

)

,

f+
−L,L = θ (pα − ǫ) f−L,L + θ (ǫ − pα) ×

(

1

2
f−L+1,L−1 +

1

2
f−L+1,L +

1

2
f−L,L−1

)

.For elements with just one of the indies on the boundary(q = ±L and r 6= ±L or vie versa), the update is
f+

q,L = θ (pα − ǫ) fq,L+ (33)
θ (ǫ − pα)

(

1

2
fq+1,L−1 +

1

2
fq+1,L

)

,

f+
q,−L = θ (pα − ǫ) fq,−L+

θ (ǫ − pα)

(

1

2
fq−1,−L+1 +

1

2
fq−1,−L

)

,

f+
L,r = θ (pα − ǫ) fL,r+

θ (ǫ − pα)

(

1

2
fL−1,r+1 +

1

2
fL,r+1

)

,

f+
−L,r = θ (pα − ǫ) f−L,r+

θ (ǫ − pα)

(

1

2
f−L+1,r−1 +

1

2
f−L,r−1

)

,The main quantity of interest is the number of stepsrequired in order to arrive at a state of full synhroniza-tion. In simulations there is a disrete transition froman overlap whih is almost anti-parallel to a ompletelyanti-parallel state. This is due to the �nite nature of thevetors, the largest value of overlap before synhroniza-tion is −1 + O(1/N). In simulations with N = 104, forexample, the largest value of the overlap before full syn-hronization is ρ = 0.99999, and this is the value we usedin our analytial proedure, for de�ning full synhroniza-tion for omparison to simulations with N = 104.Our results indiate that the order parameters are notself-averaged quantities [19℄. Several runs with the same
N , results in di�erent urves for the order parameters asa funtion of the number of steps, see Figure 5. Thisexplains the non-zero variane of ρ as a results of the
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Figure 5: The averaged overlap 〈ρ〉 and its standard devia-tion as a funtion of the number of steps as found from theanalytial results (solid line) and simulation results (irles)of mutual learning in TPMs. Inset: analytial results (solidline) and simulation results (irles) results for the perep-tron, with L = 1 and N = 10
4.�utuations in the loal �elds indued by the input evenin the thermodynami limit.In the inset of Figure 5 we present the averaged numer-ial results derived from the analytial equations, (31, 32,33) of synhronization in the pereptron (solid line) with

L = 1, Wi = ±1, 0, . The analytial results are aver-aged over 500 samples and the non-zero standard devi-ations are not presented in order to simply the presen-tation. Simulation results with L = 1 (Wi = ±1, 0) and
N = 104, averaged over 500 samples are presented bythe irles; error bars are standard deviations. Note thateven though the matrix elements were initiated with thesame values in eah run, there is still a non-zero stan-dard deviation due to �utuations in the loal �elds asa funtion of the partiular set of random inputs even inthe thermodynami limit.For the pereptron, synhronization is muh easier andfaster to ahieve than for the TPM. Take for example thease where L = 1. If for three onseutive steps, both theother party's output and xi were positive, an attakeran surely know that Wi = 1, while this is not so in theTPM ase, as the attaker annot know for sure whetherthe unit was updated or not. Therefore, the TPM ismuh more suitable for building a ryptosystem than thepereptron. B. Synhronization in TPMsMutual learning in disrete TPMs is desribed by mu-tual learning disrete noisy pereptrons. As the TPMonsists of three hidden units (eah evolving di�erently),



11we now have three di�erent angles, θi where i = 1, 2, 3,for eah hidden unit. Sine the dynamis are not self-averaged, we use probabilities similar to those introduedin Eq. (21). The de�nitions of these probabilities are ex-tended to inlude all three hidden units, and eah one isharaterized by its own angle, P i
1 , P i

2. The probabilityof P1(σ
A 6= σB|τA

i 6= τB
i ), is given by

P i
1 = ǫjǫk + (1 − ǫj)(1 − ǫk). (34)Similarly, the probability that there is a mismath be-tween the two TPMs given that there is agreement be-tween the ith pair of hidden units, for instane, is givenby

P i
2 = ǫj(1 − ǫk) + ǫk(1 − ǫj). (35)Here, as well as in the ontinuous ase, we hose a se-quene of random parameters to represent the partiularhoie of random inputs.We follow eah hidden unit separately and thereforewe have three matries, F

i. We initialize the weightsrandomly, therefore the matries in the initial state havethe values of 1/(2L+1)2 in eah entry. In eah step, twosets of random parameters are hosen and are used toset a spei� realization of the internal presentation forthe parties. The �rst set is used to de�ne agreement ordisagreement between eah pair of hidden units, as donein the pereptron ase VA.All in all, due to inversion symmetry, when K = 3there are four possible results for the internal presenta-tions, + + +, + − −, − + − or − − + and aordingly
4 × 4 possible states, for whih the parties' output doesnot math, and an update is performed. We then usethe seond set of random parameters for de�ning thespei� internal presentation in one of the TPMs, andtherefore immediately in the other, aording to theiragreement/disagreement.The ase when the three hidden units disagree is ex-empli�ed below. There is a possibility that all hiddenunits are updated, (ase (b) in IIA), or only one of them;(ase (b) desribes two of the hidden units and ase (d)desribes the third). In two of the eight suh internal pre-sentations all the three hidden units are updated whereasin the other six, only one of them is updated, so thatwe must hoose whih one. All of these possibilities areequally probable, independent of θi. Therefore, we takeall the possible internal senarios into aount and, for in-stane, when after using the auxiliary random numbers,all three hidden units disagree, we hoose at random pαand aordingly update,
f i+

q,r = θ(
1

4
− pα)(

1

2
f i

q+1,r−1 +
1

2
f i

q−1,r+1) (36)
+θ(

i + 1

4
− pα)θ(pα − i

4
)(

1

2
f i

q+1,r−1 +
1

2
f i

q−1,r+1).The �rst term orresponds to the ase where all threehidden units are updated (with probability 1
4 ). The se-ond term orresponds to the ase where only one hidden
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Figure 6: The synhronization time (dashed line) and thedynami learning time (solid line) distribution, of analytialresults for TPMs, with L = 1. Symbols stand for the simula-tions results, with N = 10000.unit is updated. Eq. (36) is valid only for q and r whihare not on the boundary.In the ase of the pereptron when an update ours,both sides perform the update, in opposite diretions. Inthe ase of the TPMs, two mathing units do not alwaysperform an update together; in many ases one of theparties updates unit i, while the other updates unit j,
i 6= j, as desribed in ase () in IIA. In suh a ase, Eq.(36) is not su�ient, and we should add a desriptionof the matries' update when only one party is updated.Let us say the party represented by the matrix rows isupdated. Then we have

f i+
q,r =

1

2
f i

q+1,r +
1

2
f i

q−1,r, (37)and if the party represented by the matrix olumns isupdated, we have
f i+

q,r =
1

2
f i

q,r+1 +
1

2
f i

q,r−1, (38)where we limit the desription only to q, r whih are noton the boundary. An example is the ase when the in-ternal presentation of party A is − + + and that of Bis − − +. Then party A updates unit 1, Eq. (37) with
i = 1, while party B updates unit 3, Eq (38) with i = 3.In Figure 6 we present the distribution of time stepsfor synhronization aording to simulations with N =
10, 000, (⋆), and aording to the analytial results (solidline) in the ase of L = 1, taken from 500 di�erent runs.The evolution of the average overlap in this ase is givenin Figure 5. A solid line represents the analytial resultsand irles stand for simulation results. Both standarddeviations are indiated by the error bars. There is goodagreement between the analytial and simulation results.
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tsynch tnaive tflipp

L = 1 25 ± 14 36 ± 18 32 ± 19

L = 2 79 ± 38 239 ± 145 108 ± 58

L = 3 166 ± 67 3320 ± 3039 221 ± 106

L = 4 298 ± 113 176810 ± 179, 446 380 ± 159Table I: Average synhronization and dynami learning times,for the naive attaker and the �ipping attaker, for di�erentvalues of L.An attaker does not have to ahieve full synhroniza-tion in order to deipher the seret ode. For �nite N ,even a state lose enough to synhronization is su�ientto break the ode, thus making the system inseure.Moreover, the analysis and the simulations are fasterwhen the aim is to arrive at a partial overlap state. Wetherefore onsidered an attaker who ahieves 〈ρ〉 = 0.9,a suessful attaker, and synhronization and learningtimes given in Figure 7 and in Table I are for ahieving
〈ρ〉 = 0.9. C. The Naive AttakerThe aim of an attaker is to synhronize with one ofthe parties and reveal the seret key (the weights of theparties), hene her natural strategy is to imitate one ofthem, party A for instane, by using the same learningrule. The attaker, eavesdropping on the publi hannelonneting the parties, knows the input vetor xi and theoutput OA/B. When OA 6= OB , the parties update theirweights, and so does the attaker. In the ase wherethe attaker's internal presentation is the same as A's,they update the same units, an attrative step ours,and the attaker gets loser to her goal. Yet when theinternal presentations of the attaker and the party di�er,she updates some wrong units, a repulsive step ours,and this delays her. The 2K−1-fold degeneray in theoutput is the main reason for the attaker's failure. Thedependene of the attaker's weight vetor in a new stepon the weight vetor in the former one is given by

w
C+
i = w

C
i + D(wC

i xiσ
B)xiσ

Bθ(−σAσB). (39)The analysis is similar to the synhronization proess,given by Eq. (36). We now reate 9 matries, eah rep-resenting the state of two mathing hidden units amongtwo parties, and the attaker and eah party. We mustset the parties' internal presentation, as well as the at-taker's. We deide whih one of the 8 × 8 × 8 internalpresentations ours in eah step, following the orrela-tion between the parties and the attaker, and updatethe matries aordingly, as desribed in VB.Although the attaker may synhronize before the par-ties, the average learning time is around twie the syn-hronization time for L = 1, and is around 200 times thesynhronization time for L = 3. It seems that the reason

for the naive attaker's weakness is that too many repul-sive steps our; therefore, when trying to improve herabilities, we need to inrease the probability for an at-trative step, and derease the probability for a repulsiveone. It has been shown [24℄ that a small absolute loal-�eld value indiates a high probability for an error. Inthe next setion we present an advaned attaker whihmakes use of this knowledge.D. The Flipping AttakerThe �ipping attaker's strategy, reently introdued in[9℄, adds a di�erent move to the strategy of the naiveattaker when disagreement ours between the outputsof the attaker and party A. In this ase, the attaker isertain that either one or three of her hidden units arein disagreement with A's units, and therefore a repul-sive step will our. Sine disagreement of three units isless likely than disagreement of one unit, the attaker'sstrategy treats all ases as a one unit disagreement. The�ipping attaker tries to prevent the repulsive step byusing a "�ipping" approah; she negates the sign of oneof her units, before performing the update. If the orretunit was hosen, then the "new" internal presentationmathes that of the party, and the same units will beupdated by both, thus performing an attrative step. Toraise her hanes of �ipping the right unit, the attakerhooses the one whose absolute loal-�eld value is thelowest of the three : τ̂i = −τi for i that minimizes |hi|.The learning rules are the same as those given by Eq.(12) for the mutual synhronization, but the attaker'slearning is di�erent, (40)
w

C+
i = w

C
i + D(wC

i xiσ
B)xiσ

Bθ(−σAσB) ×
[θ(σCσA)θ(σCτC

i ) + θ(−σCσA)θ(σAτ̂C
i )]where τ̂i = −τi if |hi| < |hj |, ∀j 6= i and τ̂i = τi otherwise.The analysis used here is the same as for the naiveattaker. Here too, we follow the development of 9 ma-tries whih are updated at every time step, as desribedin VB. However, in ases where the attaker's outputdisagrees with the A's output, we ompute the probabil-ity for every unit to be the one with the lowest absoluteloal �eld value. For instane, when hC

i > 0, ∀i , theprobability for h1 being the smallest is given by:
P (hC

1 < hC
2 , hC

1 < hC
3 ) = (41)
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Figure 7: The synhronization time and learning time dis-tribution for the �ipping attaker, obtained by simulationswith N = 10
3 (diamonds/stars for synhronization/learning)and analytial alulations (squares/irles for synhroniza-tion/learning ) with L = 3, averaged over 10

4 runs.where the onditional probabilities are given by Eq. (19).The generalization to other ases in whih hC
i is notneessarily positive, is straightforward. We hoose atrandom two spei� loal �elds for the two parties hA

iand hB
i , from their joint probability distribution whihis derived from the orrelation matrix, making use of theoverlap between the parties' units. We then proeed toalulate the probability of eah unit of the attaker to bethe one with the lowest absolute loal �eld value, givenby Eq. (41). One we have Pi, i = 1, 2, 3 ( Pi is theprobability that unit i has the lowest loal �eld value),we use an auxiliary random number pα, to hoose theunit to be �ipped:

τ̂i = τi



1 − 2θ



pα −
i−1
∑

j=1

Pj



 θ





i
∑

j=1

Pj − pα







 (42)where P0 = 0.Simulations and analytial alulations with L = 3,
N = 103 averaged over 104 runs, indiate that the �ip-ping attaker is suessful. In �gure 7 we plotted thesynhronization time and learning time distribution forthe �ipping attak, obtained by simulations (irles forsynhronization and squares for learning) and analyti-al alulations (squares for synhronization and trian-gles for learning). The �ipping attaker's ability anbe measured by the ratio of the attaker learning timeand the parties' synhronization time, R = tlearn/tsynch.Figure 8 shows the distribution of this ratio for simu-lations (dashed line) and analytial (solid line) results.The probability of the �ipping attaker to �nish learningbefore synhronization is ahieved by the parties is 28%,as presented in Figure 8.
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Figure 8: The distribution of the ratio R = tlearn/tsynch,obtained by simulations (dashed line) with N = 10
3, andanalytial (solid line) results, with L = 3, averaged over 10

4runs. . E. DisussionIn the previous setion we introdued maro-dynamialupdating equations that imitate the simulation results ofdisrete mutual and dynami learning. All numeri runsof the maro-dynamial equations are in good agreementwith simulations. The TPMs that perform mutual learn-ing synhronize in a �nite number of steps that saleswith lnN . The maro-dynamial updating equations de-sribe the system in the limit of N → ∞, and they resultin an exponential deay of the order parameter ρ to −1,where reeiving the exat value of −1 depends on om-puter auray. However, de�ning the synhronizationby any �nite and lose to −1 value, results in a synhro-nization state that is ahieved in a �nite number of stepseven in the thermodynami limit. The good �t in thatlimit between analytial results and simulations resultsis indiated in Figures 6, 7 and 8. We presented hereanalytial results in the ase of ontinuous as well as dis-rete weight vetors. Reently, [11℄ the saling between
N and L was disussed, based on large sale simulationswith di�erent L and N values. It may be interesting todevelop the numerial equations in the limit of in�nite Land to �nd the appropriate interplay between these twoquantities.We onlude by presenting the potential of the TPMsto serve as a publi key ryptosystem. This is basedupon the following features: the synhronization statemay serve as the key in a ertain enryption and deryp-tion rule. This key evolves in publi without the needof prior ommuniation; one needs only to perform a �-nite number of steps of exhanging inputs and outputsin order to onverge to a synhronized state. The ana-lytial derivation shows that even for in�nite large sys-



14tems, N → ∞, there will be �nite distribution of synhro-nization times (where synhronization time is de�ned by
ρ = −1+ǫ where small ǫ is a oe�ient) and the synhro-nization time itself will be �nite. The �ipping attakersueeds in revealing the seret for small L values, as Lenlarges the task beomes harder for her [11℄. It is yetto be determined whether it is possible to make betteruse of the information in the hannel, and to devie astrategy that performs perfet learning on the averagein the same number of steps typial for synhronization
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