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Mutual learning in a tree parity ma
hine and its appli
ation to 
ryptographyMi
hal Rosen-Zvi1, Einat Klein1, Ido Kanter1 and Wolfgang Kinzel2
1Minerva Center and Department of Physi
s, Bar-Ilan University, Ramat-Gan, 52900 Israel, and
2Institut für Theoretis
he Physik, Universität Würzbur, Am Hubland 97074 Würzbur, GermanyMutual learning of a pair of tree parity ma
hines with 
ontinuous and dis
rete weight ve
tors isstudied analyti
ally. The analysis is based on a mapping pro
edure that maps the mutual learningin tree parity ma
hines onto mutual learning in noisy per
eptrons. The stationary solution of themutual learning in the 
ase of 
ontinuous tree parity ma
hines depends on the learning rate wherea phase transition from partial to full syn
hronization is observed. In the dis
rete 
ase the learningpro
ess is based on a �nite in
rement and a full syn
hronized state is a
hieved in a �nite numberof steps. The syn
hronization of dis
rete parity ma
hines is introdu
ed in order to 
onstru
t anephemeral key-ex
hange proto
ol. The dynami
 learning of a third tree parity ma
hine (an atta
ker)that tries to imitate one of the two ma
hines while the two still update their weight ve
tors is alsoanalyzed. In parti
ular, the syn
hronization times of the naive atta
ker and the �ipping atta
kerre
ently introdu
ed in [9℄ are analyzed. All analyti
al results are found to be in good agreementwith simulation results.PACS numbers: 87.18.Sn, 89.70.+
I. INTRODUCTIONArti�
ial neural networks are known for their ability tolearn [1, 2℄. They produ
e an output from a given inputa

ording to some weight ve
tor and a transfer fun
tion.Traditionally, there are two types of learning. One typeis unsupervised learning where a network re
eives inputand tries to learn about the input distribution. The othertype is the tea
her-student s
enario, when the so-
alledtea
her re
eives inputs, produ
es outputs and gives an-other ma
hine, the so-
alled student, both the inputs andtheir assigned outputs. In su
h a s
enario the tea
her isstati
, i.e., its weight ve
tor does not 
hange during thelearning, and the student tries to imitate the tea
her soas to produ
e the same output in a new unknown exam-ple by dynami
ally updating its weight ve
tor. The statein whi
h the student a
hieves the same weight ve
tor asthat of the tea
her and 
an therefore perform the sameoutput as that of the tea
her is referred to as perfe
tlearning.During the last few years a new type of learning s
e-nario has been introdu
ed and is under dis
ussion: themutual learning pro
edure. In the mutual learning pro-
edure there is no distin
tion between the tea
her roleand the student role; both networks fun
tion the sameway. They re
eive inputs, 
al
ulate the outputs and up-date their weight ve
tor a

ording to the mat
h betweentheir mutual outputs [3, 4℄. This is an online learningpro
edure where in ea
h step one input ve
tor is given,the output in both ma
hines is 
al
ulated and the re-sulting in
rement of ea
h weight ve
tor is added a

ord-ingly. It was found that per
eptrons that undergomutuallearning might end up in a syn
hronized state when theweight ve
tors of both ma
hines are either parallel - ex-a
tly the same, or anti-parallel - exa
tly the opposite (de-pending on their spe
i�
 updating rule). The stationarysyn
hronized solution is equivalent to the stationary per-fe
t learning solution in the tea
her-student s
enario. We

extend the analysis of mutual learning between per
ep-trons to mutual learning between parity ma
hines . Weintrodu
e a generi
 method of analyzing mutual learningin feedforward tree multi-layer networks where we 
on-
entrate on the tree parity ma
hine (TPM)[5, 6, 7℄. Themethod is based on a mapping pro
edure that maps themutual learning in TPMs onto mutual learning in noisyper
eptrons.A novel 
ryptosystem 
omposed of two parity ma
hinesthat syn
hronize has re
ently attra
ted mu
h attention[8, 9, 10, 11℄. A host of simulation results show thatdis
rete TPMs 
an syn
hronize very fast and a third ma-
hine that tries to learn their weight ve
tor a
hieves onlypartial su

ess. These properties make mutual learningin TPMs attra
tive for appli
ations in se
ure 
ommuni-
ations, as an information-bearing message 
an be hid-den within a 
ompli
ated stru
ture of the TPM's weightve
tors and still be re
onstru
ted at the re
eiver usinganother TPM whose parameters are exa
tly mat
hed tothose of the �rst one. This type of 
ryptosystem 
anprovide a new basis for se
urity mu
h di�erent from 
ur-rently used 
ryptosystems that involve large integers andare based upon number theory [12℄.The dis
rete ma
hines studied 
arried out an updat-ing pro
edure di�erent from the 
onventional learningpro
edures analyzed in neural networks. In the dis
retema
hine pro
edure the in
rement of the weight ve
tor inea
h step is �nite and not in�nitesimally small. Sin
e themethods of analyzing dis
rete on-line learning in 
ontem-porary resear
h, see [13, 14, 15, 16, 17℄, are not appli
ableto this 
ase, we introdu
e here a novel method for ana-lyzing mutual learning in networks with dis
rete weightve
tors and a learning pro
ess that is based on a �nite in-
rement. First, we des
ribe mutual learning with dis
reteper
eptrons, and then we exploit the method of mappingmutual learning between TPMs onto mutual learning be-tween noisy per
eptrons and analyze mutual learning indis
rete TPMs.



2In 
ryptography, one of the most important aspe
tsof the 
hannel is its se
urity. Therefore, potential al-gorithms of eavesdroppers are in
luded in our analy-sis. Su
h algorithms are a
tually sophisti
ated learningpro
edures where the parties are the tea
hers and theirweights are time dependent, and the eavesdropper is thestudent. In the following we name this time-dependent-tea
her-student s
enario dynami
 learning.In this Paper we analyze mutual learning and dynami
learning in TPMs of two kinds: ma
hines with 
ontinuousweight ve
tors (the spheri
al 
onstraint - see Eq. (2) be-low) and with dis
rete weight ve
tors and �nite in
rement(see Eq. (3) below). We introdu
e a method that mapsmutual learning in two layered parity ma
hines onto mu-tual learning in noisy per
eptrons. The spheri
al treeparity ma
hine is studied using the same tool box usedfor studying mutual learning in the per
eptron [3℄. Theinteresting behavior of full syn
hronization for a 
ertainregime in the learning rate spa
e and partial syn
hro-nization in the other regime is also found in the mutuallearning of TPMs. Mutual learning in a TPM when theweight ve
tors are 
ontinuous is des
ribed by equationsof motion that reveal the evolution of the order parame-ters in time. The derivation of the equations of motion isbased on the assumption that the order parameters areself-averaging quantities [18, 19℄. This assumption is vi-olated when the in
rement of the weight ve
tors in ea
hstep is �nite and not in�nitesimally small, as in the 
aseof the dis
rete weight ve
tor studied here. Therefore wedevelop di�erent analyti
al tools for the 
ase of dis
reteweight ve
tors.This Paper is an extension of [10℄. It 
ontains a full,detailed des
ription of the analyti
al methods and dis-
ussions that were not in
luded in [10℄. An advan
edatta
k suggested re
ently by Shamir et al [9℄ - the �ip-ping atta
k - is also analyzed. The paper is organizedas follows: in se
tion II we introdu
e the TPM model.We employ a general framework to present its appli
a-tion to Cryptography in IIA. The dynami
s studied arepresented in II B and the order parameters and lo
al �elddistributions are dis
ussed in II C. The mapping pro
e-dure is detailed in III. The learning in 
ontinuous TPMsis given in IV, where we divided the se
tion into mutuallearning (se
tion IVA), and dynami
 learning (se
tionIVB). The se
tion is summarized and the results aredis
ussed in IVC. Dis
rete learning is presented in se
-tion V. We �rst des
ribe mutual learning in per
eptronsin VA. The extension to mutual learning in parity ma-
hines is given in VB. Two dynami
 learning atta
ks arestudied, the naive atta
ker (in VC), and the �ipping at-ta
ker (in VD). A dis
ussion and an overview are givenin VE. All analyti
al results are found to be in goodagreement with simulation results as indi
ated in ea
hse
tion.

Figure 1: A tree parity ma
hine N : 3 : 1II. THE MODELWe 
onsider a TPM with K binary hidden units τi =

±1, i = 1, ..., K feeding a binary output, σ =
∏K

i=1 τi,see Figure 1. The networks 
onsist of either a 
ontinu-ous or a dis
rete 
oupling ve
tor wi = W1i, ..., WNi anddisjointed sets of inputs xi = X1i, ..., XNi 
ontaining Nelements ea
h. The input elements are random variableswith zero mean and unit varian
e. We 
on�ne the input
omponents to xji = ±1 without losing generality. Thelo
al �eld in the ith hidden unit is de�ned as
hi =

1
√

N/3
wixi, (1)and the output in the ith hidden unit is derived by takingthe sign of the lo
al �eld. The output of the tree parityma
hine is therefore given by

σ =

K
∏

i=1

sign(hi) =

K
∏

i=1

τi.Our analysis is limited to TPMs with three hidden units,
K = 3, merely for simpli
ity of the representation of theanalysis. The extension of the formalism to any numberof hidden units is straightforward.The weight ve
tors of the TPMs are initiated at ran-dom a

ording to a 
ertain 
onstraint. We studied twodi�erent 
ases: the 
ase when the weight ve
tors are 
on-�ned to a sphere,

N
∑

j=1

W 2
ji = N, (2)and are initiated randomly a

ording to a Gaussian dis-tribution; and the 
ase when there are a �nite number



3of available integer values that ea
h 
omponent of theweight ve
tor 
an take,
Wji = ±L,±(L − 1), ...,±1, 0, (3)and the weight ve
tor 
omponents are initiated at ran-dom from a �at distribution with equal probability forea
h value. These two s
enarios are referred to as the
ontinuous 
ase and the dis
rete 
ase.We studied the mutual and dynami
 learning of su
hTPMs in various s
enarios where the initial random se-le
ted weight ve
tor is the unknown se
ret information.Two ma
hines A and B, perform mutual learning andtry to syn
hronize by updating their weights a

ordingto the mat
h between their output su
h that at the endthey a
hieve full syn
hronization. The third ma
hine, C,performs dynami
 learning by trying to learn the weightve
tors of one of the two ma
hines, say A, and uses anatta
k strategy to update its weight ve
tors su
h thatat the end of the pro
edure they will be identi
al to theweight ve
tor of player A. The appli
ation of these pro-
edures to the �eld of Cryptography is dis
ussed in thefollowing se
tion.A. Cryptography Based on Syn
hronization:General FrameworkBefore we develop the detailed equations for mutuallearning in TPMs, we introdu
e the general 
on
eptof syn
hronization and learning in dis
rete parity ma-
hines in terms of a mean-�eld-like approa
h, and dis-
uss the qualitative ability to 
onstru
t an ephemeralkey-ex
hange proto
ol based on mutual learning betweenTPMs.First, let us 
onsider two parties A and B who wish toagree on a se
ret key over a publi
 
hannel. The weightve
tors, w

A/B
i , are the parameters of ea
h unit whi
hare 
hanged during the training pro
edure. Both partiesstart with se
ret initial parameters w whi
h may be gen-erated randomly. After a number of training steps, theset of parameters is syn
hronized and be
omes the time-dependent 
ommon key. At ea
h training step a 
ommonrandom input xi is generated for both of the parties; itis publi
 and known to possible eavesdroppers.Ea
h party of the se
ure 
hannel 
onsists of three hid-den units with 
orresponding three parameter ve
tors.For a given input xi ea
h party 
al
ulates an output bit

σA/B and sends it over the publi
 
hannel. A trainingstep is performed only if the two output bits disagree andonly for the hidden units whi
h agree with their output
∆w

A/B = g
(

σA/B
xi

)

θ
(

−σAσB
)

θ
(

σA/Bτ
A/B
i

)

, (4)where g is an odd fun
tion. As an example 
onsider thefollowing 
on�guration of the hidden units: + + + forTPM A and − + + for TPM B. The output bits havethe values σA = 1, σB = −1. Hen
e A trains all of its

units a

ording to xi, while B 
hanges only the weightve
tor of its �rst unit a

ording to −xi.Syn
hronization between the two ma
hines indi
atesa full anti-parallel state where ea
h ma
hine produ
esexa
tly the opposite output of the other for any giveninput. The su

ess of syn
hronization 
an be measuredby the probability of an in
oherent state, i.e., the proba-bility of having the same output instead of the oppositeone. The probability for an in
oherent state, ǫin, that two
orresponding hidden units are mistaken and instead ofprodu
ing exa
tly the opposite output they agree on arandom input, is given by
ǫin = Prob

(

τA
i

(

xi,w
A
i

)

= τB
i

(

xi,w
B
i

))

. (5)The fun
tion g used for training must be 
hosen so thaton the average (over random input) ǫin is de
reased. Inthis se
tion we simplify the presentation by assumingsymmetry among the three hidden unit, ǫin
i = ǫin. Thefull detailed des
ription of the dynami
al pro
ess beyondthis mean-�eld-like framework is given in V.It is now easy to see that as soon as the TPMsare syn
hronized they will remain syn
hronized, i.e., if

w
A
i = −w

B
i for all i, then σA = −σB and will remain so.A training step in a unit i is performed only if both out-put bits disagree and if the two τi disagree a

ordingly.Hen
e, after the syn
hronization state is a
hieved theyeither perform a 
oherent training step or they do not
hange their parameters (referred to as a quiet step). Apair of syn
hronized hidden units performs a kind of ran-dom walk in parameter spa
e but remains syn
hronized.This is di�erent when the two hidden units are notidenti
al. Let us 
onsider the �rst hidden unit, wherethere are four distin
t 
ases:(a) σA = σB : nothing moves and the next step isperformed.(b) τA

1 = σA, τB
1 = σB , σA = −σB: both parameterve
tors w

A
1 and w

B
1 are 
oherently 
hanged.(
) τA

1 = σA, τB
1 6= σB , σA = −σB or τA

1 6= σA,
τB
1 = σB , σA = −σB: only one parameter ve
tor is
hanged and moves in
oherently, hen
e ǫin

1 in
reases.(d) τA
1 6= σA, τB

1 6= σB , σA = −σB: both parameterve
tors are not 
hanged.The probability of �nding these four 
ases 
an be 
al
u-lated from the knowledge of ǫin. For example, the prob-ability of �nding the 
on�guration shown above, + + +and − + +, is 1
8

(

1 − ǫin
) (

ǫin
)2. All 64 
on�gurations
an be divided into three 
ategories: the probability ofhaving an attra
tive step, pa (
ase (b)); the probabilityof having a repulsive step, pr (
ase (
)); or the probabil-ity of having a quiet step, pq (
ases (a) and (d)). Theseprobabilities are found to be

pa =
1

2

[

(

1 − ǫin
)3

+
(

1 − ǫin
) (

ǫin
)2

]

, (6)
pr = 2

(

1 − ǫin
) (

ǫin
)2

, pq = 1 − pa − pr.In the remainder of this se
tion the three probabilitiesabove are employed in order to explain the syn
hroniza-



4tion phenomenon, and to demonstrate the superiority ofthe syn
hronization pro
ess over a possible atta
ker thatalso tries to syn
hronize with A and B.Close to syn
hronization, ǫin ∼ 0, the probability ofhaving a repulsive step is proportional to pr ∼
(

ǫin
)2whereas the probability of having an attra
tive step is

pa ∼ 1
2 (quiet steps are always possible). Let us assumethat the 
hange of the error, ǫin depends only on a fun
-tion of ǫin itself. Later we will derive the exa
t equations,whi
h are more 
omplex. Then, the average 
hange in ǫinin one step is obtained by

∆ǫ = a
(

ǫin
)

pa − r
(

ǫin
)

pr. (7)Close to syn
hronization a repulsive step a�e
ts all of theparameters while an attra
tive step 
an only syn
hronizethe few parameters whi
h are not yet identi
al. Hen
ewe expe
t for small values of ǫin:
a

(

ǫin
)

∼ a0ǫ
in, r

(

ǫin
)

∼ r0. (8)Therefore, in the leading order one obtains ∆ǫ ∝ a0ǫ
in.Close to syn
hronization the attra
tive for
e is dominate,independent of the detailed me
hanism of learning. Theparity ma
hine suppresses the repulsive steps by redu
ingtheir appearan
e frequen
y.This relation does not hold for the 
ommittee ma
hinewhi
h maps the hidden units to their majority vote, σ =

sign (τ1 + τ2 + τ3) [20, 21℄. For this 
ase one �nds
pa =

3

4

(

1 − ǫin
)3

+
(

1 − ǫin
)2 (

ǫin
)

+
1

2

(

1 − ǫin
) (

ǫin
)2

,(9)
pr =

1

2

(

1 − ǫin
)2 (

ǫin
)

+
(

1 − ǫin
) (

ǫin
)2

.Now, 
lose to syn
hronization pr ∼ ǫin and repulsion andattra
tive for
es are of the same order, Eq. (7). This
ompetition between attra
tion and repulsion supportspossible atta
kers, as dis
ussed below.Let us go ba
k to the parity output and 
onsider anatta
ker C who knows all the details of the algorithmand 
an listen to the 
ommuni
ation between A and B.We know that the initial 
on�gurations of the parame-ters of A and B are unknown. The atta
ker C has thesame ar
hite
ture (TPM), the same number of hiddenunits (3) and uses the same learning algorithm, Eq. (4).What is a good algorithm for C to syn
hronize, i.e., tolearn A and to be anti-parallel to B? If C is syn
hro-nized then she should remain so. Hen
e she should usethe identi
al training step in 
ase of agreement with A.Let us 
onsider an atta
ker C who simulates party Aafter syn
hronization between A and B is a
hieved. Cuses the 
omplete algorithm explained above for party
A. This means that A always makes some moves of herparameters while C moves her parameters 
orrespondingto the units whose output bit τC

i are identi
al to σA (inthe following we named this atta
k the naive atta
k - seeVC). This strategy for C generates many repulsion stepsbetween C and A. In fa
t, assuming the error between

0 0.1 0.2 0.3 0.4 0.5

εin

0

0.5
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2

p
r
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Figure 2: The ratio between pr and pa as a fun
tion of ǫin inthe 
ase of mutual learning in TPMs, Eq. (6) (solid line) andin 
ase of the naive atta
k, Eq. (10) (dashed line).all mat
hing units is the same, ǫin = Prob
(

τC
i 6= τA

i

)(where we use the same symbol for ǫin as in Eq. (5), al-though seemingly di�erent, in both 
ases it refers to theerror, see II C and Eq. (17) below) and summing up allpossibilities yields
pa =

1

2

(

1 − ǫin
)3

+
1

2

(

1 − ǫin
) (

ǫin
)2

+
(

1 − ǫin
)2

ǫin,(10)
pr =

(

1 − ǫin
)2

ǫin + 2
(

1 − ǫin
) (

ǫin
)2

+
(

ǫin
)3

.The essential di�eren
e between party A and atta
ker Cis that the probability of �nding a repulsive step s
aleswith (

ǫin
)2 in the mutual learning between A and B ands
ales with ǫin in the dynami
 learning between C and A,
lose to syn
hronization. A and B rea
t to their mutualoutput while C 
annot in�uen
e A; this yields a di�erentbehavior for small values of the error ǫin.The full s
heme of the ratio, pr/pa, derived from Eqs.(6) and (10) as a fun
tion of ǫin is presented in Figure2. It is 
lear that at any value of ǫin the performan
eof the mutual learning is better than the performan
eof the naive atta
ker that performs many more repulsivemoves 
ompared to hers attra
tive moves. Therefore,a more sophisti
ated atta
ker was re
ently suggested in[9℄ - the �ipping atta
ker. Hers performan
e 
annot bemeasured in the s
ope of this general framework sin
ehers strategy depends on the lo
al �elds in the hiddenunits and therefor 
an not be in
luded under the rubri
of Eq. (4), where g depends only on σxi .In the following, before delving into details we intro-du
e the dynami
 (Eq. (4)) more spe
i�
ally. We dis
usssome of the relevant order parameters and their distribu-tions. We present the strategy of the �ipping atta
kerand an intuitive explanation for her su

ess.



5B. The Dynami
sIn prin
iple, one 
an 
onsider the following 
lasses ofdynami
s that lead to a syn
hronized state:(A) The parties update their weight ve
tors whenevertheir outputs mismat
h (σA 6= σB , as appears in Eq.(4)), and ea
h unit updates a

ording to the input mul-tiplied by the opposite of its output.(B) The parties update their weight ve
tors whenevertheir outputs mismat
h (σA 6= σB , as appears in Eq.(4)), and ea
h unit updates a

ording to the input mul-tiplied by its output.(C) The parties update their weight ve
tors whenevertheir outputs mat
h (σA = σB), and ea
h unit updatesa

ording to the input multiplied by the opposite of itsoutput.(D) The parties update their weight ve
tors whenevertheir outputs mat
h (σA = σB), and ea
h unit updatesa

ording to the input multiplied by its output.In all the dynami
s mentioned above, the ith hiddenunit is updated only if it mat
hes the overall output inthat party, if τi = σ. The two parties that try to syn-
hronize might end up in an anti-parallel state (
ases (A)and (B)), or in a parallel state (
ases (C) and (D) ). Al-though Eq. (4) does not des
ribe 
ases (C) and (D), thedis
ussion in se
tion IIA is relevant to all 
ases.In this Paper we introdu
e a detailed presentation of
ase (A). In ea
h step an update is made only if bothma
hines, A and B, disagree, σA 6= σB , and ea
h unitupdates a

ording to the input multiplied by the oppositeof its output. In the spheri
al 
ase we normalize theweight ve
tor after ea
h updating su
h that its norm doesnot 
hange. The dependen
e of the weight ve
tor in anew step on the weight ve
tor in the former one in the
ontinuous 
ase is
w

A+
i =

w
A
i + η

N xiθ(−σAσB)θ(σAτB
i )σB

∥

∥w
A
i + η

N xiθ(−σAσB)θ(σAτB
i )σB

∥

∥

, (11)
w

B+
i =

w
B
i + η

N xiθ(−σAσB)θ(σBτB
i )σA

∥

∥wB
i + η

N xiθ(−σAσB)θ(σBτB
i )σA

∥

∥

,where θ(y) is the Heavyside fun
tion, i.e., equals zerofor y < 0 and 1 otherwise, η is the learning rate and
i = 1, ..., K. The analysis of the dynami
 is in the ther-modynami
 limit where N → ∞ and the weight ve
torsare updated by an in�nitely small quantity in ea
h step.In the dis
rete s
enario, the update is made in a similarmanner, yet there are two important di�eren
es from thedynami
s point of view. One is that in ea
h step the ve
-tors' 
omponents are 
hanged to the next integer valueand not by an in�nitesimally small one as in the 
ontin-uous 
ase (Eq. (11)). The se
ond di�eren
e is that whenthere is an update, the 
omponents whi
h have rea
hedthe boundary value Wi = ±L , and their absolute valueshould be in
reased W+

i = ±(L + 1), are not 
hanged,and remain with the boundary value. Mathemati
ally,

the learning is phrased as follows
w

A+
i = w

A
i + D(wA

i xiσ
B)xiσ

Aθ(σAτA
i )θ(−σAσB),(12)

w
B+
i = w

B
i + D(wB

i xiσ
A)xiσ

Aθ(σBτB
i )θ(−σAσB),where D(y) = 1− δL,y and δ is the Krone
ker delta fun
-tion.C. Order Parameters and Joint ProbabilityDistributionsThe analysis of learning in neural networks with an in-�nite number of weight ve
tor 
omponents is based uponstatisti
al me
hani
s analysis of several order parameters.The standard order parameters used are

Qm
i =

1

N/3
w

m
i · wm

i , (13)
Rm,n

i =
1

N/3
w

m
i · wn

i ,where the index i represents the ith hidden unit, i =
1, ..., K and m, n denote the spe
i�
 party, m, n ∈
{A, B, C}. The angle between ea
h pair of weight ve
tors
θ, is given by the normalized overlap between the weightve
tors

ρm,n
i = cos θm,n

i =
w

m
i ·wn

i

‖wm
i ‖ ‖wn

i ‖
. (14)We assume that there are no dire
t 
orrelations betweendi�erent hidden units due to the tree ar
hite
ture andtherefore the overlaps between di�erent units is zero.In the framework of statisti
al me
hani
s analysis ofon-line learning the order parameters play an impor-tant role in taking the averages over the random in-puts, or equivalently over the lo
al �eld distribution.A

ording to the 
entral limit theorem, the joint prob-ability distribution of the lo
al �elds in ea
h triplet ofmat
hing hidden units taken from the three di�erentma
hines depends only on the set of order parameters,

P (hA, hB, hC | {R, Q}) (where we omitted the subs
ript ifrom all parameters) and 
an be found from the 
orre-lation matrix. When all weight ve
tors are normalized,
Qm = 1, it is found to be

P =
exp(− F

2E )

(2π)3/2
√

E
, (15)where F =

(

hC
)2

GC +
(

hA
)2

GA +
(

hB
)2

GB −
2hAhBDC − 2hAhCDB − 2hChBDA, E = 1−

(

ρA,B
)2 −

(

ρA,C
)2 −

(

ρB,C
)2

+ 2ρA,BρA,CρB,C , Gk = (1 − ρl,m)2,
Dk = ρl,m − ρk,mρk,l and k, l, m ∈ {A, B, C}. This 
om-pli
ated expression 
an be mu
h simpli�ed if we assumethat the two ma
hines, A andB, are already anti-parallel.In that 
ase the joint probability distribution of the lo
al



6�elds is given by
P =

e
− 1

2

(hC)2
+(hA)2

−2hAhCρA,C

1−(ρA,C)2

2π
√

1 − ρA,C
δ(hA + hB), (16)where δ() stand for the Dira
 delta fun
tion.At this stage it is possible to 
al
ulate the probabilitiesde�ned in se
tion IIA and to show that indeed ǫin has thesame meaning and the same dependen
y on ρ in the two
ases: Eq. (5) and later when the atta
ker is introdu
ed.Averaging over the lo
al �eld distributions results in the
ase of mutual learning in ǫin = 1 − 1
π cos−1 ρA,B and inthe 
ase of dynami
 learning we �nd ǫin = 1

π cos−1 ρA,C .In order to 
ompare these two errors, where in the �rstone learning is des
ribed by negative ρ and in the se
ondby positive, we de�ne ρ̄ = |ρA,B| = |ρA,C |. Substituting
ρ̄ into both fun
tions above, we get

ǫin =
1

π
cos−1 ρ̄. (17)We present in this Paper a �ipping atta
ker, whi
hmakes use of the absolute value of the lo
al �eld. Theatta
ker estimates that the unit with the smallest abso-lute lo
al �eld is the one that is most probably wrong -that has di�erent outputs, τC
i 6= τA

i . The origin of thisassumption 
an be easily explained by averaging over thelo
al �eld distribution. The average of the absolute valueof the lo
al �eld, 〈∣

∣hC
∣

∣

〉, given an overlap ρA,C betweentwo mat
hing hidden units and norm QC of the weightve
tor in this unit is found to be
〈∣

∣hC
∣

∣

〉

=
1

2

√

QC

2π

(

1 ± ρA,C
)

, (18)where the sign in the right hand-side of the equation isplus for agreement between the outputs and minus fordisagreement. Sin
e ρ varies between −1 and 1 and in astate of partial learning 0 < ρ < 1, a small absolute lo
al�eld signals a mistake in the unit's output. The �ippingatta
ker uses this knowledge in her learning pro
edure,as dis
ussed in se
tion VD.The analyti
al study of this atta
ker in
ludes averagesover probability distribution of the lo
al �eld in the thirdparty, the atta
ker C, given the lo
al �elds of the twoma
hines. This probability is given by
P (hC |hB, hA, {ρ, Q}) =

P (hC , hB, hC | {ρ, Q})
P (hA, hB| {ρ, Q}) (19)where P (hC , hB, hC | {ρ, Q}) and P (hC , hB| {ρ, Q}) arethe joint probability distributions of the three lo
al �eldsand two lo
al �elds respe
tively, and they are derivedfrom the 
orrelation matrix similar to Eq. (15).In the dis
rete 
ase, when the in
rement is �nite (seefor instan
e Eq. (12)), the above order parameters no

longer su�
e for the ma
ros
opi
al des
ription of the dy-nami
s even in the thermodynami
 limit, N → ∞. How-ever, the distributions above do hold. The dynami
 
an-not be analyzed with the standard equations of motionbased on di�erential equations of the order parameterswith respe
t to α, the number of examples per input di-mension. We introdu
e a generi
 method for analyzingthe dis
rete 
ase by extending the ma
ros
opi
al param-eters and deriving ma
ro-dynami
al updating equations(see se
tion V).III. MAPPING PROCEDUREOne 
an map mutual learning in the parity 
ase ontomutual learning in K per
eptrons. The mapping to noisyper
eptron introdu
ed for analyzing on-line learning inTPM [22℄ is inadequate in the 
ase of mutual learningwhere the updating depends on the mat
hing betweenthe outputs but is independent of their spe
i�
 sign. Nev-ertheless, a di�erent mapping from TPM to noisy per-
eptrons 
an be used for the mutual learning 
ase. Themapping presentation is mu
h simpli�ed in the 
ontinu-ous 
ase sin
e assuming random initial 
onditions to allhidden units results in the same overlap for all hiddenunits, ρi = ρ ∀i. Therefore, we �rst assume that all theoverlaps between mat
hing hidden units are the same.Hen
e, updating K per
eptrons is equivalent to one up-dating in the TPM. The presentation of the mappingbelow is simpli�ed by the restri
tion of K = 3 and thegeneralization to any K is straightforward.We have TPMs that 
onsist of non-overlapping re
ep-tive �elds with random inputs. Hen
e in ea
h of theTPMs all 8 internal representations appear with equalprobability. A spe
i�
 hidden unit is updated when thefollowing two 
onditions are ful�lled; (a) there is a mis-mat
h between the results of the two TPMs, and (b) thestate of the hidden unit is the same as the output of theTPM. We make use of ǫ, the probability of having dif-ferent results in the two hidden units that the overlapbetween them is ρ and is given by
ǫ =

1

π
cos−1 ρ. (20)We 
on
entrate on a spe
i�
 pair of mat
hed hiddenunits. Given that the outputs of the hidden units aredi�erent, there is a probability, P1, that the TPMs re-sults are di�erent and in one half of the 
ases the TPMoutput has the same output as its hidden unit and there-fore both hidden units in both ma
hines are updated.This probability is given by

P1 = P (σA 6= σB|τA
i 6= τB

i ) = ǫ2 + (1 − ǫ)2. (21)Similarly, the probability that there is a mismat
h be-tween the two TPMs given that there is agreement be-tween two hidden units, is given by
P2 = P (σA 6= σB|τA

i = τB
i ) = 2ǫ(1 − ǫ). (22)



7In this 
ase only one of the hidden units has the samesign as the output in its TPM and only that hidden unitis updated.These probabilities are introdu
ed into the updatingpro
edure of the hidden units - the per
eptrons. In the
ontinuous 
ase they a�e
t the form of the equations ofmotion (see Eq. (23)). In the dis
rete 
ase they areintrodu
ed in a di�erent manner, as des
ribed in se
tionV.IV. CONTINUOUS TREE PARITY MACHINESCounting on the mapping pro
edure des
ribed above,mutual and dynami
 learning in 
ontinuous TPMs 
anbe mapped onto learning s
enarios in 
ontinuous per
ep-trons. The updating rule 
an be rede�ned so that it willbe suitable for a per
eptron where the kind of updatingdepends on the above probabilities, P1 and P2, Eqs. (21)and (22). The standard on-line equations 
onsist of anaverage over the order parameters [2℄, and now 
ontainadditional random variables. The average over these ad-ditional variables is taken by introdu
ing auxiliary ran-dom parameters, as des
ribed in the following se
tion.A. Anti-Parallel LearningIn this s
enario the updating rules of the TPMs aregiven in Eqs. (11) where we have three hidden units,
K = 3. Mapping the rules onto a per
eptron learningby employing the probabilities above is done by intro-du
ing auxiliary random parameters, pα, pβ, pγ , whi
hare equally distributed between 0 and 1. The updatingrule is 
al
ulated as a fun
tion of these parameters in thefollowing manner,
w

A+ =
w

A + η
N xτB∆A

|wA + η
N xτB∆A|

, w
B+ =

w
B + η

N xτA∆B

|wB + η
N xτA∆B | ,(23)where

∆A = θ(−τAτB)θ(
P1

2
− pα) − θ(τAτB)θ(P2 − pβ)θ(

1

2
− pγ) ,

∆B = θ(−τAτB)θ(
P1

2
− pα) − θ(τAτB)θ(P2 − pβ)θ(pγ − 1

2
) .The introdu
tion of the auxiliary random variables isdone a

ording to the following logi
: in one half of the
ases of disagreement between the units and disagree-ment between the TPMs, no update o

urs in the units(sin
e their sign does not mat
h the TPM's sign) andhen
e P1 is divided by 2 in the equation above. These
ond s
enario where updating o

urs is when the unitshave the same sign, the TPMs disagree and thereforeone of the units is updated and the other is not. Theauxiliary random number pγ is the one that determines(randomly) whi
h unit of the two is updated.
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Figure 3: The �xed point ρf as a fun
tion of η for the 
on-tinuous TPM as obtained from the solution of Eq. (25) (solidline). Simulation results in some instan
es of η are presentedby stars. Inset: Analyti
al (solid lines) and simulation resultsin the 
ase of η = 2 (triangles) and η = 3 (
ir
les) for 〈ρ〉 as afun
tion of α. All simulations are 
arried out with N = 5000and averaged over 20 samples.In order to 
al
ulate the equations of motion, one hasto multiply the updated ve
tors, Eq. (23), �rst, andthen to perform the two averages; average over the jointprobability distributions of the lo
al �elds and over therandom parameters, pα, pβ and pγ . The result of thesetwo averages is an equation over the normalized overlap
ρ, that depends only on ρ or equivalently on the angle,
θ, (see Eq. (14))

dρ

dα
= η[

θ2

π2
+ (1 − θ

π
)2][

1√
2π

(1 − ρ) − ηθ

2π
](1 + ρ) (24)

− 2η√
2π

(1 − ρ2)
θ

π
(1 − θ

π
) − η2ρ

θ

π
(1 − θ

π
)2,where α is the number of examples per input dimension.The points ρ = ±1 are �xed points of the equation of mo-tion above. Both are repulsive when the learning rate,

η, is small. As soon as η > ηc ∼ 2.68 a phase transitiono

urs, the ρ = −1 �xed point be
omes an attra
tive oneand a new phase arises, where the two ma
hines are fullysyn
hronized. The asymptoti
 de
ay of ρ to syn
hroniza-tion s
ales exponentially with α, as 
an be found by ex-panding the terms in Eq. (24) around θ = π. Apart fromthe �xed points dis
ussed above, for any η smaller than ηcthere is a di�erent attra
tive �xed point, as 
an be foundby solving numeri
ally Eq. (24). The �xed point θf (ρf )is the exa
t angle(overlap) in a spe
i�
 learning rate, η,



8in whi
h the right hand side of equation 24 be
omes zero:
η =

√
2π

θf
sin 2θf (1 − 2θf

π )2

(1 + cos θf )(
θ2

f

π2 + (1 − θf

π )2) + 2 cos θf (1 − θf

π )2
.(25)In Figure 3 we plotted the �xed points as a fun
tion of

η, as was found numeri
ally from Eq. (25). Simulationresults for spheri
al TPMs with N = 5000 and averagedover 20 samples are in agreement with the analysis as in-di
ated by the few tested 
ases presented by the symbols.Clearly, the system undergoes a phase transition from apartial to a perfe
t anti-parallel state at ηc ∼ 2.68. Oneinstan
e for ea
h of the phases is given in the inset ofFigure 3. The development of the averaged 〈ρ〉, averagedover the three hidden units and 20 samples, in the 
aseof partial mutual learning, η = 2 (triangles), and the
ase of anti-parallel syn
hronization, η = 3 (
ir
les), as afun
tion of α is presented in the inset of Figure 3. Nu-meri
al 
al
ulations of the analyti
al equation, Eq. (24),are presented by the solid lines.B. Dynami
 LearningIn the last se
tion we show a pro
edure that leads tofull syn
hronization. In the following we 
he
k the abilityof a third TPM, an atta
ker, to learn the weight ve
torsof the two parties. The third ma
hine, C, that tries toimitate A, updates its weight ve
tor only when the twoparties are updated and only the hidden units that mat
hthe output of party A. Mathemati
ally, this is de�ned asfollows
w

C+
i =

w
C
i + η

N xiθ(−σAσB)θ(σAτC
i )σB

∥

∥w
C
i + η

N xiθ(−σAσB)θ(σAτC
i )σB

∥

∥

. (26)Continuing the same line of introdu
ing probabilities inthe mutual learning pro
edure, one 
an write a set ofupdating rules for the dynami
 and mutual learning inper
eptrons whi
h is equivalent to TPMs learning. Thisis given by
w

A+ =
w

A + η
N xτB∆̃A

∥

∥

∥wA + η
N xτB∆̃A

∥

∥

∥

, (27)
w

B+ =
w

B + η
N xτA∆̃B

∥

∥

∥wB + η
N xτA∆̃B

∥

∥

∥

,

w
C+ =

w
C + η

N xτB∆C
∥

∥wC + η
N xτB∆C

∥

∥

,

where
∆̃A = θ(−τAτB)θ(P1 − pα)θ(

1

2
− pδ)

+θ(τAτB)θ(P2 − pβ)θ(
1

2
− pγ),

∆̃B = θ(−τAτB)θ(P1 − pα)θ(
1

2
− pδ)

+θ(τAτB)θ(P2 − pβ)θ(pγ − 1

2
),

∆C = θ(−τAτB)θ(τAτC)θ(P1 − pα)θ(
1

2
− pδ)

+θ(τAτB)θ(τAτC)θ(P2 − pβ)θ(
1

2
− pγ)

−θ(−τAτB)θ(−τAτC)θ(P1 − pα)θ(pδ −
1

2
)

+θ(τAτB)θ(−τAτC)θ(P2 − pβ)θ(pγ − 1

2
).We introdu
e another random parameter, pδ, whi
h isredundant when one 
al
ulates only the mutual learning,Eq. (23), and it is ne
essary for deriving equations ofmotion for the order parameters in the 
ase of dynami
learning. The four terms in ∆C represent the four pos-sibilities that 
ause an updating in the atta
ker hiddenunit. For instan
e, the �rst term of ∆C represents the
ase where the hidden unit in the atta
ker and in the �rstTPM have the same state, the TPMs' outputs are di�er-ent (indi
ated by P1) and the outputs in the hidden unitsof A and B are the same as their TPMs, (the probabilityfor su
h an event is 1

2 ).The equation of motion after syn
hronization, i.e.,when ρA,B = −1, ρA,C = −ρB,C , is derived by aver-aging Eqs. (27) over the joint probability distributionsthat is given in Eq. (16). It depends on the learning rateand the overlap ρA,C and is given expli
itly by
dρA,C

dα
=

η2

2

(

1 − 1

π
cos−1 ρA,C − ρA,C

)

. (28)This equation des
ribes the development of the overlapbetween the atta
ker and one of the two ma
hines thatare syn
hronized in both 
ases, when ea
h ma
hine learnsthe opposite of its result, Eq. (26).As 
an be derived from Eq. (28), independent of thelearning rate, η, there is a unique �xed point ρf ∼ 0.79.The point ρ = 1 is not a �xed point at all. Note that this�xed point des
ribes only the failure of the 
ontinuousatta
ker, the equivalent dis
rete atta
ker might syn
hro-nize and gain ρ = 1, as dis
ussed in se
tion VC. InFigure 4 we present analyti
al (solid lines) and simula-tion results (symbols) for the overlap between that at-ta
ker and player A, ρAC . We 
arried out simulationswith N = 5000, and ea
h result averaged 20 times. Agood agreement between simulation results and analyti-
al results is presented in Figure 4 in both 
ases; when theoverlap is initialized zero, ρAC = 0 and in the inset, whenthe initial value of the overlap is almost 1, ρAC = 0.98.All results are for full syn
hronization between A and B,
ρAB = −1.
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Figure 4: The analyti
al 
urve of the averaged overlap, 〈ρ〉, ina dynami
 learning of TPMs as obtained from Eqs. (28) (solidline), with η = 10. The initial state is ρ = 0. Inset: Analyti
alresults for the dynami
 learning with the initial state ρ = 0.98.Symbols represent the 
orresponding simulations, 
arried outwith N = 5000 and averaged over 20 runs.C. SummaryIn summary, we showed that an initiated pair of ran-dom TPMs that perform mutual learning results in a fullsyn
hronization state for η > ηc. We introdu
e here aspe
i�
 dynami
 where the parties update only in a mis-mat
h between the outputs, the updating is in oppositedire
tions of ea
h other and they are normalized in ea
hstep (
ase A in II B). Analyzing 
ase B, for instan
e,reveals that for all η, the stationary solution is a syn-
hronized state. Using the dynami
s appearing in II Bbut without normalizing the weight ve
tors does not endin a syn
hronization state at all. The spe
i�
 algorithmwe 
hose 
ontains the rea
h phenomenon of phase tran-sition [23℄. Moreover, its syn
hronization abilities are
losely related to the dis
rete syn
hronization studied inthe following se
tion.The atta
ker tries to learn the parties' weight ve
torsbut manages to a
hieve only partial su

ess. This di�-
ulty in learning that su
h a naive atta
ker fa
es as in-di
ated by the �xed point that di�ers from 1, also 
har-a
terizes the naive atta
ker in the other 
ases presentedin II B. However, the analysis is not relevant for the dis-
rete 
ase studied below. In the dis
rete 
ase the naiveatta
ker performan
e is restri
ted too but perfe
t learn-ing is possible, see VC. The �ipping atta
ker that makesuse of the lo
al �elds (see VD) has a better performan
ein the dis
rete 
ase. An open question whi
h deservesfurther resear
h, is how to analyze the 
ontinuous �ip-ping atta
ker.

V. DISCRETE MACHINESThe study of dis
rete networks requires di�erent meth-ods of analysis than those used for the 
ontinuous 
ase.We found that instead of examining the evolution of Rand Q, we must examine (2L+1)× (2L+1) parameters,whi
h des
ribe the mutual learning pro
ess. By writinga Markovian pro
ess that des
ribes the development ofthese parameters, one gains an insight into the learningpro
edure. Thus we de�ne a (2L + 1) × (2L + 1) ma-trix, F
µ, in whi
h the state of the ma
hines in the timestep µ is represented. The elements of F, are fqr, where

q, r = −L, ...−1, 0, 1, ...L. The element fqr represents thefra
tion of 
omponents in a weight ve
tor in whi
h the
A's 
omponents are equal to q and the mat
hing 
om-ponents in d unit B are equal to r. Hen
e, the overlapbetween the two units as well as their norms are de�nedthrough this matrix,

R =

L
∑

q,r=−L

qrfqr , (29)
QA =

L
∑

q=−L

q2fqr QB =
L

∑

r=−L

r2fqr.The matrix elements are updated, if and only if, anupdate of the weight ve
tors o

urs.A. Learning with Dis
rete Per
eptronsThe mutual learning s
enario is mu
h simpli�ed in the
ase of the per
eptron, therefore we present here the fulldes
ription of the analyti
al pro
edure used for this 
ase.Updating is done in the 
ase of a mismat
h, and the aimis to arrive at a state in whi
h the weight ve
tors areanti-parallel, ρ = −1 (we 
ould aim at ρ = 1 instead, seethe manifold of possible dynami
s in IIA, and the resultswould be equivalent). The dependen
e of the weight ve
-tor in a new step on the weight ve
tor in the former oneis given by:
w

A+
i = w

A
i + D(wA

i xiσ
B)xiσ

Bθ(−σAσB), (30)
w

B+
i = w

B
i + D(wB

i xiσ
A)xiσ

Aθ(−σAσB),where σA/B represents the output of TPM A/B, and
w

A/B represents its weight ve
tor.The update of the elements of the matrix F, is 
al-
ulated dire
tly from Eq. (30), where one must averageover the input 
omponents Xij . On the average, halfof the updated weights in one ma
hine are in
reased by1, while the mat
hing weights in the other ma
hine arede
reased by 1 and vi
e versa.The possibility for agreement/disagreement betweenthe parties is a fun
tion of the 
urrent overlap betweenthem, 
al
ulated using the matri
es (see Eq. (29)). Thisprobability is implemented by 
hoosing a random param-eter, pα between [0, 1]. If it is smaller than ǫ, as de�ned in



10Eq. (20), the parties disagree, otherwise they agree. Theupdating of matrix elements is des
ribed as follows: forthe elements with q and r whi
h are not on the boundary,(q 6= ±L and r 6= ±L) the update 
an be written in asimple manner,
f+

q,r = θ (pα − ǫ) fq,r+θ (ǫ − pα)

(

1

2
fq+1,r−1 +

1

2
fq−1,r+1

)

.(31)For elements with both indi
es on the boundary, the up-date is
f+

L,L = θ (pα − ǫ) fL,L, (32)
f+
−L,−L = θ (pα − ǫ) f−L,−L,

f+
L,−L = θ (pα − ǫ)

(

1

2
fL,−L

)

+ θ (ε − pα) ×
(

1

2
fL−1,−L+1 +

1

2
fL−1,−L +

1

2
fL,−L+1

)

,

f+
−L,L = θ (pα − ǫ) f−L,L + θ (ǫ − pα) ×

(

1

2
f−L+1,L−1 +

1

2
f−L+1,L +

1

2
f−L,L−1

)

.For elements with just one of the indi
es on the boundary(q = ±L and r 6= ±L or vi
e versa), the update is
f+

q,L = θ (pα − ǫ) fq,L+ (33)
θ (ǫ − pα)

(

1

2
fq+1,L−1 +

1

2
fq+1,L

)

,

f+
q,−L = θ (pα − ǫ) fq,−L+

θ (ǫ − pα)

(

1

2
fq−1,−L+1 +

1

2
fq−1,−L

)

,

f+
L,r = θ (pα − ǫ) fL,r+

θ (ǫ − pα)

(

1

2
fL−1,r+1 +

1

2
fL,r+1

)

,

f+
−L,r = θ (pα − ǫ) f−L,r+

θ (ǫ − pα)

(

1

2
f−L+1,r−1 +

1

2
f−L,r−1

)

,The main quantity of interest is the number of stepsrequired in order to arrive at a state of full syn
hroniza-tion. In simulations there is a dis
rete transition froman overlap whi
h is almost anti-parallel to a 
ompletelyanti-parallel state. This is due to the �nite nature of theve
tors, the largest value of overlap before syn
hroniza-tion is −1 + O(1/N). In simulations with N = 104, forexample, the largest value of the overlap before full syn-
hronization is ρ = 0.99999, and this is the value we usedin our analyti
al pro
edure, for de�ning full syn
hroniza-tion for 
omparison to simulations with N = 104.Our results indi
ate that the order parameters are notself-averaged quantities [19℄. Several runs with the same
N , results in di�erent 
urves for the order parameters asa fun
tion of the number of steps, see Figure 5. Thisexplains the non-zero varian
e of ρ as a results of the
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Figure 5: The averaged overlap 〈ρ〉 and its standard devia-tion as a fun
tion of the number of steps as found from theanalyti
al results (solid line) and simulation results (
ir
les)of mutual learning in TPMs. Inset: analyti
al results (solidline) and simulation results (
ir
les) results for the per
ep-tron, with L = 1 and N = 10
4.�u
tuations in the lo
al �elds indu
ed by the input evenin the thermodynami
 limit.In the inset of Figure 5 we present the averaged numer-i
al results derived from the analyti
al equations, (31, 32,33) of syn
hronization in the per
eptron (solid line) with

L = 1, Wi = ±1, 0, . The analyti
al results are aver-aged over 500 samples and the non-zero standard devi-ations are not presented in order to simply the presen-tation. Simulation results with L = 1 (Wi = ±1, 0) and
N = 104, averaged over 500 samples are presented bythe 
ir
les; error bars are standard deviations. Note thateven though the matrix elements were initiated with thesame values in ea
h run, there is still a non-zero stan-dard deviation due to �u
tuations in the lo
al �elds asa fun
tion of the parti
ular set of random inputs even inthe thermodynami
 limit.For the per
eptron, syn
hronization is mu
h easier andfaster to a
hieve than for the TPM. Take for example the
ase where L = 1. If for three 
onse
utive steps, both theother party's output and xi were positive, an atta
ker
an surely know that Wi = 1, while this is not so in theTPM 
ase, as the atta
ker 
annot know for sure whetherthe unit was updated or not. Therefore, the TPM ismu
h more suitable for building a 
ryptosystem than theper
eptron. B. Syn
hronization in TPMsMutual learning in dis
rete TPMs is des
ribed by mu-tual learning dis
rete noisy per
eptrons. As the TPM
onsists of three hidden units (ea
h evolving di�erently),



11we now have three di�erent angles, θi where i = 1, 2, 3,for ea
h hidden unit. Sin
e the dynami
s are not self-averaged, we use probabilities similar to those introdu
edin Eq. (21). The de�nitions of these probabilities are ex-tended to in
lude all three hidden units, and ea
h one is
hara
terized by its own angle, P i
1 , P i

2. The probabilityof P1(σ
A 6= σB|τA

i 6= τB
i ), is given by

P i
1 = ǫjǫk + (1 − ǫj)(1 − ǫk). (34)Similarly, the probability that there is a mismat
h be-tween the two TPMs given that there is agreement be-tween the ith pair of hidden units, for instan
e, is givenby

P i
2 = ǫj(1 − ǫk) + ǫk(1 − ǫj). (35)Here, as well as in the 
ontinuous 
ase, we 
hose a se-quen
e of random parameters to represent the parti
ular
hoi
e of random inputs.We follow ea
h hidden unit separately and thereforewe have three matri
es, F

i. We initialize the weightsrandomly, therefore the matri
es in the initial state havethe values of 1/(2L+1)2 in ea
h entry. In ea
h step, twosets of random parameters are 
hosen and are used toset a spe
i�
 realization of the internal presentation forthe parties. The �rst set is used to de�ne agreement ordisagreement between ea
h pair of hidden units, as donein the per
eptron 
ase VA.All in all, due to inversion symmetry, when K = 3there are four possible results for the internal presenta-tions, + + +, + − −, − + − or − − + and a

ordingly
4 × 4 possible states, for whi
h the parties' output doesnot mat
h, and an update is performed. We then usethe se
ond set of random parameters for de�ning thespe
i�
 internal presentation in one of the TPMs, andtherefore immediately in the other, a

ording to theiragreement/disagreement.The 
ase when the three hidden units disagree is ex-empli�ed below. There is a possibility that all hiddenunits are updated, (
ase (b) in IIA), or only one of them;(
ase (b) des
ribes two of the hidden units and 
ase (d)des
ribes the third). In two of the eight su
h internal pre-sentations all the three hidden units are updated whereasin the other six, only one of them is updated, so thatwe must 
hoose whi
h one. All of these possibilities areequally probable, independent of θi. Therefore, we takeall the possible internal s
enarios into a

ount and, for in-stan
e, when after using the auxiliary random numbers,all three hidden units disagree, we 
hoose at random pαand a

ordingly update,
f i+

q,r = θ(
1

4
− pα)(

1

2
f i

q+1,r−1 +
1

2
f i

q−1,r+1) (36)
+θ(

i + 1

4
− pα)θ(pα − i

4
)(

1

2
f i

q+1,r−1 +
1

2
f i

q−1,r+1).The �rst term 
orresponds to the 
ase where all threehidden units are updated (with probability 1
4 ). The se
-ond term 
orresponds to the 
ase where only one hidden

0 100 200 300 400

# of steps

0

0.05

0.1

0.15

0.2

0.25

P

Figure 6: The syn
hronization time (dashed line) and thedynami
 learning time (solid line) distribution, of analyti
alresults for TPMs, with L = 1. Symbols stand for the simula-tions results, with N = 10000.unit is updated. Eq. (36) is valid only for q and r whi
hare not on the boundary.In the 
ase of the per
eptron when an update o

urs,both sides perform the update, in opposite dire
tions. Inthe 
ase of the TPMs, two mat
hing units do not alwaysperform an update together; in many 
ases one of theparties updates unit i, while the other updates unit j,
i 6= j, as des
ribed in 
ase (
) in IIA. In su
h a 
ase, Eq.(36) is not su�
ient, and we should add a des
riptionof the matri
es' update when only one party is updated.Let us say the party represented by the matrix rows isupdated. Then we have

f i+
q,r =

1

2
f i

q+1,r +
1

2
f i

q−1,r, (37)and if the party represented by the matrix 
olumns isupdated, we have
f i+

q,r =
1

2
f i

q,r+1 +
1

2
f i

q,r−1, (38)where we limit the des
ription only to q, r whi
h are noton the boundary. An example is the 
ase when the in-ternal presentation of party A is − + + and that of Bis − − +. Then party A updates unit 1, Eq. (37) with
i = 1, while party B updates unit 3, Eq (38) with i = 3.In Figure 6 we present the distribution of time stepsfor syn
hronization a

ording to simulations with N =
10, 000, (⋆), and a

ording to the analyti
al results (solidline) in the 
ase of L = 1, taken from 500 di�erent runs.The evolution of the average overlap in this 
ase is givenin Figure 5. A solid line represents the analyti
al resultsand 
ir
les stand for simulation results. Both standarddeviations are indi
ated by the error bars. There is goodagreement between the analyti
al and simulation results.
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tsynch tnaive tflipp

L = 1 25 ± 14 36 ± 18 32 ± 19

L = 2 79 ± 38 239 ± 145 108 ± 58

L = 3 166 ± 67 3320 ± 3039 221 ± 106

L = 4 298 ± 113 176810 ± 179, 446 380 ± 159Table I: Average syn
hronization and dynami
 learning times,for the naive atta
ker and the �ipping atta
ker, for di�erentvalues of L.An atta
ker does not have to a
hieve full syn
hroniza-tion in order to de
ipher the se
ret 
ode. For �nite N ,even a state 
lose enough to syn
hronization is su�
ientto break the 
ode, thus making the system inse
ure.Moreover, the analysis and the simulations are fasterwhen the aim is to arrive at a partial overlap state. Wetherefore 
onsidered an atta
ker who a
hieves 〈ρ〉 = 0.9,a su

essful atta
ker, and syn
hronization and learningtimes given in Figure 7 and in Table I are for a
hieving
〈ρ〉 = 0.9. C. The Naive Atta
kerThe aim of an atta
ker is to syn
hronize with one ofthe parties and reveal the se
ret key (the weights of theparties), hen
e her natural strategy is to imitate one ofthem, party A for instan
e, by using the same learningrule. The atta
ker, eavesdropping on the publi
 
hannel
onne
ting the parties, knows the input ve
tor xi and theoutput OA/B. When OA 6= OB , the parties update theirweights, and so does the atta
ker. In the 
ase wherethe atta
ker's internal presentation is the same as A's,they update the same units, an attra
tive step o

urs,and the atta
ker gets 
loser to her goal. Yet when theinternal presentations of the atta
ker and the party di�er,she updates some wrong units, a repulsive step o

urs,and this delays her. The 2K−1-fold degenera
y in theoutput is the main reason for the atta
ker's failure. Thedependen
e of the atta
ker's weight ve
tor in a new stepon the weight ve
tor in the former one is given by

w
C+
i = w

C
i + D(wC

i xiσ
B)xiσ

Bθ(−σAσB). (39)The analysis is similar to the syn
hronization pro
ess,given by Eq. (36). We now 
reate 9 matri
es, ea
h rep-resenting the state of two mat
hing hidden units amongtwo parties, and the atta
ker and ea
h party. We mustset the parties' internal presentation, as well as the at-ta
ker's. We de
ide whi
h one of the 8 × 8 × 8 internalpresentations o

urs in ea
h step, following the 
orrela-tion between the parties and the atta
ker, and updatethe matri
es a

ordingly, as des
ribed in VB.Although the atta
ker may syn
hronize before the par-ties, the average learning time is around twi
e the syn-
hronization time for L = 1, and is around 200 times thesyn
hronization time for L = 3. It seems that the reason

for the naive atta
ker's weakness is that too many repul-sive steps o

ur; therefore, when trying to improve herabilities, we need to in
rease the probability for an at-tra
tive step, and de
rease the probability for a repulsiveone. It has been shown [24℄ that a small absolute lo
al-�eld value indi
ates a high probability for an error. Inthe next se
tion we present an advan
ed atta
ker whi
hmakes use of this knowledge.D. The Flipping Atta
kerThe �ipping atta
ker's strategy, re
ently introdu
ed in[9℄, adds a di�erent move to the strategy of the naiveatta
ker when disagreement o

urs between the outputsof the atta
ker and party A. In this 
ase, the atta
ker is
ertain that either one or three of her hidden units arein disagreement with A's units, and therefore a repul-sive step will o

ur. Sin
e disagreement of three units isless likely than disagreement of one unit, the atta
ker'sstrategy treats all 
ases as a one unit disagreement. The�ipping atta
ker tries to prevent the repulsive step byusing a "�ipping" approa
h; she negates the sign of oneof her units, before performing the update. If the 
orre
tunit was 
hosen, then the "new" internal presentationmat
hes that of the party, and the same units will beupdated by both, thus performing an attra
tive step. Toraise her 
han
es of �ipping the right unit, the atta
ker
hooses the one whose absolute lo
al-�eld value is thelowest of the three : τ̂i = −τi for i that minimizes |hi|.The learning rules are the same as those given by Eq.(12) for the mutual syn
hronization, but the atta
ker'slearning is di�erent, (40)
w

C+
i = w

C
i + D(wC

i xiσ
B)xiσ

Bθ(−σAσB) ×
[θ(σCσA)θ(σCτC

i ) + θ(−σCσA)θ(σAτ̂C
i )]where τ̂i = −τi if |hi| < |hj |, ∀j 6= i and τ̂i = τi otherwise.The analysis used here is the same as for the naiveatta
ker. Here too, we follow the development of 9 ma-tri
es whi
h are updated at every time step, as des
ribedin VB. However, in 
ases where the atta
ker's outputdisagrees with the A's output, we 
ompute the probabil-ity for every unit to be the one with the lowest absolutelo
al �eld value. For instan
e, when hC

i > 0, ∀i , theprobability for h1 being the smallest is given by:
P (hC

1 < hC
2 , hC

1 < hC
3 ) = (41)

∫ ∞

0

P (hC
1 |hA

1 , hB
1 , {ρ, Q})dhC

1

∫ ∞

hC
1

P (hC
2 |hA

2 , hB
2 , {ρ, Q})dhC

2

∫ ∞

hC
1

P (hC
3 |hA

3 , hB
3 , {ρ, Q})dhC

3
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Figure 7: The syn
hronization time and learning time dis-tribution for the �ipping atta
ker, obtained by simulationswith N = 10
3 (diamonds/stars for syn
hronization/learning)and analyti
al 
al
ulations (squares/
ir
les for syn
hroniza-tion/learning ) with L = 3, averaged over 10

4 runs.where the 
onditional probabilities are given by Eq. (19).The generalization to other 
ases in whi
h hC
i is notne
essarily positive, is straightforward. We 
hoose atrandom two spe
i�
 lo
al �elds for the two parties hA

iand hB
i , from their joint probability distribution whi
his derived from the 
orrelation matrix, making use of theoverlap between the parties' units. We then pro
eed to
al
ulate the probability of ea
h unit of the atta
ker to bethe one with the lowest absolute lo
al �eld value, givenby Eq. (41). On
e we have Pi, i = 1, 2, 3 ( Pi is theprobability that unit i has the lowest lo
al �eld value),we use an auxiliary random number pα, to 
hoose theunit to be �ipped:

τ̂i = τi



1 − 2θ



pα −
i−1
∑

j=1

Pj



 θ





i
∑

j=1

Pj − pα







 (42)where P0 = 0.Simulations and analyti
al 
al
ulations with L = 3,
N = 103 averaged over 104 runs, indi
ate that the �ip-ping atta
ker is su

essful. In �gure 7 we plotted thesyn
hronization time and learning time distribution forthe �ipping atta
k, obtained by simulations (
ir
les forsyn
hronization and squares for learning) and analyti-
al 
al
ulations (squares for syn
hronization and trian-gles for learning). The �ipping atta
ker's ability 
anbe measured by the ratio of the atta
ker learning timeand the parties' syn
hronization time, R = tlearn/tsynch.Figure 8 shows the distribution of this ratio for simu-lations (dashed line) and analyti
al (solid line) results.The probability of the �ipping atta
ker to �nish learningbefore syn
hronization is a
hieved by the parties is 28%,as presented in Figure 8.
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Figure 8: The distribution of the ratio R = tlearn/tsynch,obtained by simulations (dashed line) with N = 10
3, andanalyti
al (solid line) results, with L = 3, averaged over 10

4runs. . E. Dis
ussionIn the previous se
tion we introdu
ed ma
ro-dynami
alupdating equations that imitate the simulation results ofdis
rete mutual and dynami
 learning. All numeri
 runsof the ma
ro-dynami
al equations are in good agreementwith simulations. The TPMs that perform mutual learn-ing syn
hronize in a �nite number of steps that s
aleswith lnN . The ma
ro-dynami
al updating equations de-s
ribe the system in the limit of N → ∞, and they resultin an exponential de
ay of the order parameter ρ to −1,where re
eiving the exa
t value of −1 depends on 
om-puter a

ura
y. However, de�ning the syn
hronizationby any �nite and 
lose to −1 value, results in a syn
hro-nization state that is a
hieved in a �nite number of stepseven in the thermodynami
 limit. The good �t in thatlimit between analyti
al results and simulations resultsis indi
ated in Figures 6, 7 and 8. We presented hereanalyti
al results in the 
ase of 
ontinuous as well as dis-
rete weight ve
tors. Re
ently, [11℄ the s
aling between
N and L was dis
ussed, based on large s
ale simulationswith di�erent L and N values. It may be interesting todevelop the numeri
al equations in the limit of in�nite Land to �nd the appropriate interplay between these twoquantities.We 
on
lude by presenting the potential of the TPMsto serve as a publi
 key 
ryptosystem. This is basedupon the following features: the syn
hronization statemay serve as the key in a 
ertain en
ryption and de
ryp-tion rule. This key evolves in publi
 without the needof prior 
ommuni
ation; one needs only to perform a �-nite number of steps of ex
hanging inputs and outputsin order to 
onverge to a syn
hronized state. The ana-lyti
al derivation shows that even for in�nite large sys-



14tems, N → ∞, there will be �nite distribution of syn
hro-nization times (where syn
hronization time is de�ned by
ρ = −1+ǫ where small ǫ is a 
oe�
ient) and the syn
hro-nization time itself will be �nite. The �ipping atta
kersu

eeds in revealing the se
ret for small L values, as Lenlarges the task be
omes harder for her [11℄. It is yetto be determined whether it is possible to make betteruse of the information in the 
hannel, and to devi
e astrategy that performs perfe
t learning on the averagein the same number of steps typi
al for syn
hronization

even for large L. A
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