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Abstract. We present new related-key attacks on the block ciphers 3-
WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. Differen-
tial related-key attacks allow both keys and plaintexts to be chosen with
specific differences [KSW96]. Our attacks build on the original work,
showing how to adapt the general attack to deal with the difficulties
of the individual algorithms. We also give specific design principles to
protect against these attacks.

1 Introduction

Related-key cryptanalysis assumes that the attacker learns the encryption of
certain plaintexts not only under the original (unknown) key K, but also under
some derived keys K ′ = f(K). In a chosen-related-key attack, the attacker
specifies how the key is to be changed; known-related-key attacks are those where
the key difference is known, but cannot be chosen by the attacker. We emphasize
that the attacker knows or chooses the relationship between keys, not the actual
key values. These techniques have been developed in [Knu93b, Bih94, KSW96].

Related-key cryptanalysis is a practical attack on key-exchange protocols
that do not guarantee key-integrity—an attacker may be able to flip bits in the
key without knowing the key—and key-update protocols that update keys using
a known function: e.g., K, K + 1, K + 2, etc. Related-key attacks were also
used against rotor machines: operators sometimes set rotors incorrectly. If the
operator then corrected the rotor positions and retransmitted the same plaintext,
an adversary would have a single plaintext encrypted in two related keys [DH79].
Hash functions built from block ciphers can also be vulnerable to a related-key
attack against the block cipher [Win84, RIPE92].

In [KSW96] we gave a summary of key-schedule attacks against block ci-
phers, showed practical protocols that allow related-key attacks to be mounted,
and presented related-key attacks against GOST [GOST89], IDEA [LMM91]
with a reduced number of rounds, SAFER K-64 [Mas94], DES with indepen-
dent subkeys, G-DES [PA90a, PA90b], and three-key triple-DES. This paper
continues the research undertaken in that work.



2 New Differential Related-Key Attacks

2.1 3-WAY

3-WAY is an 11-round cipher on 96-bit blocks [Dae94]. Ignoring trivialities such
as the input and output transformations, the 3-WAY round function F (x) has
an equivalent representation as:

y = N(x), z = L(y), F (x) = z ⊕K ⊕ Ci

where N is a fixed nonlinear layer built out of 32 parallel 3-bit permutation S-
boxes, L is a fixed linear function, K is the 96-bit master key, and Ci is a fixed,
round-dependent public constant.

3-WAY is vulnerable to a simple related-key differential attack. It is trivial
to find a differential characteristic for one S-box with probability 1/4, so we can
construct a characteristic ∆x→ ∆y with probability 1/4 for the non-linear layer
N by using only one active S-box. By linearity we see that ∆y → ∆z = L(∆y)
with probability 1 under the linear layer L. If we pick ∆K = ∆x ⊕ ∆z, then
∆x→ ∆x by F with probability 1/4, which is a one-round iterative differential
characteristic. In this way we can derive a 9-round characteristic with probability
2−18 to cover rounds 1–9, and apply a 2R analysis to the last two rounds. This
breaks 3-WAY with one related-key query and about 222 chosen plaintexts.

2.2 DES-X

DES-X is a DES variant proposed by Rivest [Riv95] to strengthen DES against
exhaustive attacks. The DES-X encryption of P with key (K1,K2,K3) is simply

C = K1 ⊕DESK2(K3 ⊕ P )

where K3 is the pre-whitening key and K1 is the post-whitening key. DES-X has
many complementation properties. Furthermore, every DES-X key (K1,K2,K3)
has another equivalent key (K1,K2,K3). Therefore, DES-X cannot be used in a
Davies-Meyer-like hash function construction.

This complementation property leads to an attack which requires roughly
256+64−n trial encryptions when 2n chosen plaintexts are available [Dae91]. Note
that Kilian and Rogaway [KR96] have proven that this attack is theoretically
approximately optimal when DES is viewed as a black box, so any better (non-
related-key) attack would have to take advantage of the internal structure of
DES. However, their proof doesn’t deal with related-key attacks. We give a
related-key differential attack on DES-X, using key differences modulo 264 and
plaintext differences modulo 2. The attack requires 64 chosen key relations to
recover the key, with one plaintext encrypted under each new key.

We start with a simple intuition. Suppose we have some unknown number Z.
We are allowed to add any number we like modulo 264, and then XOR it with
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another number of our choosing. We are told whether or not the result of our
calculation is equal to Z. Thus, we choose T and U , and test whether

(Z + T mod 264)⊕ U = Z

It is clear that we can learn the value of Z with enough queries. This is essentially
the position we are in with DES-X. We can add T to K1, and XOR U into our
plaintext block or visa versa. If the resulting ciphertext block is the same as
the ciphertext that results from encrypting the unaltered plaintext block under
the unaltered DES-X key, then we can restrict the list of possible values for K1.
With enough such restrictions, we recover all of K1 except for its high-order bit.
This then allows attacks against the remainder of DES-X.

The simplest version of this attack uses T and U values each with the same
single bit on. For each bit except the high-order bit, we try a T,U pair with the
same bit on. If this results in the same ciphertext as resulted when T = U = 0,
then we learn that that bit in K1 was a zero. If it results in a different ciphertext,
then we learn that that bit in K1 was a one.

Some have suggested [KR96] using a DES-X variant which replaces the XOR

pre- and post-whitening steps by addition modulo 264:

C = K1 + DESK2(K3 + P ).

From the discussion above, it should be clear that this would be vulnerable to
a related-key attack very similar to the one that works against regular DES-X.
[KR96] recommends a method of deriving DES-X keys from a single starting
key, using SHA-1. This method seems to defend against related-key attacks.

2.3 CAST

CAST is a Feistel cipher whose key schedule uses nonlinear S-boxes [Ada94].1

The key schedule for 8 round CAST with a 64 bit master key is as follows:

(k1, k2, . . . , k8) = Master Key

(k′1, k
′
2, k
′
3, k
′
4) = (k1, k2, k3, k4)⊕ S5[k5]⊕ S6[k7]

(k′5, k
′
6, k
′
7, k
′
8) = (k5, k6, k7, k8)⊕ S5[k′2]⊕ S6[k′4]

K1 = (k1, k2) K2 = (k3, k4) K3 = (k5, k6) K4 = (k7, k8)
K5 = (k′4, k

′
3) K6 = (k′2, k

′
1) K7 = (k′8, k

′
7) K8 = (k′6, k

′
5)

(Kr,1,Kr,2) = Kr r = 1, . . . , 8

skr = S5[Kr,1]⊕ S6[Kr,2] r = 1, . . . , 8.

where S5 and S6 are different 8-bit to 32-bit S-boxes. The r-th round subkey,
skr, is XORed into the input of the F function as is conventional for Feistel
ciphers.
1 The variant of CAST analyzed here is an older version of CAST, not the CAST-128

that is used in Entrust products and described in Internet RFC 2144 [Ada97].
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CAST is an interesting example of a cipher designed to resist Biham’s ro-
tational related-key cryptanalysis, but not differential related-key cryptanalysis.
We apply a key-difference to the master key which changes only the byte k1; this
will lead to a difference only in round subkeys sk1 and sk6. When ∆k1 is known,
there are only 256 possible differences for ∆sk1; by encrypting 216 chosen plain-
texts under each key, we can ensure that the first round is bypassed for some
pair. Cover rounds 2–5 with the trivial differential characteristic of probability
1, and use a 2R attack. Note that sk7 and sk8 have only 32 bits of entropy in
total, so we can try all 232 possibilities for them, decrypt the last two rounds,
and recognize correct guesses by 32 zero bits in the block difference. We recover
the rest of the key with 216 offline guesses by auxiliary techniques. In the end,
we can recover the entire CAST master key with a total of about 217 chosen
plaintexts, one related-key query, and 248 offline computations.

2.4 Biham-DES

Biham and Biryukov have suggested strengthening DES against exhaustive at-
tacks by using extra key bits to modify the F -function slightly [BB94]. One
of their modifications uses 5 key bits to select from 32 possible reorderings of
the 8 DES S-boxes. We consider related keys which differ only in those 5 bits,
and we apply related-key differential cryptanalysis. Specifically, suppose one key
uses ordering 15642738 and another uses ordering 75642138 (both are from the
32 suggested reorderings listed in [BB94]). The only difference between the two
F -functions is that S-boxes 1 and 7 have been swapped. Observe that:

Prx (S1[x]⊕ S7[x⊕ 2] = 0) = 14/64.

The input differential 2 appears only in the middle input bits of the S-box, and
will not spread to neighboring S-boxes. Hence, we can construct a one-round
characteristic with probability ( 14

64 )2.
This leads to a 13-round iterative characteristic with probability ( 14

64 )12 =
2−26. The differential techniques of Biham and Shamir [BS93] will break Biham-
DES with 227 chosen plaintexts when this special related-key pair is available.

If two related keys allow the above attack (i.e. differ only in the key orderings
as defined above), we call them partners. There is a 1

16 chance that a randomly
chosen key will have a partner; if it does, this can be detected with one related-
key probe. Furthermore, we can always obtain one useful pair of related-key
partners from any starting key after 32 related-key queries. Therefore, when
using Biham-DES with the 32 recommended DES S-box reorderings, we have a
1
16 probability of success when 227 chosen plaintexts and one related-key query
are available; success is nearly guaranteed with 231 chosen plaintexts and 32
related-key queries.

Biham and Biryukov also mention the possibility of using 215 reorderings of
the s3-DES S-boxes [KPL93]. They don’t present the recommended reorderings,
so it is impossible to present any specific results. Still, in general, increasing the
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number of reorderings gives the cryptanalyst more degrees of freedom to find
more efficient attacks. Therefore, using this variant is not expected to increase
security against our attack.

2.5 RC2

RC2 is a block cipher designed by Ron Rivest [Riv97]. The RC2 key schedule
takes an arbitrary length master key and expands it to 128 bytes with the help of
a public non-linear 8-bit permutation ρ; the result is converted to 64 16-bit round
subkeys.2 We have analyzed RC2, and found single-bit differential characteristics
which pass through most rounds with probability 1

2 .
Consider a 64-byte master key K = (x0, x1..., x63); its related-key partner

will be K∗ = (x∗0, x1, ..., x
∗
63). In other words, K and K∗ differ only in their first

and last bytes. We choose x0, x63, x
∗
0, and x∗63 so that ρ[x0 + x63] = ρ[x∗0 + x∗63].

This is easy—we just subtract t from x0 and add it to x63 to obtain K∗, where t
is a byte quantity to be carefully chosen below. The RC2 key schedule expands
K to the 128-byte expanded key xk0..127 as follows:

xk0..63 = x0..63 xki = ρ[xki−1 + xki−64] ∀ i ≥ 64.

We observe that xk0..127 and xk∗0..127 differ only in positions 0, 63, and 127.
Next, note that we know the difference t between xk0 and xk0∗. This makes it

very easy to bypass the subkey difference entering round 0 in a chosen plaintext
attack by using a suitable plaintext pair P, P ∗. P ∗ is just P with t added to its
high byte. Let Pi be P after i rounds, where each round is 1

4 of a cycle. We have

P ∗0 = P0 + 256t

P ∗i = Pi i = 1, . . . , 31
P ∗32 = P32 + t

If we choose a difference t with only one bit set, then we’ve just dropped a one-bit
difference into the middle of the cipher. Note that there is an iterative four-round
(one-cycle) differential characteristic with this one-bit difference as input and
probability 2−4. This leads to a 28-round characteristic with probability 2−28,
which can be used in a 4R attack.

The probability of the characteristic is slightly decreased by two different
cycles in the middle of encryption processing. There are eight such rounds; each
has a 2−5 chance of hitting one of the two changed key words and destroying
the propagation of a right pair. The chance of successfully missing all of these of
(1−2−5)8 ≈ 0.775. Furthermore, one of those variant rounds adds a quantity with
difference 0 to a quantity with a one-bit difference, which halves the probability
of our characteristic. Finally, a subsequent variant takes the low 6 bits of a
2 There is also an optional key-weakening stage, intended for export control use. For

our purposes, we will assume it is not used.
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quantity with a one-bit difference as input; a careful choice of t can ensure that
the one-bit difference falls in the high 2 bits, so that the characteristic is not
disrupted. We have to multiply the earlier estimate by 0.775 · 0.5, obtaining a
total probability of 2−29.4 for our characteristic. With this technique, RC2 can
be broken with one related-key query and about 234 chosen plaintexts.

2.6 NewDES

NewDES [Sco85] is a 17-round 64-bit block cipher with a 120-bit key. The key
schedule is simple: each cycle (which consists of 2 rounds) uses 56 bits from the
key and then shifts the key by 56 bits. NewDES succumbs to standard rotation
related-key techniques: it can be broken with 232 known plaintexts, one related
key, and about 256 offline trial encryptions.

When informed of this attack, Scott modified the NewDES key schedule to
resist rotational related-key cryptanalysis [Sco96]. NewDES-1996 in turn falls to
differential related-key cryptanalysis.

The NewDES-1996 key schedule expands 15 bytes K0 . . .K14 of the master
key K into 60 round subkey bytes SK0 . . . SK59 according to the following
pattern:

K0 K1 K2 . . . K14
K0⊕K7 K1⊕K7 K2⊕K7 . . . K14⊕K7
K0⊕K8 K1⊕K8 K2⊕K8 . . . K14⊕K8
K0⊕K9 K1⊕K9 K2⊕K9 . . . K14⊕K9

When K7,K8,K9 are all non-zero, this updated key schedule defeats rotational
related-key cryptanalysis, as the sequence of round subkeys no longer repeats.3

Note that the NewDES-1996 key schedule is completely linear and exhibits
poor avalanche. In fact, it falls to a differential related-key attack we call the
double-swiping attack.

The double-swiping attack is somewhat involved, with technical and nota-
tional distractions, so we first describe the basic flow of the attack. We derive
three related keys K ′,K∗, and K∗′ from the original key K according to a differ-
ential quartet structure. We take an arbitrary ciphertext P and apply a plaintext
difference to it to obtain P ∗; for a right pair P, P ∗ the attack will succeed, and a
right pair occurs with very high probability. “Swipe” P back and forth through
the NewDES-1996 cipher: encrypt P under K to obtain C, and decrypt C ′ = C

3 There are weak keys—namely those where K7 = K8 = K9 = 0—that succumb
easily to rotational related-key cryptanalysis given 232 known plaintexts, one related
key, and about 256 offline trial encryptions.

This leads to a more general rotational-based attack on NewDES-1996. For any
key K, after 224 related-key probes one can find a weak key K′ of known relation to
K, recover K′ by the above attack on NewDES-1996 weak keys, and thus find K.
However, this attack requires about 225 related-key queries, 256 known plaintexts,
and 280 offline trial encryptions in general; therefore, we have disregarded this attack
on NewDES-1996 as impractical.
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under K ′ to obtain P ′. Next swipe P ∗ back and forth: encrypt P ∗ under K∗ to
obtain C∗, and decrypt C∗′ = C∗ under K∗′ to obtain P ∗′. For a right pair, it
turns out that the quartet key structure ensures that P ′ and P ∗′ will be nearly
the same, differing only in the action of SK0′ and SK0∗′; a final analysis stage
reveals SK0 from P ′ and P ∗′. Now we peel off the effect of K0 and iterate to
find the rest of the key bytes.

The double-swiping attack is an optimization of a more conventional (single-
swiping) related-key differential attack. The more conventional attack proceeds
by decrypting C = C ′ under both K and K ′ to obtain P, P ′; the problem is
that (with NewDES-1996) the single-swiping attack requires a 4R analysis stage
on P, P ′, which appears rather tricky to perform as it must take into account
the effect of 15 round subkey bytes SK0 . . . SK14. The intuition is that the
double-swiping attack allows us to insert a difference much closer to the end of
the cipher, so the analysis stage depends only on SK0 and thus becomes much
easier. The single-swiping related-key attack is already a big improvement over
non-related-key attacks, but we can do even better by double-swiping.

We now present the technical details of the double-swiping attack. Fix any
two byte values x, y, and take three related keys K ′,K∗,K∗′ according to the
quartet structure

K ′ = K ⊕ (x, x, x, . . . , x)
K∗ = K ⊕ (y, 0, 0, . . . , 0)
K∗′ = K ⊕ (x⊕ y, x, x, . . . , x).

The related keys can be obtained under the differential related-key assumption.
Note that, with these definitions, we have

SK ′i = SKi⊕
{
x if i = 0, . . . , 14
0 if i = 15, . . . , 59

SK∗i = SKi⊕
{
y if i = 0, 15, 30, 45
0 otherwise

SK∗′i = SKi⊕ SK ′i⊕ SK∗i.

For some plaintext P = P0, we will use the notation Pi to indicate the intermedi-
ate value of the block after encryption with the first i subkey bytes; for instance,
P15 is the output after the first two rounds, and P60 = C is the final ciphertext
block. When we “swipe” the first time to obtain C = P60 = P60′ = C ′ and
P ′ = P0′, in general we have P0′ 6= P0. However, since SKi and SK ′i differ only
for i < 15, note that P15′ = P15. We define P ∗ = P0∗ = P0⊕∆ = P⊕∆, where
∆ is carefully chosen to bypass [BS93] the key difference SK0⊕SK0∗ = y enter-
ing in the first step of the first round. Define a right pair as a pair P, P ∗ where
P1∗ = P1; examination of the NewDES F function reveals that the carefully-
chosen values x⊕y = 224 and ∆ = 18 cause right pairs to occur with probability
12
256 ≈ 1/21.3. After the second swipe, we have P15∗ = P15∗′, since SKi∗ and
SKi∗′ differ only for i < 15. Furthermore, the quartet structure of the related
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keys ensures that P15 = P15′ = P15∗ = P15∗′ for a right pair. In particular,
we have P1′ = P1∗′ for a right pair. Note that P0′, P0∗′ are known, and they
differ from P1′, P1∗′ only in the application of a 8-bit to 8-bit F function keyed
by SK0′, SK0∗′. Therefore, we can apply a standard differential 1R analysis
stage [BS93] to P ′ and P ∗′; one can filter out wrong pairs very effectively, so
recovering SK0 should be possible with just one right pair.

This double-swiping differential attack finds one subkey byte SK0 with a
quartet of differentially related keys and about 88 chosen-plaintext/ciphertext
queries. Now we can peel off the effect of the first subkey byte SK0 and iterate the
attack to recover SK1, etc. Thus we can recover all 15 key bytes (K0, . . . ,K14) =
(SK0, . . . , SK14) and completely break NewDES-1996 with total complexity of
about 24 related-key probes and 530 chosen plaintext/ciphertext queries.

2.7 TEA

TEA [WN95] is a Feistel block cipher with a 128-bit master key, K[0..3], and
a simple key schedule: odd rounds use K[0, 1] as the round subkey, and even
rounds use K[2, 3]. Two rounds of TEA applied to the block Yi, Zi consists of:

c = c+ δ Yi+1 = Yi + F (Zi,K[0, 1], c) Zi+1 = Zi + F (Yi+1,K[2, 3], c)

where the round function F is defined by

F (z,K[i, j], c) = (SL4(z) +K[i])⊕ (z + c)⊕ (SR5(z) +K[j]).

Here SL4(z) denotes the result of shifting (not rotating) z to the left by 4 bits,
and SR·(·) denotes a shift to the right. In this description, c is a value which
perturbs the F function so that it is different in each round.4 Before each cycle,
c is incremented by a fixed constant δ = b(

√
5 − 1)231c; c is initially 0. The

designers of TEA mention that 32 Feistel rounds (i.e. 16 cycles) may be enough,
though they recommend using 64 rounds (32 cycles) [WN95].

TEA admits several related-key attacks which arise from the severe simplicity
of its key schedule.

Attack One For a differential related-key attack, consider the effect of simul-
taneously flipping bit 30 (the next most significant bit) of K[2] and K[3]. With
probability nearly 1

2 , the output of the F function in the even rounds will remain
the same. This immediately yields a 2-round iterative differential characteristic
with probability 1

2 , and thus a 60-round characteristic with probability 2−30. Our
analysis indicates that a 4R differential related-key attack can break 64-round
(32-cycle) TEA with one related-key query and about 234 chosen plaintexts. This
is only one of several of this type of characteristic.
4 This perturbation is crucial to avoid degenerate attacks. Indeed, R. Fleming found a

known-plaintext attack on a TEA variant weakened to use a constant c [Fle96]. (His
variant also differs from TEA in that the the precedence of addition and XOR are
reversed [Ber97], but a modification of his attack will work without this reversal.)
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Attack Two The second differential related-key attack is very similar in spirit
to the first. We request the encryption of (Y, Z) under key K[0..3] and the
encryption of (Y, Z ⊕ 231) under key K∗[0..3] = K[0..3] ⊕ (0, 231 ⊕ 226, 0, 0).
Examining the three terms of F (Z,K[0, 1], c) when bit 31 of Z is flipped along
with bits 26 and 31 of K[1], we see

SL4(Z) +K[0] Neither change has any effect.
Z + c The high bit is always changed.
SR5(Z) +K[1] Half the time, only the high bit is changed.

This gives us a one-cycle (2-round) iterative differential characteristic with prob-
ability 1

2 , when we can choose one key difference. We can pass 30 rounds with
probability 2−30.

Attack Three The third attack is complicated. Therefore, we briefly point out
the approach and intuition behind the attack, leaving the technical details of
the full attack to be described in Appendix A. We write Pj to represent the
value of the block after j rounds of encryption, and write Kj to represent the
round subkey value used to compute Pj+1 from Pj ; the block is enciphered
with a round function F as Pj+1 = F (Kj , Pj), where (P0, P64) represents a
plaintext/ciphertext pair for 64-round TEA.

In Biham’s standard key rotation attack [Bih94], we succeed when

K ′j = Kj+1 P ′j = Pj+1 j = 0, . . . , 63.

This condition is achieved by choosing suitable related keys K,K ′ and searching
over P0, P

′
0 to find a pair with P ′0 = P1; the birthday paradox ensures that a

match will occur with a reasonable number of known texts. Note that

P ′j+1 = F (K ′j , P
′
j) = F (Kj+1, Pj+1) = Pj+2 (1)

for all j, so by induction we see that a match P ′0 = P1 will propagate down to
the ciphertexts, where we can recognize it.

Our extended attack combines the ideas of both rotational and differential
related-key attacks. We require that

K ′j = Kj+1 +∆Kj+1 P ′j = Pj+1 +∆Pj+1 j = 1, . . . , 63.

In the extended attack, we need a generalization of (1) to hold

P ′j+1 = F (K ′j , P
′
j) = F (Kj+1 +∆Kj+1, Pj+1 +∆Pj+1)

= F (Kj+1, Pj+1) +∆Pj+2 = Pj+2 +∆Pj+2

with significant probability pj+2; this generalization has a strong differential feel
to it. Suppose the 63-round differential related-key characteristic that is patched
into the rotational attack has probability p =

∏
j pj . In the extended attack, we

search for about 1
p matches P ′0 = P1 + ∆P1 with the birthday paradox. Each
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such match has a probability p of leading to a right pair that is recognizable
from the known ciphertexts, so we expect to see one right pair.

Specifically, in our third attack on TEA, we take ∆Pj+1 to be a fixed constant
(δ, 0) independent of j, set ∆Kj = ∆Kj mod 2, and choose ∆K0,1 to maximize
p. We can thus obtain a full 63-round characteristic of probability p = ( 25

32 )31 ≈
2−11 by repeating a 2-round iterative characteristic many times.

This improved attack combines ideas from both Biham’s key-rotation attack
[Bih94] and differential related-key cryptanalysis [KSW96] to break TEA with
just 223 chosen plaintexts and one related-key query.

3 Prudent Rules of Thumb for Key-Schedule Design

There is much overlap between the requirements for strong key schedules and
cryptographic hash functions. Firstly, key schedules should be hard to invert—
given some of the round keys, it should be difficult to recover any new information
about other bits of the key—and hash functions are supposed to be one-way.
Secondly, to avoid equivalent keys, key schedules should possess some form of
collision-freedom; collision-freedom is a standard hash function property as well.
Finally, it should not be possible to produce controlled changes in the round
keys. The key schedules of Blowfish [Sch94] and SEAL [RC94] were designed
according to this principle.

One should typically avoid generating round subkeys as a (fixed, public)
linear transformation of the seed. While some cryptosystems have successfully
incorporated linear key schedules (e.g. DES), designing this type of key schedule
appears to be a subtle and difficult task. Many ciphers’ linear key schedules have
been shown to be quite weak: we have cryptanalyzed TEA, 3-WAY, and GOST
[KSW96], and others have cryptanalyzed LOKI [Knu93a], LOKI91 [Knu93b],
Lucifer [BB93], and SAFER [Knu95].

To protect against the known related-key attacks, we propose several attack-
oriented design goals. To avoid the “subkey rotation” attacks [Bih94], round
subkeys should be generated differently, so that each key bit affects nearly every
round, but not always in the same way. Key schedules should be specifically de-
signed to resist differential related-key attacks. And, when related-key queries are
cheap, the master key should be long enough to avoid generic black box attacks,
as the key length is effectively halved under these attacks [WH87, KSW96].

Avoid dead spots; ensure that every key bit is about equally powerful in
terms of its effect on the round keys. Beware of equivalent representations, for
they can expose new avenues of attack to an adversary. Our analysis of 3-WAY
bears witness to this recommendation.

Avoid independent round subkeys. It has commonly been assumed that a
cipher’s key length (and strength) can be increased by allowing round keys to
be specified independently, but we have shown that this dramatically lowers the
cipher’s resistance to related-key attacks [KSW96]. In general, when independent
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round subkeys are in use, the strength of a cipher against related-key attacks will
be approximately proportional to the strength of one round standing on its own.
Additionally, avoid multiple encryption with independent keys; a construction
like [DK96] is much more secure.

And finally, protocol designers should be aware of related-key attacks. Key-
exchange protocols should exchange a short master key rather than exchanging
expanded keys. Design tamper-resistant devices so that it is not possible to
change the subkeys without such changes being detected.
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A Improved Attack on TEA

This attack combines ideas from Biham’s key-rotation attack and differential
cryptanalysis. It requires only 223 chosen plaintexts and one related-key query.
See Section 2.7 for a gentler introduction to the ideas behind the attack.

If K[0 . . . 4] is one TEA key value, its related key partner is defined to be
K ′[0 . . . 4] according to the following relations:

K ′[0] = K[2] K ′[1] = K[3] K ′[2] = K[0]−SL4(δ) K ′[3] = K[1]−SR5(δ)−1.

(Refer to Section 2.7 for a definition of SL(), SR(), and other notation.) Fix a
particular plaintext y, z which is encrypted via K[ ]; its related plaintext part-
ner (which is encrypted with K ′[ ]) will be offset from y, z by 1/2 cycle, as in
rotational related-key cryptanalysis. Typically, in related-key cryptanalysis, we
search for a partnered plaintext pair by the birthday paradox, and the right
choice leads to a recognizable match in the corresponding ciphertexts with prob-
ability 1. In this generalization, we will consider the case where right choices
of plaintext pairs leads to recognizable matches in the ciphertext with some
non-trivial probability, via a differential characteristic.

The following table shows the encryption of y, z under key K[ ] as well as the
encryption of its offset plaintext partner y′, z′ = z+δ, y under key K ′[ ]. The left
half of the table depicts the left and right halves of the block when encrypting
y, z; the right half of the table depicts the encryption of y′, z′. (We consider the
swap of the block halves to be included in each round.) We have placed yj+1, zj
(respectively yj+1, zj+1) on the same line as y′j , z

′
j (resp. y′j+1, z

′
j) to suggest that

the two propagate similarly. As described in Section 2.7, F (z,K[i, j], c) denotes
the value the round F function with input z, key values K[i],K[j] with the
round-dependent perturbation variable equal to c; c is incremented by δ before
each cycle to make the F function different for each round.

Encrypt(K[ ], y0z0) Encrypt(K ′[ ], y′0z
′
0)

y0 = y z0 = z
z0 y1 = y0 + F (z0,K[0, 1], δ) y′0 = z0 + δ z′0 = y1
y1 z1 = z0 + F (y1,K[2, 3], δ) z′0 y′1 = y′0 + F (z′0,K

′[0, 1], δ)
z1 y2 = y1 + F (z1,K[0, 1], 2δ) y′1 z′1 = z′0 + F (y′1,K

′[2, 3], δ)
y2 z2 = z1 + F (y2,K[2, 3], 2δ) z′1 y′2 = y′1 + F (z′1,K

′[0, 1], 2δ)
. . . . . .
y32 z32 = z31 + F (y32,K[2, 3], 32δ) z′31 y′32 = y′31 + F (z′31,K

′[0, 1], 32δ)
y′32 z′32 = z′31 + F (y′32,K

′[2, 3], 32δ)

We define a right pair for the differential characteristic to be a pair (y0, z0),
(y′0, z

′
0) satisfying

y′j = zj + δ z′j = yj+1 j = 0, . . . , 31.

Since K[2, 3] = K ′[0, 1], we see from the table that we will never deviate from
the right-pair condition in an odd round if it holds at the start of the odd round.
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Therefore we have a right pair just if the condition holds for all even rounds; the
table shows that the required condition is

F (zj ,K[0, 1], (j + 1)δ) = F (y′j ,K
′[2, 3], jδ) j = 0, . . . , 31. (2)

Expanding the right-hand-side and then simplifying, we obtain

(SL4(zj + δ) +K[0]− SL4(δ))⊕ (zj + δ + jδ)
⊕(SR5(zj + δ) +K[1]− SR5(δ)− 1)

= (SL4(zj) +K[0])⊕ (zj + (j + 1)δ)⊕ (SR5(zj) +K[1] +Ωj − 1)

where Ωj = SR5(zj + δ) − SR5(zj) − SR5(δ), i.e. Ωj is the carry bit from
the addition of the low 5 bits of zj and δ. Comparing to the right-hand-side
of (2), we see that condition (2) is equivalent to the requirement that Ωj = 1
for j = 0, . . . , 31. A quick check of the low 5 bits of δ shows that Ωj = 1 with
probability 25

32 when zj is random.
In other words, the differential characteric carries through one cycle with

probability 25
32 , and through 31 cycles with probability 25

32
31 = .00047 = 2−11.

Now we use the differential characteristic in the rotational related-key attack;
we find it increases the number of plaintexts required by a factor of 2−11/2 over
the number that would be required for a standard probability 1 attack.

Here is the attack in more detail. First fix a value for z0. Now generate
216+11/2 = 221.5 values of y(m)

0 , for m = 1 . . . 221.5, and encrypt the resulting
value y(m)

0 , z0 under K[ ] to obtain the ciphertext y(m)
32 , z

(m)
32 . Next set y′0 = z0+δ,

and generate 221.5 values of z′0
(n). For each z′0

(n), with n = 1 . . . 221.5, encrypt
y′0, z

′
0
(n) under K ′[ ] to obtain the ciphertext y′32

(n)
, z′32

(n). Look for matches of
the form z

(m)
32 = y′32

(n). We expect to see one right match formed from a right pair
of the differential characteristic combined with a right partnership z′0

(n) = y
(m)
1

for the rotational attack; there will also be approximately 221.5·2/232 = 211

matches formed by chance. Each right match allows you to recover roughly 64
key bits: it suggests about 232 possible values for K[0, 1] and about 232 possible
values for K[2, 3].

One could repeat the attack a few more times and use a counting technique
to recover the full key values with a bit more work. In more detail, each match
suggests a value for F (z0,K[0, 1], 0); we can now construct y0, z

′
0 pairs which

are guaranteed to form a right partnership for the rotational attack, when used
with the same z0 value as before. For each guess at F (z0,K[0, 1], 0), we can
perform 211 chosen plaintext queries; then we can recognize the true value of
F (z0,K[0, 1], 0) because it will cause another right pair and matching ciphertext
pair. Thereafter, we can perform 220 chosen plaintext queries and obtain 29 right
pairs for the differential characteristic. This will be more than enough to recover
the true value of K[2, 3] and find 232 possible values for K[0, 1], so a simple
search will suffice to recover the entire key.

In total, this attack needs 223 chosen plaintexts, one related-key query, and
roughly 232 offline computations to recover the entire TEA key.
This article was processed using the LATEX macro package with LLNCS style
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