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(2) that Eve has only passive (read) access to the communication channel be-tween Alice and Bob, i.e., that the communication between Alice and Bobis authenticated.The purpose of this paper is to investigate the described key distribution prob-lem when neither of these assumptions is made: We consider adversaries within�nite computing power and complete control over the communication channelconnecting Alice and Bob. Several impossibility results are proved and some sce-narios in which secret-key agreement secure against active adversaries is possibleare characterized. Secret-key agreement can be possible in this scenario only ifAlice and Bob (but possibly also Eve) have correlated information. More for-mally, while Alice and Bob share no secret key initially, they know some randomvariables X and Y , respectively, jointly distributed with a random variable Zknown to Eve. The joint probability distribution is denoted PXY Z .One can have di�erent opinions about whether it is reasonable to assumethat a speci�c computational problem is di�cult. Furthermore, since quantumcomputation has been invented as a (at least for now) theoretical model of com-putation, it is not completely clear whether intractability assumptions in theTuring machine model of computation are still adequate. There also exist dif-ferent opinions about whether certain methods of authentication, like speakeridenti�cation on a voice channel, are strong enough to support the second as-sumption above. It is not a goal of this paper to discuss these issues, but webelieve that avoiding both assumptions is an interesting research topic.There exists a substantial body of results on secret-key agreement by publicdiscussion secure against adversaries with in�nite computing power (see Sec-tion 2.3 for a brief summary), but they all depend in a crucial manner on the as-sumption that eavesdroppers are passive and hence the communication betweenAlice and Bob can be assumed to be authenticated. Of course, as is pointed outin these papers, the authenticity can be guaranteed, even when the channel iscompletely insecure, when Alice and Bob initially share a secret key that is usedfor authentication purposes (see Section 2.2). Hence these results can be inter-preted as providing information-theoretically secure protocols for expanding ashort initially shared secret key to an arbitrarily long secret key.This paper characterizes scenarios in which secret-key agreement against ac-tive adversaries is possible and shows that for an important class of scenarios ofcorrelated random variables available to Alice, Bob and Eve, active adversariesare not more powerful than passive ones.2 Key-agreement protocols2.1 Scenarios and de�nitionsWe now formalize key-agreement protocols; the security of such protocols willbe de�ned later. 2



De�nition 1. A key-agreement protocol consists of three phases:{ a (possibly missing) initialization phase1 in which Alice, Bob and an ad-versary Eve receive random variables X , Y and Z, respectively, which arejointly distributed according to some probability distribution PXY Z .{ During the communication phase Alice and Bob alternate sending each othermessagesC1; C2; : : : where we assume that Alice sends messagesC1; C3; C5; : : :and Bob sends messages C2; C4; C6; : : : Each message depends possibly onthe sender's entire view of the protocol at the time it is sent and possibly onprivately generated random bits. Let t be the total number of messages andlet Ct = [C1; : : : ; Ct] denote the set of exchanged messages.{ Finally, Alice and Bob each either accepts or rejects the protocol execution,depending on whether they believe to be able to generate a secret key. IfAlice accepts, she generates a key S depending on her view of the protocol.Similarly, if Bob accepts, he generates a key S0 depending on his view of theprotocol.In general, the channel connecting Alice and Bob is completely insecure, i.e.Eve can see every message Ci and replace it by an arbitrary message ~Ci of herchoice. She need not keep Alice and Bob synchronized and she can impersonateeither party by fraudulently initiating a protocol execution.For stating impossibility results in the strongest possible form, we also con-sider protocols in which certain messages can be sent in a secret or authenticatedmanner (by appropriate means not speci�ed by the protocol).De�nition 2. If a messageCi is secret (by the protocol speci�cation), Eve learnsnothing about it except that it exists2. However, she may replace such a messageby a di�erent message. If a message Ci is authenticated (by the protocol speci�ca-tion), then the receiver will always (with probability 1) detect any modi�cationto the message due to Eve, but Eve sees the message.Considering a passive adversary is equivalent to assuming the entire com-munication to be authenticated. The above de�nition can be made information-theoretically precise.If two parties share a secret key, they can use the one-time pad encryption totransmit a message in perfect secrecy over a completely insecure channel. Theycan also use part of the secret key for authenticating messages (see Section 2.2).1 The initialization phase summarizes the parties' entire initial information, for in-stance the history of previous executions of protocols, the information resulting fromquantum transmissions (like in quantum cryptography [2]), or information receivedfrom other sources like a satellite broadcasting random bits (see Section 4.3) or thesignal of a deep-space radio source. When the initialization phase is missing, thismeans that Alice's and Bob's complete knowledge at the beginning of the protocolis assumed to be statistically independent.2 It is possible that she later obtains information about Ci because subsequent mes-sages depend on Ci, but Eve never learns anything about Ci not provided by subse-quent messages. This will be formalized in the full paper.3



However, in contrast to perfect secrecy, perfect authenticity cannot be achievedeven if a secret key of arbitrary �xed size is used because an adversary canalways guess the key with non-zero probability of success. Authenticity andcon�dentiality are dual security properties, and the duality can be shown invarious ways (e.g., see [16]).All the protocol steps proposed in this paper are polynomial-time com-putable, but there may generally be steps in subprotocols taken from the lit-erature that are not known to be computable in polynomial time. However, forevery protocol resulting in Alice and Bob sharing a secret key mentioned here,there also exist e�cient protocols for generating a secret key (which may besomewhat shorter).In general, the distribution PXY Z may be under Eve's partial control andmay only partly be known to Alice and Bob. Two examples are the privacyampli�cation scenario [3] mentioned in Section 2.3, and quantum cryptography,where both Bob's and Eve's distributions depend on the type of measurementperformed by Eve on the photons sent by Alice. In this paper we assume thatPXY Z is known to all parties.In the sequel we assume without loss of generality that S and S0 are binarystrings of length jSj = jS0j = k. Clearly, the goal of a protocol is that S and S0agree with very high probability and that Eve has very little information aboutS. An adversary can of course block the communication between Alice and Bobcompletely by replacing all messages by empty messages, thus preventing anysecret-key agreement. The goal of the design of a protocol can thus only beto generate a (hopefully large amount of) secret key when Eve is passive, butto detect any tampering with very high probability. However, even when Eve'sstrategy is active, it is allowed that she goes undetected if the secret key sharedby Alice and Bob at the end of the protocol nevertheless is secret. In otherwords, Alice and Bob should not primarily be interested in catching an activecheater but in making sure that whenever they believe (or at least one of thembelieves) to have agreed on a secret key, then this is indeed the case with veryhigh probability.De�nition 3. A key-agreement protocol with jSj = k is (�; �)-secure if, for everypassive eavesdropping strategy, P [S 6= S0] � �;I(S;CtZ) � �;and H(S) � k � �;and if for every active adverse strategy, with probability at least 1 � �, eitherEve is caught by at least Alice or Bob (i.e. they do not both accept) or theysuccessfully generate a secret key S (and S0) satisfying the above conditions.Note that one cannot require both Alice and Bob to reject. Eve could deletethe last message from Alice to Bob (or vice versa) that would make Bob acceptafter Alice has accepted. (Byzantine agreement is impossible between two playersin the presence of an active adversary.)4



Here H(S) denotes the entropy3 of S and I(S;CtZ) = H(S) � H(SjCtZ)denotes the information about S given by Eve's total observation (consistingof Ct and Z). The condition H(S) � k � � implies that S is virtually uni-formly distributed and together with the condition I(S;CtZ) � � it impliesH(SjCtZ) � k � 2� and hence that S is also virtually uniformly distributedfrom Eve's point of view, i.e., given Eve's total information. Such a uniformityconstraint could alternatively be de�ned in terms of any reasonable constraint onthe deviation of a distribution from the uniform distribution, without changingthe results of this paper.2.2 Unconditionally secure message authenticationAdversaries with complete control over the communication channel have previ-ously been considered in message authentication scenarios where, unlike in thispaper, a secret key is shared initially by Alice and Bob about which Eve isassumed to have no information a priori.Unconditionally secure message authentication based on a shared secret keywas �rst considered in [11] and later in a large number of papers (e.g. [22], [23]).One of the most recent papers on this topic is by Gemmell and Naor [10] whoproved the surprising result that interactive protocols for authenticating an n-bit message are more e�cient in terms of the length of the secret key requiredto restrict an adversary's cheating probability to at most p. In particular, theyproposed a one-round protocol using only logn � 2 log p bits of secret key andshowed that this can be reduced to log(k) n � 5 log p in a k-round protocol. Wewill make use of these results.2.3 Review of the literatureIn this section some of the results on secret-key agreement by perfectly authen-ticated public discussion are reviewed. Shannon's [21] famous result on perfectsecrecy, stating that a cipher can achieve perfect secrecy only if the entropy of thesecret key is at least as large as the entropy of the plaintext, can be consideredas a special case (for 1-round protocols) of Theorem 1 below. Although Wyner'swire-tap channel scenario [25] and Csisz�ar and K�orner's generalization [8] thereofdo not include a public channel between Alice and Bob, they should neverthe-less be mentioned here. In those scenarios, Alice can send information over aso-called broadcast channel where Bob and Eve can receive di�erent outputs ofthe channel. Secret information transmission (and hence secret-key agreement)was shown to be possible if and only if Eve's channel is noisier than Bob's chan-nel [8], an assumption that is generally unrealistic.In the scenario considered in quantum cryptography (see [2] and referencestherein), Alice can send polarized light pulses of very low intensity to Bob over3 H(S) = �Ps:PS(s)>0 PS(s) log2 PS(s). See [6] for an introduction to the basic con-cepts of information theory. 5



some channel (e.g. an optical �ber) controlled by Eve. The use of this quan-tum communication results in Alice, Bob, and Eve possessing correlated strings.By subsequent discussion over the authenticated public channel, Alice and Bobmanage to generate a secret key about which Eve has arbitrarily little informa-tion.Another special case of key agreement protocols secure against passive ad-versaries is privacy ampli�cation introduced in [4] and generalized in [3]. Privacyampli�cation is a protocol step that would typically be used as the last step in apractical key agreement protocol, but it can itself be described in the frameworkof key agreement protocols. Here Alice and Bob are assumed to know a stringW (i.e. X = Y =W ) about which Eve has some partial information. The proto-col of [3] is secure even when Eve speci�es an arbitrary probability distributionPZW unknown to Alice and Bob, subject to the only constraint that a boundon the second order R�enyi entropy of W , given Eve particular value z of Z,is known to Alice and Bob. In the privacy ampli�cation literature only passiveadversaries have been considered. It is proved in [19] that privacy ampli�cationsecure against active adversaries is possible when the adversary's min-entropyabout the string is more than half its length.3 The case of no common initial informationIn this section we characterize to what extent secret and/or authenticated com-munication between Alice and Bob can help them to agree on a secret key.These results demonstrate an interesting di�erence between computational andinformation-theoretic cryptography. In both models a secret channel from Aliceto Bob can be transformed into an authenticated channel from Bob to Alice.This is achieved by Alice sending a secret key to Bob and Bob using the key in amessage authentication techniques (see Section 2.2) for authenticating a messageto be sent to Alice.In sharp contrast, only the computational model allows to transform an au-thenticated channel from Alice to Bob into a secret channel from Bob to Alice.This is achieved by Alice sending her public key for a public-key cryptosystemto Bob who uses it to encrypt the message to be sent secretly to Alice. The secu-rity of public-key cryptosystems is inherently bound to be computational ratherthan information-theoretic. (Actually, this follows from Theorem 1 below.) Seealso [16] for a discussion of the described and other security transformations. Itis hence not surprising that in the information-theoretic model, when Alice andBob have no common information initially, authenticated channels are of no use,in contrast to secret channels.Theorem 1. Consider key agreement protocols without initialization phase whichallow some of the exchanged messages to be either secret or authenticated. For� � 1� 3=(jSj+ 2) there exists no such protocol that is (�; �)-secure, even whenall messages are authenticated (or, equivalently, when Eve is passive.) Moreover,even if all messages from Alice to Bob are secret and all messages from Bob to6



Alice are authenticated, there exists no such protocol that is (�; �)-secure againstactive adversaries for any � < 1.Proof. To prove the �rst part we make use of Theorem 1 of [14] which impliesthat H(S) � H(SjS0) + I(S;Ct) (1)for all such protocols. Note that the random variables X , Y do not exist in ourcontext and hence I(X ;Y ) = 0 in Theorem 1 of [14] . Fano's Lemma (see [6])states that the error probability p of guessing a random variable U when givena correlated random variable U 0 satis�esH(U jU 0) � h(p) + p log2(jUj � 1);where U is the set of possible values that U can take on4. Therefore the conditionP [S 6= S0] � � implies H(SjS0) < h(�) + �kwhich together with inequality (1) and the second and third conditions of De�-nition 3 gives k � � � H(S) < h(�) + �k + �:Using h(�) � 1, this implies k � 1 � �(k + 2) and hence � > 1� 3=(k + 2).To prove the second part, notice that from Bob's point of view, Alice hasno advantage compared to Eve. When Eve performs the same protocol as Alicewould, pretenting to be Alice, Bob accepts with the same probability as he wouldaccept a protocol execution with Alice which according to the de�nition is 1.Note again that the �rst statement of the theorem is in sharp contrast to thepublic-key cryptographic scenario where, under a suitable intractability assump-tion, secret-key agreement secure against computationally bounded adversariesis possible when a single authenticated message in each direction can be sent. Apublic-key cryptosystem can be interpreted [16] as a means for transforming anauthenticated channel into a secret channel in the other direction. The followingwell-known result is an observation following from Theorem 1.Corollary 2. A public-key cryptosystem can be computationally secure but notinformation-theoretically (i.e. unconditionally) secure.Theorem 3. Assume that one secret (but not necessarily authenticated) mes-sage can be sent from Alice to Bob. Then, for any � > 0, key agreement (0; �)-secure against active adversaries is possible if, in addition, either an authenti-cated message can be sent from Alice to Bob or a secret message can be sentfrom Bob to Alice.4 h(p) = �p log2 p � (1 � p) log2(1 � p) denotes the binary entropy function whichmeasures the entropy of a binary random variable that takes on the two values withprobabilities p and 1� p. 7



Proof. Note that when the same message from Alice to Bob is both secret andauthenticated, then Alice can simply send a secret key as the message. When twomessages can be sent from Alice to Bob, one secret and one authenticated, thenAlice can send a random n-bit string R to Bob (n � �2 log2 �) over the secretchannel and the description of a function f in a universal class hash functionsfrom f0; 1gn to f0; 1gn [7] over the authenticated channel, together with the �rstn=2 bits of f(R). The other half of f(R) is kept by Alice and Bob as their secretkey. If Eve's capability to interfere with the secret channel is limited to sendingfraudulent messages (but she is assumed to be unable to modify a message sentfrom Alice to Bob), then no universal hash function is needed; it could insteadbe replaced by the identity function.The proof for the case of a secret channel from Bob to Alice is based on thefollowing protocol. Bob (secretly) sends Alice a random string U of su�cientlength (
(log �)). Then they use the above protocol where the authenticatedchannel is obtained by Alice by using an authentication scheme [10] using R asthe secret key.Theorem 1 is pessimistic: it demonstrates that information-theoretically se-cure secret-key agreement against active or passive adversaries is impossible toachieve when the channel between Alice and Bob is completely insecure. How-ever, if Alice and Bob have correlated information initially (not necessarily asecret key, but possibly only two bitstrings that are somehow correlated), aboutwhich also Eve has partial knowledge, then secret-key agreement can be possible.In the following we consider such scenarios. One of our general goals is toachieve secret-key agreement under mild conditions on such an initializationphase, for instance conditions that can be argued to occur (or can be made tooccur) in a realistic communications scenario.4 Protocols with initialization phase4.1 Impossibility resultsThe following theorem on authenticated public discussion follows from Corol-lary 1 in [14]. Recall from Section 2 that X , Y , and Z are the random variablesobtained by Alice, Bob, and Eve, respectively, during the initialization phase.Theorem 4. For every probability distribution PXY Z , a key agreement protocolthat is (�; �)-secure against passive (or active) adversaries satis�esH(S) � min[I(X ;Y ); I(X ;Y jZ)] + h(�) + �(k + 1):In particular, for � = 0, we have H(S) � min[I(X ;Y ); I(X ;Y jZ)].Note that by de�nition, I(X ;Y ) = H(X) � H(X jY ) and I(X ;Y jZ) =H(X jZ)�H(X jY Z) and that I(X ;Y jZ) � I(X ;Y ) is possible. It will be demon-strated in the following section that this theorem is not as pessimistic as it looksat �rst sight. 8



Theorem 4 states that secret-key agreement is possible and only if Y givesa substantial amount of information about X , both when Z is given or when itis not. In other words, X and Y must be correlated, and this correlation mustto some extent be independent of Z. The bound min[I(X ;Y ); I(X ;Y jZ)] canbe replaced by the stronger bound derived in [18], called the intrinsic mutualinformation between X and Y given Z. It is the minimum of I(X ;Y jZ 0) overconditional probability distributions PZ0jZ .De�nition 4. We call the distribution PXY Z X-simulatable by Eve if Eve cangenerate from Z a random variable ~X such that the pairs [X;Y ] and [ ~X;Y ] havethe same distribution, i.e. if there exists a conditional probability distributionP ~XjZ such that P ~XY (x; y) = PXY (x; y)for all x and y, where P ~XY is the marginal distribution of PX ~XY Z = PXY Z �P ~XjZ ,i.e., P ~XY (x; y) =Xx0 Xz PXY Z(x0; y; z) � P ~XjZ(x; z):Similarly, the distribution PXY Z is called Y -simulatable by Eve if the symmetriccondition with respect to Bob, with X replaced by Y and ~X replaced by ~Y , issatis�ed.More intuitively, PXY Z is X-simulatable by Eve if she can send Z througha (simulated) channel (characterized by P ~XjZ) whose output ~X has the samejoint distribution with Y as X . (An example of such a distribution is givenin Section 4.3.) Therefore, when PXY Z is X-simulatable by Eve, then there isno way Bob can distinguish between a correct message sent by Alice and anappropriately generated fraudulent message sent by Eve. Similarly, when PXY Zis Y -simulatable by Eve, then there is no way Alice can distinguish between acorrect message sent by Bob or a fraudulent message sent by Eve. We obtain thefollowing generalization of Theorem 1.Theorem 5. When PXY Z is X-simulatable (or Y -simulatable) by Eve, then nokey agreement protocol can be (�; �)-secure against active adversaries for any �and � < 1, even if all messages from Alice to Bob (Bob to Alice) are perfectlysecret and all messages from Bob to Alice (Alice to Bob) are authenticated.4.2 Independent repetition of a random experimentIn order to be able to derive interesting results on secret-key agreement againstactive or passive adversaries, we must consider speci�c types of probability dis-tributions of the random variables given to Alice, Bob, and Eve.One natural assumption is that the random experiment generating the triple[X;Y; Z] is repeated many times independently. Hence we assume that Alice,Bob and Eve receive strings Xn = [X1; : : : ; Xn], Y n = [Y1; : : : ; Yn], and Zn =9



[Z1; : : : ; Zn], respectively, wherePXnY nZn(x1; : : : ; xn; y1; : : : ; yn; z1; : : : ; zn) = nYi=1PXY Z(xi; yi; zi):Note that we have changed the notation here and for the rest of the paper:PXY Z now denotes the distribution of one of several random experiments whileit previously denoted the distribution of the overall experiment.This particular scenario is motivated by the well-known models for discretememoryless sources and channels of communication theory. Many concrete prac-tical scenarios can be modeled in this way, for instance the one discussed belowin which Alice, Bob, and Eve receive noisy versions of a random string broadcastby a satellite or of the signal emitted by a deep space radio source.For such a scenario of independent repetitions of a random experiment, thequantity that is of most interest is the maximal rate at which Alice and Bobcan generate secret key bits, where rate is to be understood per execution of therandom experiment generating a triple [X;Y; Z].De�nition 5. The secret key rate of PXY Z for passive adversaries, denotedS(PXY Z), is the maximum rate at which Alice and Bob can agree on a secretkey S while keeping a passive adversary's information about S arbitrarily small.More formally, it is the maximal R such that for all � > 0, for all R0 < R, and forall su�ciently large n there exists a protocol with jSj = bR0nc that is (�; 0)-secureagainst passive adversaries5. The secret key rate of PXY Z for active adversaries,denoted S�(PXY Z), is de�ned in the same way, except that the adversary isallowed to be active, and for any given � > 0, (�; �)-security is required insteadof (�; 0)-security.The �rst part of this de�nition is given in [15] as a considerably strengthenedde�nition of that given in [14] , and the second part is new. In particular, in [14] itwas only required that the rate at which Eve obtains information, I(S;CtZn)=nbe arbitrarily small for large n, and proving results for the much stronger def-inition involves some technical steps, including privacy ampli�cation [3]. Thefollowing result was proved in [15] (and in [14] using the weaker de�nition).Theorem 6. S(PXY Z) is lower and upper bounded bymax[0; I(Y ;X)�I(Z;X); I(X ;Y )�I(Z;Y )] � S(PXY Z)and S(PXY Z) � min[I(X ;Y ); I(X ;Y jZ)]:The lower bound is not tight in general. In particular, for the binary scenariodiscussed in Section 4.3, if Eve's channels is less noisy than both Alice's andBob's channel, the lower bound vanishes while the secret-key rate is actuallystrictly positive.5 For the case of passive adversaries, � = 0 can trivially be achieved.10



We are primarily interested in investigating the relation between S(PXY Z)and S�(PXY Z), i.e., the power of authenticated versus non-authenticated com-munication. Quite surprisingly, it turns out that S�(PXY Z) = 0 or S�(PXY Z) =S(PXY Z). However, before treating the general case, we consider the case ofbinary symmetric random variables which is of particular interest.4.3 The binary caseIn this section we consider the natural special case where the random variablesknown to Alice, Bob and Eve are noisy versions of a random string (e.g. broadcastby a satellite) received over binary symmetric channels CA, CB and CE with biterror probabilities �A, �B and �E , respectively (see Figure 1). Without loss ofgenerality we assume that these channels are independent because any scenarioof dependent channels can be transformed [14] into an equivalent scenario ofindependent channels (with di�erent bit error probabilities). In other words,when U denotes the random bit generated by the source (PU (0) = PU (1) = 1=2),we have PXY ZjU = PXjU � PY jU � PZjUwhere PXjU (x; r) = 1� �A if x = u and �A else, PY jU (y; r) = 1� �B if y = u and�B else and PZjU (z; r) = 1� �E if z = u and �E else.- -�� ?
?
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CE

X Y
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Fig. 1. The scenario of three independent channelsIt is easy to verify that PXY Z is X-simulatable by Eve if and only if �E ��A and it is Y -simulatable by Eve if and only if �E � �B . Such a simulationcan be achieved by Eve by sending Z through an additional (simulated) binarysymmetric channel of appropriate bit error probability. Therefore, when either�E � �B or �E � �A in the described scenario, then S�(PXY Z) = 0 by Theorem 5.11



Let �AB = �A + �B � �A�Bbe the bit error probability between corresponding bits of Alice's and Bob'sstrings, and let similarly �AE = �A + �E � �A�Eand �BE = �B + �E � �B�Ebe the bit error probabilities between corresponding bits of Alice's and Eve'sand between Bob's and Eve's strings, respectively.Assuming that Alice and Bob share no secret key initially, authentication formessages transmitted from Alice to Bob can nevertheless be achieved when Eve'schannel is noisier than Alice's channel (�E > �A). This implies that �BE > �AB ,i.e. that Alice's bits agree with Bob's bits with higher probability than Eve'sbits agree with Bob's bits.To demonstrate this fact, consider the following (very wasteful) authenti-cation method.6 A more e�cient scheme will be considered below. In order toauthenticate a single bit (k = 1) sent from Alice to Bob, Alice appends a sub-string of Xn of length l. The two substrings of Xn appended to authenticatea 0 or a 1 are disjoint. For instance, a 0 or a 1 is authenticated by appending(for some q) the string [Xq; : : : ; Xq+l�1] or [Xq+m; : : : ; Xq+2l�1], respectively, asthe authenticator, and these m = 2l bits of Xn are never used again for anyother purpose. Bob expects to receive as an authenticator either a version of[Yq ; : : : ; Yq+l�1] or of [Yq+m; : : : ; Yq+2l�1] with a fraction of close to �AB bit er-rors. Informally, Bob hence accepts the received bit if and only if the fractionof bits in the authenticator that agree with his noisy version of the authentica-tor ([Yq ; : : : ; Yq+l�1] or [Yq+m; : : : ; Yq+2l�1]) is not much smaller than 1 � �AB .It is easy to see that for any �xed �BE > �AB, the probability that Eve cansuccessfully deceive Bob is exponentially small in l.The described scheme is quite ine�cient in terms of the number of bits usedfrom the sequence. A much better approach is described in the proof of thefollowing theorem.Theorem 7. When �BE > �AB in the described binary scenario, a k-bit messagesent from Alice to Bob can be authenticated by an l-bit authenticator with l = 2kusing m = 4k bits of the random string Xn and achieving an arbitrarily smalldeception probability for su�ciently large k.Proof sketch. A scheme for authenticating a k-bit message sent from Alice toBob using m bits of Xn (e.g. [Xq; : : : ; Xq+m�1] for some q) can be derived asfollows. Every message is authenticated by appending a particular subset of bitsin [Xq; : : : ; Xq+m�1]. These subsets should be su�ciently disjoint to avoid that6 In the following we consider schemes for authenticating a k-bit message by an l-bitauthenticator using m > l bits of the common sequence.12



such an authenticator can be guessed by Eve from an observed one. Bob checkswhether his version of the authenticator (i.e. his subset of [Yq ; : : : ; Yq+m�1])agrees with the received authenticator on a fraction roughly 1� �AB of the bits,as expected when Alice sends the authenticator. Security requires that givenone of these sets, it should be impossible for Eve to approximate a di�erentauthenticator of Alice with a bit error fraction close to �AB .When Eve has intercepted a message together with its authenticator, herbest strategy for creating an authenticator for a di�erent message (hoping thatit will be accepted by Bob) is to copy those bits from the received authenticatorthat are also contained in the new authenticator and to take as guesses forthe remaining bits her copies of the bits (in [Zq ; : : : ; Zq+m�1]), introducing biterrors in those bits with probability �BE . The maximal probability of successfuldeception is hence determined by the number d of bits that Eve must guess andthe total number l of bits in the forged authenticator.The expected value and the standard deviation of the number of bits in thecorrect autenticator that agree with Bob's corresponding bits are� = l(1� �AB)and � =pl�AB(1� �AB);respectively. When Eve tries to deceive Bob, the expected value and the standarddeviation of the fraction of bits in the forged autenticator that agree with Bob'scorresponding bits are �0 = (l � d)�AB + d�BEand �0 =p(l � d)�AB(1� �AB) + d�BE(1� �BE);respectively. Bob accepts an authenticator if and only if the number of his bitsthat agree with the corresponding authenticator bits is within q standard devia-tions of �, where q is a security parameter that grows with l. The di�erence be-tween the two expected values is d�BE and the standard deviation is � = 
(pl).When d grows substantially faster than pl one can let q = 
(d=pl). The lawof large numbers implies that Eve's cheating probability decreases exponentiallyin q.We now investigate how this can be achieved. An appropriate set of suchsubsets of bit positions (i.e., subsets of f1; : : : ;mg) can be interpreted as a code:each subset corresponds to a codeword of length m, where a 1 (or a 0) indicatesthat the bit at the corresponding position is (is not) contained in the subset. Theweight of a codeword is equal to the length of the corresponding authenticator.The desired distance property of the code di�ers from the Hamming dis-tance considered in the theory of error-correcting codes. Instead, we de�ne the0-1 distance from a codeword c1 to a codeword c2, denoted d(c1 ! c2), as thenumber of bits that Eve must guess when trying to convert the authenticatorcorresponding to c1 into the authenticator corresponding to c2. The distanced(c1!c2) is hence de�ned as the number of transitions from 0 to 1 when going13



from c1 to c2, hence not counting the transitions from 1 to 0. Note that thisdistance is not symmetric, i.e. d(c1! c2) 6= d(c2! c1) in general. It is requiredthat the 0�1 distance from any codeword to any other codeword be large, sayat least d. A conventional linear code cannot be used because the 0�1 distancefrom any codeword to the zero-codeword is zero.We now give a simple construction of codes that are good with respect to thisdistance measure. One can convert any code of length l and minimum distanced into a (non-linear) code of length m = 2l and minimum 0�1 distance d, whereeach codeword has weight l. This is achieved by replacing every bit in the originalcode by pair of bits, namely by replacing 0 by 01 and 1 by 10.In the context of this proof, a possible code to be used for the constructionis an extended Reed-Solomon code over a �nite �eld GF (2r) [5]. For any Kthere exists such a code encoding K information digits into codewords of lengthN = 2r and with minimum distance N � K + 1. By interpreting elements ofGF (2r) as binary substrings of length r, we obtain a binary code with 2rKcodewords of length 2rN and with minimum 0�1 distance at least d.By taking r as a security parameter and letting N = 2r, K = N=2 andk = rK we obtain l = 2k = rN and m = 2l = 2rN . This is su�cient tocomplete the proof.By symmetry, the same technique can be used to authenticate messages sentfrom Bob to Alice, provided that �E > �B . This theorem shows that the rate atwhich random bits are needed for authentication is a constant factor times thebit rate at which Alice sends messages to Bob. Therefore, the secret key rate ofPXY Z for active adversaries is a constant (� 1) times the secret key rate of PXY Zfor passive adversaries. In the proof of the following theorem we need to showthat the number of bits needed for authentication is asymptotically negligiblecompared to the number of bits needed for secret-key agreement (in the passivecase).Theorem 8. When both �E > �B and �E > �A in the described scenario, thenS�(PXY Z) = S(PXY Z), i.e., an active adversary is not more powerful than apassive adversary. Otherwise, if either �E > �B or �E > �A, then S�(PXY Z) = 0.Proof. The fact that S�(PXY Z) = 0 when either �E < �B or �E < �A follows fromTheorem 5 because PXY Z is either X-simulatable or Y -simulatable by Eve. Thefact that S�(PXY Z) = S(PXY Z) when �E > �B and �E > �A can be proved asfollows. A suboptimal protocol based on the authentication method of Theorem 7can be used to generate a relatively small t-bit secret key K, using O(t) bitsof the random string. This key can then be used, similar to a bootstrappingprocess, for instance based on the protocols of [10], to authenticate the messagesexchanged in an optimal passive-adversary protocol P achieving S(PXY Z). Thesize of K must only be logarithmic in the maximal size of a message exchangedin P [10] and linear in the number of rounds of P . No matter what amount ofsecret key must be generated by P , this can be achieved by using messages ofsize proportional to the key size in a constant number of rounds. Therefore, theratio of size of K and the size of the generated key vanishes asymptotically.14



It is known from [14] thatmin[h(�AE); h(�BE)]� h(�AB) � S(PXY Z) � 1� h(�AB):It was recently proved that S(PXY Z) > 0 unless �E = 0 [17], even when both�E < �B and �E < �A, i.e., even when the above lower bound vanishes (or isnegative).4.4 A completeness result for the general caseLet PXY Z be an arbitrary probability distribution of a random experiment thatis repeated many times. In general, only lower and upper bounds on S(PXY Z)are known and S(PXY Z) is known exactly only for special cases. The followingtheorem characterizes S�(PXY Z) completely in terms of PXY Z and S(PXY Z)and characterizes the power of active adversaries in comparison to passive onesfor the described noisy-channel initialization scenario. Determining the exactpower of a passive adversary remains an open problem.Theorem 9. When PXY Z is either X-simulatable or Y -simulatable by Eve,then S�(PXY Z) = 0. Otherwise, S�(PXY Z) = S(PXY Z).Proof sketch. The proof of this theorem relies on the theory of typical sequences7and is similar to the proof of Theorem 8, which is a special case of this theorem,but the technical details are omitted from this extended abstract. In order toauthenticate a k-bit message by an l = 2k-bit authenticator using m = 4kbits of Xn (or of Y n when Bob is the sender), the described approach basedon error correcting codes can be used to select the positions of a subsequence[Xi1 ; : : : ; Xil ] of Xn. The receiver accepts the message if and only if the sequenceof pairs [(Xi1 ; Yi1); : : : ; (Xil ; Yil)] is 
-typical for the distribution PXY for somesuitable small 
. One can prove that for every distribution PXY Z that is neitherX-simulatable nor Y -simulatable by Eve, there exists a positive 
 such thatfor su�ciently large k Eve's cheating probability is arbitrarily small. The sameargument as in the proof of Theorem 8 can be used to prove that the ratio ofbits needed for authentication and of bits used for secret-key agreement vanishesasymptotically.AcknowledgementI would like to thank Christian Cachin and Stefan Wolf for interesting discussionsand helpful comments.7 Loosely speaking, a sequence U1; : : : ; Ur of digits of an alphabet U is 
-typical for agiven distribution PU over U if for every u 2 U the fraction of occurrences of u inU1; : : : ; Ur deviates by at most 
 from PU (u) (see for instance [6]).15
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