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Abstract. Khazad is a 64-bit (legacy-level) block cipher that accepts
a 128-bit key. The cipher is a uniform substitution-permutation network
whose inverse only differs from the forward operation in the key schedule.
The overall cipher design follows the Wide Trail strategy, favours com-
ponent reuse, and permits a wide variety of implementation tradeoffs.

1 Introduction

In this document we describe Khazad, a 64-bit (legacy-level) block cipher that
accepts a 128-bit key. Khazad has been submitted as a candidate cryptographic
primitive for the NESSIE project [23].

Although Khazad is not a Feistel cipher, its structure is designed so that
by choosing all round transformation components to be involutions, the inverse
operation of the cipher differs from the forward operation in the key scheduling
only. This property makes it possible to reduce the required chip area in a hard-
ware implementation, as well as the code and table size, which can be important
when Khazad is used e.g. in a Java applet.

Khazad was designed according to the Wide Trail strategy [8]. In the Wide
Trail strategy, the round transformation of a block cipher is composed of different
invertible transformations, each with its own functionality and requirements.
The linear diffusion layer ensures that after a few rounds all the output bits
depend on all the input bits. The nonlinear layer ensures that this dependency
is of a complex and nonlinear nature. The round key addition introduces the key
material. One of the advantages of the Wide Trail strategy is that the different
components can be specified quite independently from one another. We largely
follow the Wide Trail strategy in the design of the key scheduling algorithm as
well.
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As originally submitted for the NESSIE evaluation effort, Khazad employed
a randomly generated substitution box (S-box) whose lack of internal structure
tended to make efficient hardware implementation a challenging and tricky pro-
cess. In contrast to that version, though, the present document describes an
S-box that is much more amenable to hardware implementation, while not ad-
versely affecting any of the software implementation techniques suggested herein.
We propose renaming the original algorithm Khazad-0 and using the term
Khazad for the final, modified version that uses the improved S-box design.

This document is organised as follows. The mathematical preliminaries and
notation employed are described in section 2. A mathematical description of the
Khazad primitive is given in section 3. A statement of the claimed security
properties and expected security level is made in section 4. An analysis of the
primitive with respect to standard cryptanalytic attacks is provided in section 5
(a statement that there are no hidden weaknesses inserted by the designers is
explicitly made in section 5.9). Section 6 contains the design rationale explaining
design choices. Implementation guidelines to avoid implementation weaknesses
are given in section 7. Estimates of the computational efficiency in software are
provided in section 8. The overall strengths and advantages of the primitive are
listed in section 9.

2 Mathematical preliminaries and notation

2.1 Finite fields

We will represent the field GF(24) as GF(2)[x]/p4(x) where p4(x) = x4 + x + 1,
and the field GF(28) as GF(2)[x]/p8(x) where p8(x) = x8 + x4 + x3 + x2 + 1.
Polynomials p4(x) and p8(x) are the first primitive polynomials of degrees 4 and
8 listed in [20], and were chosen so that g(x) = x is a generator of GF(24) \ {0}
and GF(28) \ {0}, respectively.

A polynomial u =
∑m−1

i=0 ui · xi ∈ GF(2)[x], where ui ∈ GF(2) for all i =
0, . . . ,m − 1, will be denoted by the numerical value

∑m−1
i=0 ui · 2i, and written

in hexadecimal notation. For instance, we write 13x to denote p4(x).

2.2 MDS codes

The Hamming distance between two vectors u and v from the n-dimensional
vector space GF(2p)n is the number of coordinates where u and v differ.

The Hamming weight wh(a) of an element a ∈ GF(2p)n is the Hamming
distance between a and the null vector of GF(2p)n, i.e. the number of nonzero
components of a.

A linear [n, k, d] code over GF(2p) is a k-dimensional subspace of the vec-
tor space (GF(2p))n, where the Hamming distance between any two distinct
subspace vectors is at least d (and d is the largest number with this property).

A generator matrix G for a linear [n, k, d] code C is a k × n matrix whose
rows form a basis for C. A generator matrix is in echelon or standard form if it
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has the form G = [Ik×k Ak×(n−k)], where Ik×k is the identity matrix of order k.
We write simply G = [I A] omitting the indices wherever the matrix dimensions
are irrelevant for the discussion, or clear from the context.

Linear [n, k, d] codes obey the Singleton bound: d 6 n − k + 1. A code that
meets the bound, i.e. d = n−k+1, is called a maximal distance separable (MDS)
code. A linear [n, k, d] code C with generator matrix G = [Ik×k Ak×(n−k)] is MDS
if, and only if, every square submatrix formed from rows and columns of A is
nonsingular (cf. [22], chapter 11, § 4, theorem 8).

2.3 Cryptographic properties

A product of m distinct Boolean variables is called an m-th order product of
the variables. Every Boolean function f : GF(2)n → GF(2) can be written as a
sum over GF(2) of distinct m-order products of its arguments, 0 6 m 6 n; this
is called the algebraic normal form of f .

The nonlinear order of f , denoted ν(f), is the maximum order of the terms
appearing in its algebraic normal form. A linear Boolean function is a Boolean
function of nonlinear order 1, i.e. its algebraic normal form only involves isolated
arguments. Given α ∈ GF(2)n, we denote by lα : GF(2)n → GF (2) the linear
Boolean function consisting of the sum of the argument bits selected by the bits
of α:

lα(x) ≡
n−1⊕
i=0

αi · xi.

A mapping S : GF(2n) → GF(2n), x 7→ S[x], is called a substitution box,
or S-box for short. An S-box can also be viewed as a mapping S : GF(2)n →
GF(2)n and therefore described in terms of its component Boolean functions
si : GF(2)n → GF(2), 0 6 i 6 n− 1, i.e. S[x] = (s0(x), . . . , sn−1(x)).

The nonlinear order of an S-box S, denoted νS , is the minimum nonlinear
order over all linear combinations of the components of S:

νS ≡ min
α∈GF(2)n

{ν(lα ◦ S)}.

The δ-parameter of an S-box S is defined as

δS ≡ 2−n · max
a6=0, b

#{c ∈ GF(2n)|S[c⊕ a]⊕ S[c] = b}.

The value 2n · δ is called the differential uniformity of S.
The correlation c(f, g) between two Boolean functions f and g is defined as:

c(f, g) ≡ 21−n ·#{x|f(x) = g(x)} − 1.

The extreme value (i.e. either the minimum or the maximum, whichever is
larger in absolute value) of the correlation between linear functions of input bits
and linear functions of output bits of S is called the bias of S.
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The λ-parameter of an S-box S is defined as the absolute value of the bias:

λS ≡ max
(i,j) 6=(0,0)

|c(li, lj ◦ S)|.

The branch number B of a linear mapping θ : GF(2p)k → GF(2p)m is defined
as

B(θ) ≡ min
a6=0
{wh(a) + wh(θ(a))}.

Given a [k + m, k, d] linear code over GF(2p) with generator matrix G =
[Ik×k Mk×m], the linear mapping θ : GF(2p)k → GF(2p)m defined by θ(a) = a·M
has branch number B(θ) = d; if the code is MDS, such a mapping is called an
optimal diffusion mapping [25].

2.4 Miscellaneous notation

If m is a power of 2, had(a0, . . . , am−1) denotes the m×m matrix with elements
hij = ai⊕j , sometimes called a Hadamard-like matrix [2].

Given a sequence of functions fm, fm+1, . . . , fn−1, fn, m 6 n, we use the
notation ©n

r=m fr ≡ fm ◦ fm+1 ◦ · · · ◦ fn−1 ◦ fn, and ©r=n
m fr ≡ fn ◦ fn−1 ◦ · · · ◦

fm+1 ◦ fm; if m > n, both expressions stand for the identity mapping.

3 Description of the KHAZAD primitive

The Khazad cipher is an iterated ‘involutional’1 block cipher that operates on
a 64-bit cipher state represented as a vector in GF(28)8. It uses a 128-bit cipher
key K represented as a vector in GF(28)16, and consists of a series of applications
of a key-dependent round transformation to the cipher state. In the following
we will individually define the component mappings and constants that build up
Khazad, then specify the complete cipher in terms of these components.

3.1 The nonlinear layer γ

Function γ : GF(28)8 → GF(28)8 consists of the parallel application of a nonlin-
ear substitution box S : GF(28)→ GF(28), x 7→ S[x] to all bytes of the argument
individually:

γ(a) = b ⇔ bi = S[ai], 0 6 i 6 7.

The substitution box S is discussed in detail in section 6.2. One of the design
criteria for S imposes that it be an involution, i.e. S[S[x]] = x for all x ∈ GF(28).
Therefore, γ itself is an involution.

1 We explain in section 3.8 what we mean by an ‘involutional’ block cipher.
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3.2 The linear diffusion layer θ

The diffusion layer θ : GF(28)8 → GF(28)8 is a linear mapping based on
the [16, 8, 9] MDS code with generator matrix GH = [I H], where H =
had(01x, 03x, 04x, 05x, 06x, 08x, 0bx, 07x), i.e.

H =



01x 03x 04x 05x 06x 08x 0Bx 07x

03x 01x 05x 04x 08x 06x 07x 0Bx

04x 05x 01x 03x 0Bx 07x 06x 08x

05x 04x 03x 01x 07x 0Bx 08x 06x

06x 08x 0Bx 07x 01x 03x 04x 05x

08x 06x 07x 0Bx 03x 01x 05x 04x

0Bx 07x 06x 08x 04x 05x 01x 03x

07x 0Bx 08x 06x 05x 04x 03x 01x


,

so that θ(a) = b ⇔ b = a · H. A simple inspection shows that matrix H is
symmetric and unitary. Therefore, θ is an involution.

3.3 The key addition σ[k]

The affine key addition σ[k] : GF(28)8 → GF(28)8 consists of the bitwise addition
(exor) of a key vector k ∈ GF(28)8:

σ[k](a) = b⇔ bi = ai ⊕ ki, 0 6 i 6 7.

This mapping is also used to introduce round constants in the key schedule, and
is obviously an involution.

3.4 The round constants cr

The round constant for the r-th round is a vector cr ∈ GF(28)8, defined as:

cr
i = S[8r + i], 0 6 r 6 R, 0 6 i 6 7.

3.5 The round function ρ[k]

The r-th round function is the composite mapping ρ[k] : GF(28)8 → GF(28)8,
parameterised by the key vector k ∈ GF(28)8 and given by:

ρ[k] ≡ σ[k] ◦ θ ◦ γ.

3.6 The key schedule

The key schedule expands the cipher key K ∈ GF(28)16 into a sequence of round
keys K0, . . . ,KR, plus two initial values, K−2 and K−1), with Kr ∈ GF(28)8.
The initial values K−2 and K−1 are taken respectively from bytes 0 through 7
and 8 through 15 of the cipher key K:

K−2
i = Ki, K−1

i = K8+i, 0 6 i 6 7.
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The sequence of round keys are computed by means of a Feistel iteration based
on the round function ρ and the round constants cr:

Kr = ρ[cr](Kr−1)⊕Kr−2, 0 6 r 6 R.

3.7 The complete cipher

Khazad is defined for the cipher key K as the transformation Khazad[K] =
αR[K0, . . . ,KR] applied to the plaintext, where

αR[K0, . . . ,KR] = σ[KR] ◦ γ ◦
(

r=R−1

©
1

ρ[Kr]
)
◦ σ[K0].

The standard number of rounds is R = 8.

3.8 The inverse cipher

We now show that Khazad is an involutional cipher, in the sense that the only
difference between the cipher and its inverse is in the key schedule. We will need
the following lemma:

Lemma 1. θ ◦ σ[Kr] = σ[θ(Kr)] ◦ θ.

Proof. It suffices to notice that (θ ◦ σ[Kr])(a) = θ(Kr ⊕ a) = θ(Kr) ⊕ θ(a) =
(σ[θ(Kr)] ◦ θ)(a), for any a ∈ GF(28)8. ut

Let K̄0 ≡ KR, K̄R ≡ K0, and K̄r ≡ θ(KR−r), 0 < r < R. We are now ready
to state the main property of the inverse Khazad cipher α−1

R [K0, . . . ,KR]:

Theorem 1. α−1
R [K0, . . . ,KR] = αR[K̄0, . . . , K̄R].

Proof. We start from the definition of R-round Khazad:

αR[K0, . . . ,KR] = σ[KR] ◦ γ ◦
(

r=R−1

©
1

σ[Kr] ◦ θ ◦ γ

)
◦ σ[K0].

Since the component functions are involutions, the inverse cipher is obtained by
applying them in reverse order:

α−1
R [K0, . . . ,KR] = σ[K0] ◦

(
R−1

©
r=1

γ ◦ θ ◦ σ[Kr]
)
◦ γ ◦ σ[KR].

The above lemma leads to:

α−1
R [K0, . . . ,KR] = σ[K0] ◦

(
R−1

©
r=1

γ ◦ σ[θ(Kr)] ◦ θ

)
◦ γ ◦ σ[KR].

Using the associativity of functional composition we can slightly change the
grouping of operations:

α−1
R [K0, . . . ,KR] = σ[K0] ◦ γ ◦

(
R−1

©
r=1

σ[θ(Kr)] ◦ θ ◦ γ

)
◦ σ[KR].
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Finally, by substituting K̄r in the above equation, we arrive at:

αR[K0, . . . ,KR] = σ[K̄R] ◦ γ ◦
(

r=R−1

©
1

σ[K̄r] ◦ θ ◦ γ

)
◦ σ[K̄0].

That is, α−1
R [K0, . . . ,KR] = αR[K̄0, . . . , K̄R], where K̄0 ≡ KR, K̄R ≡ K0, and

K̄r ≡ θ(KR−r), 0 < r < R. ut

Corollary 1. The Khazad cipher has involutional structure, in the sense that
the only difference between the cipher and its inverse is in the key schedule.

4 Security goals

In this section, we present the goals we have set for the security of Khazad. A
cryptanalytic attack will be considered successful by the designers if it demon-
strates that a security goal described herein does not hold.

In order to formulate our goals, we must define two security-related concepts:

Definition 1 ([8]). A block cipher is K-secure if all possible attack strategies
for it have the same expected work factor and storage requirements as for the
majority of possible block ciphers with the same dimensions [block length and key
length]. This must be the case for all possible modes of access for the adversary
and for any a priori key distribution.

Definition 2 ([8]). A block cipher is hermetic if it does not have weaknesses
that are not present for the majority of block ciphers with the same block and
key length.

4.1 Goals

The security goals are that the Khazad cipher be:

– K-secure;
– Hermetic.

If Khazad lives up to its goals, the strength against any known or unknown
attacks is as good as can be expected from a block cipher with the given dimen-
sions [8].

5 Analysis

5.1 Differential and linear cryptanalysis

Because the branch number of θ is B = 9 (cf. [26], proposition 1), no differential
characteristic over two rounds has probability larger than δB = (2−5)9 = 2−45,
and no linear approximation over two rounds has input-output correlation larger
than λB = (16×2−6)9 = 2−18. This makes classical differential or linear attacks,
as well as some advanced variants like differential-linear attacks, very unlikely
to succeed for the full cipher.
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5.2 Truncated differentials

The concept of truncated differentials was introduced in [18], and typically ap-
plies to ciphers in which all transformations operate on well aligned data blocks,
as is the case for Khazad where all transformations operate on bytes rather
than individual bits. However, the fact that all submatrices of H are nonsin-
gular makes a truncated differential attack against more than a few rounds of
Khazad impossible, because the S/N ratio of an attack becomes too low. For 4
rounds or more, no truncated differential attacks can be mounted.

5.3 Interpolation attacks

Interpolation attacks [15] generally depend on the cipher components (particu-
larly the S-box) having simple algebraic structures that can be combined to give
polynomial or rational expressions with manageable complexity. The involved
expression of the S-box in GF(28), combined with the effect of the diffusion
layer, makes this type of attack infeasible for more than a few rounds.

5.4 Weak keys

The weak keys we discuss are keys that result in a block cipher mapping with
detectable weaknesses. The best known case of such weak keys are those of
IDEA [8]. Typically, this occurs for ciphers where the nonlinear operations de-
pend on the actual key value. This is not the case for Khazad, where keys are
applied using exor and all nonlinearity is in the fixed S-box. In Khazad, there
is no restriction on key selection.

5.5 Related-key cryptanalysis

Related-key attacks generally rely upon slow diffusion and/or symmetry in the
key schedule. The Khazad key schedule inherits many properties from the round
structure itself, and was designed to cause fast, nonlinear diffusion of cipher key
differences to the round keys.

5.6 SQUARE aka saturation attacks

In this section we present an attack first described in [25]. This attack works
against Khazad reduced to 3 rounds. We will denote by ar the cipher state
at the beginning of the r-round (input to γ), and by br the cipher state at the
output of the σ key addition in the r-round; these quantities may be indexed to
select a particular byte. For instance, b1

i is the byte at position i of the cipher
state at the output of round 1.

Take a set of 256 plaintexts different from each other in a single byte (which
assumes all possible values), the remaining 7 bytes being constant. After one
round all 8 bytes of each cipher state a2 in the set will take every value exactly
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once. After two rounds, the exor of all 256 cipher states a3 at every byte position
will be zero.

Consider a ciphertext b3 = γ(a3) ⊕K3; clearly a3 = γ(b3 ⊕K3). Now take
a byte from b3, guess the matching byte from K3 and apply γ to the exor of
these quantities. Do this for all 256 ciphertexts in the set and check whether the
exor of the 256 results indeed equals zero. If it doesn’t, the guessed key byte is
certainly wrong. A few wrong keys (a fraction about 1/256 of all keys) may pass
this test; repeating it for a second set of plaintexts leaves only the correct K3

value with overwhelming probability.
This attack recovers one byte of the last round key. The remaining bytes can

be obtained by repeating the attack eight times. Overall, this attack requires 29

chosen plaintexts. However, almost all wrong key values can be eliminated after
processing a single set of 28 plaintexts. The workload to recover one key byte is
thus 28 key guesses ×28 chosen plaintexts = 216 S-box lookups.

5.7 A general extension attack

Any n-round attack can be extended against (n+1) or more rounds for long keys
by simply guessing the whole Kn+1 round key and proceeding with the n-round
attack [21]. Each extra round increases the complexity by a factor 264 S-box
lookups. The best attack known against 3 rounds of Khazad has complexity
about 216 S-box lookups, hence the 4-round extension costs 216+64 = 280 S-box
lookups.

5.8 Other attacks

An extension of the Biham-Keller impossible differential attack on Rijndael
reduced to 5 rounds [5] can be applied to Khazad, reduced to 3 rounds. The
attack requires 213 chosen plaintexts and an effort of 264 encryptions.

We see no obvious way to extend the Gilbert-Minier attack [13] against
Rijndael and other ciphers of the Square family, since the attack makes direct
use of the two-level diffusion structure of those ciphers.

Attacks based on linear cryptanalysis can sometimes be improved by using
nonlinear approximations [19]. However, with the current state of the art the
application of nonlinear approximations seems limited to the first and/or the
last round of a linear approximation. This seems to be even more so for ciphers
using strongly nonlinear S-boxes, like Khazad.

We were not able to find any other attack method, including slide [6], ad-
vanced slide [7], boomerang [27], and rectangle [3] attacks, that could break the
Khazad cipher faster than exhaustive key search.

5.9 Designers’ statement on the absence of hidden weaknesses

In spite of any analysis, doubts might remain regarding the presence of trapdoors
deliberately introduced in the algorithm. That is why the NESSIE effort asks
for the designers’ declaration on the contrary.
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Therefore we, the designers of Khazad, do hereby declare that there are no
hidden weaknesses inserted by us in the Khazad primitive.

6 Design rationale

6.1 Self-inverse structure

Involutional structure is found as part of many cipher designs; in particular, all
classical Feistel networks [11] have this property. Self-inverse ciphers similar to
Khazad were described and analyzed in [31, 32]. The importance of involutional
structure resides not only in the advantages for implementation, but also in the
equivalent security of both encryption and decryption.

6.2 Choice of the substitution box

The originally submitted form of Khazad used a pseudo-randomly generated
S-box, chosen to satisfy the following conditions:

– S must be an involution, i.e. S[S[x]] = x for all x ∈ GF(28).
– The δ-parameter must not exceed 8× 2−8.
– The λ-parameter must not exceed 16× 2−6.
– The nonlinear order ν must be maximum, namely, 7.

The bounds on δ and λ correspond to twice the minimum achievable values for
these quantities. An additional condition, that the S-box has no fixed point, was
imposed in an attempt to speed up the search. This condition was inspired by
the empirical study reported in [31, section 2.3], where the strong correlation
found between the cryptographic properties and the number of fixed points of a
substitution box suggests minimising the number of such points. The polynomial
and rational representations of S over GF(28) are checked as well, to avoid any
obvious algebraic weakness (which could lead e.g. to interpolation attacks [15]).
Finally, affine approximations to S are also considered; no such approximation
was found that matches S in more than 19 points2, too few to mount any attack
we could conceive.

However, the extreme lack of structure in such an S-box hinders efficient
hardware implementation. Moreover, a flaw that went unnoticed in the random
search program caused the value of λ for the original S-box to be incorrectly
reported as 13 × 2−6 instead of the actual value 17 × 2−6 (corresponding to a
negative bias), which is slightly worse than the design bound3. Although this is
still far too low to make classical linear attacks feasible, it can be easily remedied.

Therefore, we now describe an alternative S-box that, besides exactly satisfy-
ing the design conditions, is amenable to much more efficient implementation in
hardware, while not affecting the software implementation techniques presented
here in any reasonable way. The new S-box is illustrated in figure 1.
2 This is true for both the original S-box and the new, improved design.
3 We thank the NESSIE evaluation team for pointing out this discrepancy [24].
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Fig. 1. Structure of the Khazad S-box. Both P and Q are pseudo-randomly generated
involutions; the output from the upper and middle nonlinear layers are mixed through
a simple linear shuffling.

The P and Q tables are pseudo-randomly generated involutions with optimal
δ, λ, and ν, chosen so that the S-box built from them satisfies the design criteria
listed at the beginning of this section. Tables 1 and 2 show the involutions found
by the searching algorithm.

A description of the searching algorithm and a listing of the resulting S-box
are given in the appendix.

Table 1. Actual P mini-box

u 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

P [u] 3x Fx Ex 0x 5x 4x Bx Cx Dx Ax 9x 6x 7x 8x 2x 1x

Table 2. Actual Q mini-box

u 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

Q[u] 9x Ex 5x 6x Ax 2x 3x Cx Fx 0x 4x Dx 7x Bx 1x 8x
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6.3 Choice of the diffusion layer

The actual matrix used in the diffusion layer θ was selected by exhaustive search.
Although other ciphers of the same family as Khazad use circulant matrices for
this purpose (cf. [26]), it is not difficult to prove that no such matrix can be
self-inverse. On the other hand, unitary Hadamard-like matrices can be easily
computed that satisfy the MDS condition.

The actual choice involves coefficients with the lowest possible Hamming
weight (which is advantageous for hardware implementations) and lowest pos-
sible integer values (which is important for smart card implementations as dis-
cussed in section 7.3).

6.4 Structure of the key schedule

Adopting a Feistel key schedule provides a simple and effective way to expand a
2m-bit cipher key onto m-bit round keys reusing the round function itself. This
keeps the overall cipher structure uniformly m-bit oriented (in the sense that
the natural data units occurring in the cipher are bytes and m-bit blocks).

6.5 Choice of the round constants

Good round constants should not be equal for all bytes in a state, and also
not equal for all bit positions in a byte. They should also be different in each
round. The actual choice meets these constraints while also reusing an available
component (the S-box itself).

7 Implementation

Khazad can be implemented very efficiently. On different platforms, different
optimisations and tradeoffs are possible. We make here a few suggestions.

7.1 64-bit processors

Implementation of ρ: We suggest the following lookup-table approach. Let
Hk be the k-th row of the Hadamard-like matrix H; using eight tables Tk[x] ≡
S[x] ·Hk, 0 6 k 6 7, i.e.:

T0[x] = S[x] · [01x 03x 04x 05x 06x 08x 0Bx 07x ],
T1[x] = S[x] · [03x 01x 05x 04x 08x 06x 07x 0Bx ],
T2[x] = S[x] · [04x 05x 01x 03x 0Bx 07x 06x 08x ],
T3[x] = S[x] · [05x 04x 03x 01x 07x 0Bx 08x 06x ],
T4[x] = S[x] · [06x 08x 0Bx 07x 01x 03x 04x 05x ],
T5[x] = S[x] · [08x 06x 07x 0Bx 03x 01x 05x 04x ],
T6[x] = S[x] · [0Bx 07x 06x 08x 04x 05x 01x 03x ],
T7[x] = S[x] · [07x 0Bx 08x 06x 05x 04x 03x 01x ],
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then one can compute b = (θ◦γ)(a) =
⊕7

k=0 Tk[ak] with eight table lookups and
seven exor operations; the key addition then completes the evaluation of ρ. The
T -tables require 28 × 8 bytes of storage each. An implementation can use the
fact that the corresponding entries of different T -tables are permutations of one
another and save some memory at the expense of introducing extra permutations
at runtime. Usually this decreases the performance of the implementation.

Implementation of θ for the inverse key schedule: The simplest approach
is to use tables similar to those suggested for the implementation of ρ. However,
instead of defining independent tables T ′i [x] = x ·Hi, 0 6 i 6 7, one can use the
relation T ′i [x] = Ti[S[x]] and extract the value of S[x] from the 01x entries of
the T tables with a masking ‘and’ operation. This way the T tables themselves
can be used and no extra storage is needed.

7.2 32-bit processors

Any Hadamard-like matrix H (of order m) shows the following structure:

H =
[

U V
V U

]
,

where U and V are themselves Hadamard-like matrices (of order m/2). A 32-bit
implementation may take advantage of this structure by representing elements
c ∈ GF(28)8 as pairs c =

[
ĉ0 ĉ1

]
of elements ĉi ∈ GF(28)4:

b = θ(a)⇔
{

b̂0 = â0U ⊕ â1V,

b̂1 = â0V ⊕ â1U,

with twice the complexity derived for 64-bit processors regarding the number of
table lookups and exors, but using smaller tables (each occupying 28× 4 bytes).

7.3 8-bit processors

On an 8-bit processor with a limited amount of RAM, e.g. a typical smart
card processor, the previous approach is not feasible. On these processors the
substitution is performed byte by byte, combined with the σ[k] transformation.
For θ, it is necessary to implement the matrix multiplication.

The following piece of pseudo-code calculates b = θ(a), using a table X that
implements multiplication by the polynomial g(x) = x in GF(28) (i.e. X[u] ≡
x · u) and fourteen temporary variables t0 to t7 and r0 to r5:

t0 ← a0 ⊕ a1; t1 ← a2 ⊕ a3; t2 ← a4 ⊕ a5; t3 ← a6 ⊕ a7;
t4 ← a1 ⊕ a4; t5 ← a0 ⊕ a5; t6 ← a3 ⊕ a6; t7 ← a2 ⊕ a7;
r0 ← t0 ⊕X[X[t1]]; r2 ← X[X[a5 ⊕ a6]];
r1 ← t1 ⊕X[X[t0]]; r3 ← X[X[a4 ⊕ a7]];
r4 ← t3 ⊕ r2; r5 ← t3 ⊕ r3;
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b0 ← a3 ⊕ r0 ⊕ r5 ⊕X[t4 ⊕ r4]; b1 ← a2 ⊕ r0 ⊕ r4 ⊕X[t5 ⊕ r5];
r4 ← t2 ⊕ r2; r5 ← t2 ⊕ r3;
b2 ← a1 ⊕ r1 ⊕ r4 ⊕X[t6 ⊕ r5]; b3 ← a0 ⊕ r1 ⊕ r5 ⊕X[t7 ⊕ r4];
r0 ← t2 ⊕X[X[t3]]; r2 ← X[X[a1 ⊕ a2]];
r1 ← t3 ⊕X[X[t2]]; r3 ← X[X[a0 ⊕ a3]];
r4 ← t1 ⊕ r2; r5 ← t1 ⊕ r3;
b4 ← a7 ⊕ r0 ⊕ r5 ⊕X[t5 ⊕ r4]; b5 ← a6 ⊕ r0 ⊕ r4 ⊕X[t4 ⊕ r5];
r4 ← t0 ⊕ r2; r5 ← t0 ⊕ r3;
b6 ← a5 ⊕ r1 ⊕ r4 ⊕X[t7 ⊕ r5]; b7 ← a4 ⊕ r1 ⊕ r5 ⊕X[t6 ⊕ r4];

This implementation requires 56 exors and 24 table lookups. Notice that, if an
additional table X2 is available, where X2[u] ≡ X[X[u]], the number of table
lookups drops to 16. There may be more efficient ways to implement θ, however;
we did not search thoroughly all possibilities.

7.4 Techniques to avoid software implementation weaknesses

The attacks of Kocher et al. [16, 17] have raised the awareness that careless
implementation of cryptographic primitives can be exploited to recover key ma-
terial. In order to counter this type of attacks, attention has to be given to the
implementation of the round transformation as well as the key scheduling of the
primitive.

A first example is the timing attack [16] that can be applicable if the execution
time of the primitive depends on the value of the key and the plaintext. This
is typically caused by the presence of conditional execution paths. For instance,
multiplication by a constant value over a finite field is sometimes implemented
as a shift followed by a conditional exor. This vulnerability is avoided by a table
lookup implementation as proposed in sections 7.2 and 7.3.

A second class of attacks are the attacks based on the careful observation of
the power consumption pattern of an encryption device [17]. Protection against
this type of attack can only be achieved by combined measures at the hardware
and software level. We leave the final word on this issue to the specialists, but we
hope that the simple structure and the limited number of operations in Khazad
will make it easier to create an implementation that resists this type of attacks.

7.5 Hardware implementation

We have currently no figures on the attainable performance and required area
or gate count of Khazad in ASIC or FPGA, nor do we have a description in
VHDL. However, we expect that the results on Rijndael [14, 28] will carry over
to some extent; in particular, the S-box structure can be implemented in about
1/5 the number of gates used by the implementation of the Rijndael S-box
reported in [29], which takes about 500–600 gates [30].
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8 Efficiency estimates

To obtain efficiency estimates we used the 32-bit implementation with eight
tables described in sections 7.1 and 7.2 on a 550 MHz Pentium III processor.
Because the key schedule is based on the round function itself, no extra storage
is needed besides that already required for implementing encryption/decryption.

8.1 Key setup

Table 3 lists the observed key setup efficiency. The increased cost of the decryp-
tion key schedule (68% more expensive than the setup of the encryption key
schedule) is due to the application of θ to R− 1 round keys.

Table 3. Key setup efficiency

cycles (encryption schedule) cycles (decryption schedule)

640 1076

8.2 Encryption and decryption

Since Khazad has involutional structure, encryption and decryption are equally
efficient (for the same number of rounds). Table 4 summarises the observed
efficiency.

Table 4. Encryption/decryption efficiency

cycles per byte cycles per block Mbit/s

51.2 409 86.0

By coding the primitive in assembler and running the test on a native 64-bit
processor, we expect a reduction of the cycle counts by a factor of at least 2.

9 Advantages

Khazad is much more scalable than most modern ciphers, in the sense of being
very fast while avoiding excessive storage space (for both code and tables) and
expensive or unusual instructions built in the processor; this makes it suitable for
a wide variety of platforms. The same structure also favours extensively parallel
execution of the component mappings, and its mathematical simplicity tends to
make analysis easier.
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9.1 Comparison with SHARK

Khazad bears many similarities with the block cipher Shark [26]. We now list
the most important differences.

The involutional structure: The fact that all components of Khazad are
involutions should in principle reduce the code size or area in software, re-
spectively hardware applications that implement both encryption and de-
cryption.

The different S-box: The S-box of Khazad contains elements generated in
a pseudo-random way and lacks a simple mathematical description needed
for e.g. interpolation attacks; besides, the internal organisation of these el-
ements potentially facilitates hardware implementation. On the other hand
the differential and linear properties are suboptimal.

The different key scheduling: The Khazad key scheduling executes much
faster than the Shark counterpart, and still provides adequate security. In
particular for the processing of short messages, the performance of the key
scheduling is important.
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A Generation of the KHAZAD S-box

Khazad uses the same S-box as the Anubis cipher (cf. [1]); we describe here
how it was generated for ease of reference.

The only part of the S-box structure still unspecified in figure 1 consists of
the P and Q involutions, which are generated pseudo-randomly in a verifiable
way.

The searching algorithm starts with two copies of a simple involution without
fixed points (namely, the negation mapping u 7→ ū = u ⊕ Fx), and pseudo-
randomly derives from each of them a sequence of 4 × 4 substitution boxes
(“mini-boxes”) with the optimal values δ = 1/4, λ = 1/2, and ν = 3. At each
step, in alternation, only one of the sequences is extended with a new mini-
box. The most recently generated mini-box from each sequence is taken, and
the pair is combined according to the shuffle structure shown in figure 1; finally,
the resulting 8× 8 S-box, if free of fixed points, is tested for the design criteria
regarding δ, λ, and ν.

Given a mini-box at any point during the search, a new one is derived from
it by choosing two pairs of mutually inverse values and swapping them, keeping
the result an involution without fixed points; this is repeated until the running
mini-box has optimal values of δ, λ, and ν.

The pseudo-random number generator is implemented with Rijndael [10] in
counter mode, with a fixed key consisting of 256 zero bits and an initial counter
value consisting of 128 zero bits.

The following pseudo-code fragment illustrates the computation of the chains
of mini-boxes and the resulting S-box:

// initialize mini-boxes to the negation involution:
for (u← 0; u < 256; u++) {

P [u]← ū; Q[u]← ū;
}
// look for S-box conforming to the design criteria:
do {

// swap mini-boxes (update the “older” one only)
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P ↔ Q;
// generate a random involution free of fixed points:
do {

do {
// randomly select x and y such that
// x 6= y and Q[x] 6= y (this implies Q[y] 6= x):
z ← RandomByte(); x← z � 4; y ← z & 0Fx;

} while (x = y ∨ Q[x] = y);
// swap entries:
u← Q[x]; v ← Q[y];
Q[x]← v; Q[u]← y;
Q[y]← u; Q[v]← x;

} while (δ(Q) > 1/4 ∨ λ(Q) > 1/2 ∨ ν(Q) < 3);
// build S-box from the mini-boxes (see figure 1):
S ← ShuffleStructure(P, Q);
// test design criteria:

} while (#FixedPoints(S) > 0 ∨ δ(S) > 2−5 ∨ λ(S) > 2−2 ∨ ν(S) < 7);

B Hardware implementation

Restricting the allowed logical gates to AND, OR, NOT, and XOR, the P and
Q mini-boxes can be implemented with 18 logical gates each. Therefore, the
complete S-box can be implemented with 108 gates.

The pseudo-code fragments shown in figure 2 illustrate this (u = u3x
3 +

u2x
2+u1x+u0 ∈ GF(24) denotes the mini-box input, z = z3x

3+z2x
2+z1x+z0 ∈

GF(24) denotes its output, and the tk denote intermediate values). We point out,
however, that the search for efficient Boolean expressions for the mini-boxes has
not been thorough, and it is likely that better expressions exist.

For completeness, table 5 lists the resulting 8× 8 Khazad S-box.

C The name

Thus he brought me back at last to the secret ways of
Khazad-dûm . . .

Khazad is named after Khazad-dûm, “the Mansion of the Khazâd,” which in the
tongue of the Dwarves is the name of the great realm and city of Dwarrowdelf,
of the haunted mithril mines in Moria, the Black Chasm. But all this should
be quite obvious – unless you haven’t read J.R.R. Tolkien’s “The Lord of the
Rings,” of course :-)
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z = P [u] z = Q[u]

t0 ← u0 ⊕ u1; t0 ← ¬u0;
t1 ← u0 ⊕ u3; t1 ← u1 ⊕ u2;
t2 ← u2 ∧ t1; t2 ← u2 ∧ t0;
t3 ← u3 ∧ t1; t3 ← u3 ⊕ t2;
t4 ← t0 ∨ t3; t4 ← t1 ∧ t3;
z3 ← t2 ⊕ t4; z0 ← t0 ⊕ t4;
t1 ← ¬t1; t0 ← u0 ⊕ u1;
t2 ← u1 ∧ u2; t1 ← t1 ⊕ t2;
t4 ← u3 ∨ z3; t0 ← t0 ⊕ t3;
t1 ← t1 ⊕ t2; t1 ← t1 ∨ t0;
z0 ← t4 ⊕ t1; z2 ← u2 ⊕ t1;
t4 ← u2 ∧ t1; t1 ← t1 ∧ u0;
t2 ← t2 ⊕ u3; t3 ← u3 ∧ t0;
t2 ← t2 ∨ t4; t3 ← t3 ⊕ t2;
z2 ← t0 ⊕ t2; z1 ← t1 ⊕ t3;
t3 ← t3 ⊕ t4; t1 ← u2 ∨ z0;
t1 ← t1 ∨ z3; t0 ← t0 ⊕ t3;
z1 ← t3 ⊕ t1; z3 ← t1 ⊕ t0;

Fig. 2. Boolean expressions for P and Q

Table 5. The Khazad S-box

00x 01x 02x 03x 04x 05x 06x 07x 08x 09x 0Ax 0Bx 0Cx 0Dx 0Ex 0Fx

00x BAx 54x 2Fx 74x 53x D3x D2x 4Dx 50x ACx 8Dx BFx 70x 52x 9Ax 4Cx

10x EAx D5x 97x D1x 33x 51x 5Bx A6x DEx 48x A8x 99x DBx 32x B7x FCx

20x E3x 9Ex 91x 9Bx E2x BBx 41x 6Ex A5x CBx 6Bx 95x A1x F3x B1x 02x

30x CCx C4x 1Dx 14x C3x 63x DAx 5Dx 5Fx DCx 7Dx CDx 7Fx 5Ax 6Cx 5Cx

40x F7x 26x FFx EDx E8x 9Dx 6Fx 8Ex 19x A0x F0x 89x 0Fx 07x AFx FBx

50x 08x 15x 0Dx 04x 01x 64x DFx 76x 79x DDx 3Dx 16x 3Fx 37x 6Dx 38x

60x B9x 73x E9x 35x 55x 71x 7Bx 8Cx 72x 88x F6x 2Ax 3Ex 5Ex 27x 46x

70x 0Cx 65x 68x 61x 03x C1x 57x D6x D9x 58x D8x 66x D7x 3Ax C8x 3Cx

80x FAx 96x A7x 98x ECx B8x C7x AEx 69x 4Bx ABx A9x 67x 0Ax 47x F2x

90x B5x 22x E5x EEx BEx 2Bx 81x 12x 83x 1Bx 0Ex 23x F5x 45x 21x CEx

A0x 49x 2Cx F9x E6x B6x 28x 17x 82x 1Ax 8Bx FEx 8Ax 09x C9x 87x 4Ex

B0x E1x 2Ex E4x E0x EBx 90x A4x 1Ex 85x 60x 00x 25x F4x F1x 94x 0Bx

C0x E7x 75x EFx 34x 31x D4x D0x 86x 7Ex ADx FDx 29x 30x 3Bx 9Fx F8x

D0x C6x 13x 06x 05x C5x 11x 77x 7Cx 7Ax 78x 36x 1Cx 39x 59x 18x 56x

E0x B3x B0x 24x 20x B2x 92x A3x C0x 44x 62x 10x B4x 84x 43x 93x C2x

F0x 4Ax BDx 8Fx 2Dx BCx 9Cx 6Ax 40x CFx A2x 80x 4Fx 1Fx CAx AAx 42x
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