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A fast iterative modular multiplication algorithm is proposed for 
modular exponentiation with a large modulus, such as the RSA 
cryptosystem. The limit on partial products is raised to become 
less than 2” instead of modulus N with n-bit length. The naturally 
generated carry signifies when the computed partial product is 
greater than or equal to 2”. and a subtraction is subsequently 
performed. No magnitude comparisons are required. 

Introduction: With the increasing importance of computer security, 
computer cryptography is becoming more and more important. 
Most number-theoretic cryptosystems, such as the RSA cryptosys- 
tern [I], are constructed based on modular multiplication. The 
design of a fast algorithm for modular multiplication with a large 
modulus (longer than 500 bit) is the key to developing high-speed 
encryptioddecryption algorithms. One of the most attractive 
methods is one in which each subtraction step for division is 
embedded in the repeated addition-multiplication algorithm [ 2 4 .  
This technique computes the product in n steps for n-bit modulus 
N, where at each step one left shift, one addition, and at most two 
magnitude comparisons (i.e. subtractions) are performed. How- 
ever, the magnitude comparison slows down for longer operands 
(for example, 644 bit) because its computation time is linearly pro- 
portional to the word length of operands. The key point to 
increasing the computation speed is to keep the number of 
required magnitude comparisons as small as possible. Based on 
the Blakley algorithm [2], an iterative modular multiplication algo- 
rithm without magnitude comparison is proposed. 

Algorithm: We consider the computation of A*B modulo N. Let 
A ,  E, and N be three n-bit positive binary integers, where n is very 
large and A ,  B < N .  Let B at the bit level be represented by b,,b,- 

A traditional algorithm based on the Blakley algorithm for the 
... b,bg. 

computation of A*B modulo N is as follows: 

Algorithm A: (Traditional algorithm for computing R = A*B mod N) 
P = O  
for j = n-1 down to 0 do 

begin 
P = 2*P 
if (P 2 N) then P = P-N 

if (b, = 1) then 

(* shift-left the partial product *) 
(* magnitude comparison is 

performed. *) 

begin 
P = P + A  
if ( P  t N) then P = P-N (* magnitude comparison is 
performed *) 

end 
end 

where the partial sum P is (n+l) bit long. Each iteration in the 
loop performs a left shift and an addition of a n-hit number. This 
requires up to two subtractions of the modulus. On average, the 
algorithm takes a total of n left-shift operations, 3n/2 subtractions, 
and n/2 additions. We assume that both addition and subtraction 
requires similar time complexity and the shift operation is negligi- 
ble as compared with additions. Thus, the traditional algorithm 
requires 2n additions on average. 

If P is greater than or equal to N, subtraction of N is per- 
formed. In this algorithm, an accurate magnitude comparison for 
possible subtraction of N is required. Owing to the carry-propaga- 
tion problem, it takes O(n) gate delays and limits the operation 
speed as n becomes large. To avoid the time-consuming magnitude 
comparison operations, we propose an algorithm to limit the value 
of the partial sum P to be less than 2” instead of N .  A carry gener- 
ated in normal addition signifies the condition that the computed 
number is greater than or equal to 2”. If this is the case, the gener- 
ated carry is discarded and an addition of (2” mod N) to P is then ~ 

performed. The new algorithm is described in the following para- 
graphs. 

Algorithm E (* compute R = A*B mod N *) 
(* let P be the partial product *) 
(* let carry(P) represent a carry generated by computation of P *) 
P = 0; S = 2” mod N (* first, compute 2 mod N *) 
for i = n-1 down to 0 do 

begin 
P = 2*P 
if carry(P) then P = P+S-2” (* a carry-out indicates the case 
P > 2 ” * )  
if (b, = 1) then 
begin 
P = P + A  
if carry(P) then P = P+S-2” (* a carry-out indicates the 
case P > 2” *) 

(* shift-left the partial product *) 

end 
end 

if ( P 2  N) then R = P-Nelse R = P 

When a carry, i.e. carry(P), is generated, a precomputed value, 2” 
mod N, is added to the partial sum P. Therefore, no magnitude 
comparison with the modulus N is required in this algorithm. On 
average, (5ni4 + 1/2) additions are performed for the computation 
of A*B modulo N .  In fact, the number of additions can be further 
reduced, as shown in the following algorithm. 

Algorithm C (* compute R = A*B mod N *) 
P =  0 c =  0; SI = 1’2”mod N; S2 = 2*2”mod N; S3 = 3*2”mod N 
TI = (2”+A) mod N, R = (2*2”+A) mod W, 73 = (3*2”+A) mod N 
for i = n-1 down to 0 do 
begin 
P = 2*P 
if (carry(P) = 1) then c = c+l 

if (b, = 1) then (* b, = 1 indicates that A is added to P *) 
(* a carry out indicates that 2” mod N is added to P *) 

begin 
case c of 

end case 
0 P = P+A;  1: P = P+TI; 2: P= P+T2; 3: P= P+T3 

end 

begin 
else 

case c of 

end case 
1: P = P+SI; 2: P = P+s2; 3: P = P+S3 

end 
if carry(P) then c = 2 else c = 0 

(* a carry out indicates that 2*2” mod N is added to P *) 
end 

if P 2 N then R = P-N else R = P 

In algorithm C, the expected number of additions is (n+lO). The 
addition of the 2 bit counter c is negligible as compared with the 
addition of the partial sum P. Compared with the traditional algo- 
rithm, algorithm C provides a speedup ratio of 2. 

Conclusion: Based on the Blakley algorithm, an iterative algorithm 
for the computation of A*B modulo a large modulus N (larger 
than 500 bit) has been proposed. No magnitude comparisons are 
required in our new algorithm. It is also shown that the new algo- 
rithm has a speedup ratio of 2 compared with the conventional 
algorithm. 
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Efficient IQ filter structure for use in adaptive 
equalisation 

D.R. Bull 

Indexing terms: Adaptive filters, Egunlisers 

A method is presented for reducing the implementation cost of a 
complex digital fdter structure such as that used for IQ processing 
in adaptive equalisation. It is shown that the number of real filter 
sections required can be reduced from four to three at the expense 
of an increase in external addition stag= from two to three (or 
five if coefficient additions are included). The approach is 
applicable to both LTE and DFE structures and results in savings 
which approach 25% for most practical cases. 

Introduction: Adaptive equalisation techniques are frequently 
employed in digital communication systems to combat the inter- 
symbol interference caused by multipath effects in the channel [I]. 
Numerous equalisation structures have been proposed ranging 
from the simplest linear transversal structure (LTE) to decision 
feedback equalisation (DFE) [2], Viterbi and neural network based 
solutions [3]. DFE is generally preferred to LTE because it is 
capable of reducing IS1 without significant noise enhancement in a 
frequency selective fading channel. Also the complexity of the 
Viterbi and neural network approaches coupled with the conver- 
gence properties of certain neural network paradigms often pre- 
clude their practical adoption. 

In practice, most modulation schemes employ both in-phase 
and quadrature components (e.g. QAM or multiphase PSK) and 
therefore require an equaliser structure capable of processing com- 
plex signal values. In its basic form the complex equaliser is equiv- 
alent to a parallel structure comprising four real filter structures as 
shown in Fig. 1. 
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Fig. 1 Complex valued buseband equaliser filter structure 

The computational complexity of the receiver architecture is of 
paramount importance especially in mobile handsets where good 
quality communications must be provided at low cost and power. 
To this end it is advantageous to exploit any hardware complexity 
savings which can be obtained, for example in areas such such as 
the equaliser. This Letter presents an approach which enables the 
complex filtering operation in an equaliser to be realised using 
three real signal convolvers rather than the four shown in Fig. 1. 
This results in a hardware saving for VLSI, with associated power 
and cost reductions, or alternatively a throughput improvement 
for programmable DSP micoprocessor solutions. 

Complex multiplication: The dominant component in an equalisa- 
*tion filter for I and Q signals is the complex multiplier. In the 

standard form of eqn. 1, a complex multiplication operation 
requires four real multiplications and two real additiodsubtrac- 
tions. 

(1) 
u+jw = ( g + j h ) ( r + j y )  

= (P-hY) +j(h.+gy) 
The complexity of performing multiplication is generally consid- 
ered to be @Ez), where B represents the internal wordlength of 
the process whereas that for additions or subtractions is O(B). 
This observation has led a number of researchers to investigate 
methods for reducing the number of real multipliers required to 
compute eqn. 1, possibly at the expense of extra additionhbtrac- 
tion operations. Several three-multiplier forms of the complex 
multiplier have been reported in the literature. For example Preuss 
in [4] gives 

v + w  = {s.- hy l  +J{ (S+  h ) ( r + y  1 -gz - h Y 1  (2) 

v+jw = {(s+h).-h(.+y)}+3{(s+h)z-g(z-y)} (3) 

whereas Winograd [SI gives 

Horrocks and Bull [6] use a generic structure to synthesise all pos- 
sible three multiplier versions (12 in total) of the complex multi- 
plier and classify these according to coefficient combinations. 
Three examples of these are given in eqns. 4-6. It can be seen that 
all structures require five additiodsubtractions, in comparison 
with the two required for the four multiplier case. 

v+ jw = { d z -  Y)  + (9- h)Y} + j  t (g--h)y + h b + Y ) I  (4) 

v+jw = b ( Z + Y )  -(g+h)Y}+jl(g+h)Y+h(z-Y)} ( 5 )  

v+jw = {g(z-Y)+(g-h)y}+3{(g+h)z-g(z-Y)} (6) 

Fam [7] has extended this approach to the case of complex matrix 
multiplication where further savings are possible. 
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Fig. 2 Example three filter version of complex equaliser 

Complex convolution: Although in the case of the equalisation fil- 
ter we are concerned with convolution rather than multiplication, 
because convolution is a linear operator, the principles outlined 
above for complex multiplication still apply. 

In the simplest case of an Nth order linear transversal equaliser, 
the symbol estimate f(k) at the kth signalling interval is a weighted 
linear combination of previous outputs { v(k)}  as given in eqn. 7. 

N / 2  

i = - - N / Z  
i(k)= c ( t* (k - l )  ( 7 )  

where f(k), c, and v(k) in eqn. 7 are all complex quantities. Con- 
ventionally eqn. 7 will be realised either with each complex multi- 
plier implemented using four real multipliers or equivalently, as a 
parallel combination of four independent filter sections as given 
by eqn. 8 and previously shown in Fig. 1. The computational com- 
plexity of both of these solutions is identical. 

Re { f(k)} +jIm { i ( k ) }  

= (Re{v(k)}+jImto(k)}) * (Re{ck}+jIm{ck}) (8)  

+ j  (Re{v(k)} * Im{ck)+Im{v(k)} * Re{ck}) 

= (Re{v(k)} * Re{ck}-Im{v(k)} * Im{ck}) 

This latter approach can be modified, in the same manner as 
shown previously, to yield three-filter realisations of eqn. 7. An 
example of this which corresponds to eqn. 5 above is given in eqn. 
9 and is shown diagrammatically in Fig. 2. 

~e { i(k)} +jIm { i(k)} 
= (Retck} * (Re{v(k)}+Im{v(k)}) 

2018 ELECTRONICS LE7TERS 24th November 1994 Vol. 30 No. 24 


