
Iterative modular multiplication algorithm
without magnitude comparison

C.W. Chiou and T.C. Yang

Indexing terms: Digital arithmetic, Number theor?.

A fast iterative modular multiplication algorithm is proposed for
modular exponentiation with a large modulus, such as the RSA
cryptosystem. The limit on partial products is raised to become
less than 2” instead of modulus N with n-bit length. The naturally
generated carry signifies when the computed partial product is
greater than or equal to 2”. and a subtraction is subsequently
performed. No magnitude comparisons are required.

Introduction: With the increasing importance of computer security,
computer cryptography is becoming more and more important.
Most number-theoretic cryptosystems, such as the RSA cryptosys-
tern [I], are constructed based on modular multiplication. The
design of a fast algorithm for modular multiplication with a large
modulus (longer than 500 bit) is the key to developing high-speed
encryptioddecryption algorithms. One of the most attractive
methods is one in which each subtraction step for division is
embedded in the repeated addition-multiplication algorithm [2 4 .
This technique computes the product in n steps for n-bit modulus
N, where at each step one left shift, one addition, and at most two
magnitude comparisons (i.e. subtractions) are performed. How-
ever, the magnitude comparison slows down for longer operands
(for example, 644 bit) because its computation time is linearly pro-
portional to the word length of operands. The key point to
increasing the computation speed is to keep the number of
required magnitude comparisons as small as possible. Based on
the Blakley algorithm [2], an iterative modular multiplication algo-
rithm without magnitude comparison is proposed.

Algorithm: We consider the computation of A*B modulo N. Let
A , E, and N be three n-bit positive binary integers, where n is very
large and A , B < N . Let B at the bit level be represented by b,,b,-

A traditional algorithm based on the Blakley algorithm for the
... b,bg.

computation of A*B modulo N is as follows:

Algorithm A: (Traditional algorithm for computing R = A*B mod N)
P = O
for j = n-1 down to 0 do

begin
P = 2*P
if (P 2 N) then P = P-N

if (b, = 1) then

(* shift-left the partial product *)
(* magnitude comparison is

performed. *)

begin
P = P + A
if (P t N) then P = P-N (* magnitude comparison is
performed *)

end
end

where the partial sum P is (n+l) bit long. Each iteration in the
loop performs a left shift and an addition of a n-hit number. This
requires up to two subtractions of the modulus. On average, the
algorithm takes a total of n left-shift operations, 3n/2 subtractions,
and n/2 additions. We assume that both addition and subtraction
requires similar time complexity and the shift operation is negligi-
ble as compared with additions. Thus, the traditional algorithm
requires 2n additions on average.

If P is greater than or equal to N, subtraction of N is per-
formed. In this algorithm, an accurate magnitude comparison for
possible subtraction of N is required. Owing to the carry-propaga-
tion problem, it takes O(n) gate delays and limits the operation
speed as n becomes large. To avoid the time-consuming magnitude
comparison operations, we propose an algorithm to limit the value
of the partial sum P to be less than 2” instead of N . A carry gener-
ated in normal addition signifies the condition that the computed
number is greater than or equal to 2”. If this is the case, the gener-
ated carry is discarded and an addition of (2” mod N) to P is then ~

performed. The new algorithm is described in the following para-
graphs.

Algorithm E (* compute R = A*B mod N *)
(* let P be the partial product *)
(* let carry(P) represent a carry generated by computation of P *)
P = 0; S = 2” mod N (* first, compute 2 mod N *)
for i = n-1 down to 0 do

begin
P = 2*P
if carry(P) then P = P+S-2” (* a carry-out indicates the case
P > 2 ” *)
if (b, = 1) then
begin
P = P + A
if carry(P) then P = P+S-2” (* a carry-out indicates the
case P > 2” *)

(* shift-left the partial product *)

end
end

if (P 2 N) then R = P-Nelse R = P

When a carry, i.e. carry(P), is generated, a precomputed value, 2”
mod N, is added to the partial sum P. Therefore, no magnitude
comparison with the modulus N is required in this algorithm. On
average, (5ni4 + 1/2) additions are performed for the computation
of A*B modulo N . In fact, the number of additions can be further
reduced, as shown in the following algorithm.

Algorithm C (* compute R = A*B mod N *)
P = 0 c = 0; SI = 1’2”mod N; S2 = 2*2”mod N; S3 = 3*2”mod N
TI = (2”+A) mod N, R = (2*2”+A) mod W, 73 = (3*2”+A) mod N
for i = n-1 down to 0 do
begin
P = 2*P
if (carry(P) = 1) then c = c+l

if (b, = 1) then (* b, = 1 indicates that A is added to P *)
(* a carry out indicates that 2” mod N is added to P *)

begin
case c of

end case
0 P = P+A; 1: P = P+TI; 2: P= P+T2; 3: P= P+T3

end

begin
else

case c of

end case
1: P = P+SI; 2: P = P+s2; 3: P = P+S3

end
if carry(P) then c = 2 else c = 0

(* a carry out indicates that 2*2” mod N is added to P *)
end

if P 2 N then R = P-N else R = P

In algorithm C, the expected number of additions is (n+lO). The
addition of the 2 bit counter c is negligible as compared with the
addition of the partial sum P. Compared with the traditional algo-
rithm, algorithm C provides a speedup ratio of 2.

Conclusion: Based on the Blakley algorithm, an iterative algorithm
for the computation of A*B modulo a large modulus N (larger
than 500 bit) has been proposed. No magnitude comparisons are
required in our new algorithm. It is also shown that the new algo-
rithm has a speedup ratio of 2 compared with the conventional
algorithm.

0 IEE 1994
Electronics Letters Online No: 19941383
G. W. Chiou (Chung Shan Institute of Science and Technology, Taiwan,
Republic of China)
T. C . Yang (Department of Information Engineering, Feng Chiu
University, Taiwan, Republic of China)
T. C . Yang: Corresponding author

6 September 1994

ELECTRONICS LETTERS 24th November 1994 Vol. 30 No. 24 2017

References

1 RIVEST, R .L . SHAMIR. A., and ADLEMAN, L : ‘A method for obtaining
digital signatures and public-key cryptosystems’, Commun. ACM,
Feb. 1978, 21, (2), pp. 120-126

2 BLAKLEY. G.R.: ‘A computer algorithm for calculating the product
AB modulo M , IEEE Trans., May 1983, C-32, (5) , pp. 497-500

3 SLOAN, K.R.: ‘Comments on: ‘A computer algorithm for calculating
the product AB modulo W’, IEEE Trans., 1985, C-34, pp. 290-292

4 BAKER, P.W.: ‘Fast computation of A’B modulo N‘, Electron. Lett.,
1987, 23, (IS), pp. 79&795

Efficient IQ filter structure for use in adaptive
equalisation

D.R. Bull

Indexing terms: Adaptive filters, Egunlisers

A method is presented for reducing the implementation cost of a
complex digital fdter structure such as that used for IQ processing
in adaptive equalisation. It is shown that the number of real filter
sections required can be reduced from four to three at the expense
of an increase in external addition stag= from two to three (or
five if coefficient additions are included). The approach is
applicable to both LTE and DFE structures and results in savings
which approach 25% for most practical cases.

Introduction: Adaptive equalisation techniques are frequently
employed in digital communication systems to combat the inter-
symbol interference caused by multipath effects in the channel [I].
Numerous equalisation structures have been proposed ranging
from the simplest linear transversal structure (LTE) to decision
feedback equalisation (DFE) [2], Viterbi and neural network based
solutions [3]. DFE is generally preferred to LTE because it is
capable of reducing IS1 without significant noise enhancement in a
frequency selective fading channel. Also the complexity of the
Viterbi and neural network approaches coupled with the conver-
gence properties of certain neural network paradigms often pre-
clude their practical adoption.

In practice, most modulation schemes employ both in-phase
and quadrature components (e.g. QAM or multiphase PSK) and
therefore require an equaliser structure capable of processing com-
plex signal values. In its basic form the complex equaliser is equiv-
alent to a parallel structure comprising four real filter structures as
shown in Fig. 1.

Rete R e t f (k)}

Imk)

1mkl)

quadrature 2gc signal Re {cl)

in -phose signal

rn l m t (k) t

Fig. 1 Complex valued buseband equaliser filter structure

The computational complexity of the receiver architecture is of
paramount importance especially in mobile handsets where good
quality communications must be provided at low cost and power.
To this end it is advantageous to exploit any hardware complexity
savings which can be obtained, for example in areas such such as
the equaliser. This Letter presents an approach which enables the
complex filtering operation in an equaliser to be realised using
three real signal convolvers rather than the four shown in Fig. 1.
This results in a hardware saving for VLSI, with associated power
and cost reductions, or alternatively a throughput improvement
for programmable DSP micoprocessor solutions.

Complex multiplication: The dominant component in an equalisa-
*tion filter for I and Q signals is the complex multiplier. In the

standard form of eqn. 1, a complex multiplication operation
requires four real multiplications and two real additiodsubtrac-
tions.

(1)
u+jw = (g + j h) (r + j y)

= (P-hY) +j(h.+gy)
The complexity of performing multiplication is generally consid-
ered to be @Ez), where B represents the internal wordlength of
the process whereas that for additions or subtractions is O(B).
This observation has led a number of researchers to investigate
methods for reducing the number of real multipliers required to
compute eqn. 1, possibly at the expense of extra additionhbtrac-
tion operations. Several three-multiplier forms of the complex
multiplier have been reported in the literature. For example Preuss
in [4] gives

v + w = {s.- hy l +J{ (S+ h) (r + y 1 -gz - h Y 1 (2)

v+jw = {(s+h).-h(.+y)}+3{(s+h)z-g(z-y)} (3)

whereas Winograd [SI gives

Horrocks and Bull [6] use a generic structure to synthesise all pos-
sible three multiplier versions (12 in total) of the complex multi-
plier and classify these according to coefficient combinations.
Three examples of these are given in eqns. 4-6. It can be seen that
all structures require five additiodsubtractions, in comparison
with the two required for the four multiplier case.

v+ jw = { d z - Y) + (9- h)Y} + j t (g--h)y + h b + Y) I (4)

v+jw = b (Z + Y) -(g+h)Y}+jl(g+h)Y+h(z-Y)} (5)

v+jw = {g(z-Y)+(g-h)y}+3{(g+h)z-g(z-Y)} (6)

Fam [7] has extended this approach to the case of complex matrix
multiplication where further savings are possible.

Refdk)} Jg!gE::;:: ReicWmtcd

mm Im Iv (k)]

Fig. 2 Example three filter version of complex equaliser

Complex convolution: Although in the case of the equalisation fil-
ter we are concerned with convolution rather than multiplication,
because convolution is a linear operator, the principles outlined
above for complex multiplication still apply.

In the simplest case of an Nth order linear transversal equaliser,
the symbol estimate f(k) at the kth signalling interval is a weighted
linear combination of previous outputs { v(k)} as given in eqn. 7.

N / 2

i = - - N / Z
i(k)= c (t* (k - l) (7)

where f(k), c, and v(k) in eqn. 7 are all complex quantities. Con-
ventionally eqn. 7 will be realised either with each complex multi-
plier implemented using four real multipliers or equivalently, as a
parallel combination of four independent filter sections as given
by eqn. 8 and previously shown in Fig. 1. The computational com-
plexity of both of these solutions is identical.

Re { f(k)} +jIm { i (k) }

= (Re{v(k)}+jImto(k)}) * (Re{ck}+jIm{ck}) (8)

+ j (Re{v(k)} * Im{ck)+Im{v(k)} * Re{ck})

= (Re{v(k)} * Re{ck}-Im{v(k)} * Im{ck})

This latter approach can be modified, in the same manner as
shown previously, to yield three-filter realisations of eqn. 7. An
example of this which corresponds to eqn. 5 above is given in eqn.
9 and is shown diagrammatically in Fig. 2.

~e { i(k)} +jIm { i(k)}
= (Retck} * (Re{v(k)}+Im{v(k)})

2018 ELECTRONICS LE7TERS 24th November 1994 Vol. 30 No. 24

