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Chapter 1

Introduction

1.1 Why Information-Theoretic Security?

Most of the currently used private key systems or public key schemes base their
security on computational security. A cryptographic system is said to be computa-
tionally secure if the amount of work to break such a system significantly exceeds
the computational resources available to an adversary. For instance, if with the
best known attacking method, the adversary still has to spend many years to break
a system, even when assuming a constantly increasing computer speed, then we
consider that system to be computationally secure. However, the current compu-
tationally secure systems are not guaranteed to be secure in the future, since new,
better attacking techniques may be developed to reduce the security level of the
system.

Contrary to computational security, information-theoretic security assumes no
limit on the adversary’s computing resources. An information-theoretically se-
cure system can be safe even if the adversary has unlimited computing power.
Information-theoretic security is also called unconditional security. It is the stronger
type of security model.

In this thesis, we will study secret key agreement based on information-theoretic
security. Secret key agreement is an important subject in cryptography. It deals
with the problem how a secret key is generated and agreed to by two legitimate
users. The traditional way to implement a secret key agreement is that a user
encrypts a secret key with a public key cryptosystem, and then transmits it to the
other user over a public channel. However, public key schemes are usually based
on the assumption of intractability of some computational problem, for example
factoring larger integers or taking discrete logarithms in some field. Hence, they
are only computationally secure. On the other hand, it is shown in [71] that the
two “intractable” problems mentioned above can be solved efficiently if quantum
computers would come into being. That is why we are motivated to study secret
key agreement based on information-theoretic security. On the other hand, we point
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2 Introduction

out that systems based on information-theoretic security are less practical than
those systems based on computational security like public key cryptosystems. For
instance, no digital signature scheme is feasible with information-theoretic security.
In the context of a large open network, public key infrastructure facilitates the key
administration. However, the need to share secret keys between any two parties
in the network implies that information-theoretically secure systems can not be
practically used.

Information-theoretic security is based on information theory, which is in turn
based on probability theory and statistics. We will introduce in Section 1.2 some
basic concepts and theorems that will be used in subsequent chapters. The process
to accomplish information-theoretic secret key agreement will be described in Sec-
tion 1.3. Practical scenarios are presented in Section 1.4. We shall investigate the
scenarios throughout this thesis. Finally we will give an outline of the contents of
this thesis in Section 1.5.

1.2 Preliminaries

1.2.1 Basic Concepts in Discrete Probability Theory

A sample space Ω is a finite or countably-infinite set. An element ω of Ω is called
an elementary event, and a subset A of Ω is called an event. By |A| we denote the
cardinality of the set A. The probability function Pr maps a subset of Ω to a real
number between 0 and 1. It satisfies the following properties.

(1) 0 ≤ Pr [A] ≤ 1 for A ⊆ Ω;

(2) Pr [∅] = 0;

(3) Pr [Ω] = 1;

(4) Pr [A] ≤ Pr [B] if A ⊆ B;

(5) Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B] ;

Since Pr [A ∩ B] ≥ 0, we have Pr [A ∪ B] ≤ Pr [A] + Pr [B] . This inequality is called
the union bound. If Pr [A ∩ B] = Pr [A] · Pr [B] , the two events A and B are called
independent. The conditional probability of A given B is defined as

Pr [A|B] =
Pr [A ∩ B]

Pr [B]
,

if Pr [B] > 0.
A random variable X is a mapping from Ω to some finite set X (X is called the

alphabet), and the probability distribution PX of X is given by

Pr [X = x] =
∑

ω:X(ω)=x

Pr [ω].
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In this thesis, we will also use PX(x) to denote Pr [X = x] . The joint probability
distribution PXY of two random variables X : Ω → X and Y : Ω → Y is the
probability distribution over X × Y. This can be generalized to a finite number of
multiple random variables. The conditional probability of X given that Y = y is

Pr [X = x|Y = y] =
Pr [X = x, Y = y]

Pr [Y = y]
,

if Pr [Y = y] 6= 0. If for all x ∈ X and y ∈ Y,

Pr [X = x, Y = y] = Pr [X = x] · Pr [Y = y]

holds, X and Y are called independent.

Definition 1.2.1 When two probability distributions PX and PY are defined on the
same set, say X , the variational distance between PX and PY is defined by

dv(PX , PY ) =
1
2

∑

x∈X
|PX(x)− PY (x)|.

From now on, we assume X ∈ R . The expected value of a real-valued random
variable X is defined as

E[X] =
∑

x∈X
xPr [X = x]

and its variance is

V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2.

The expected value of a real-valued function f : X → R is defined as

EX [f(X)] =
∑

x∈X
f(x)Pr [X = x].

A real-valued function f is called convex [58] on the interval [a, b] if for all x1, x2 ∈
[a, b] and 0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

For any convex function,

f(E[X]) ≤ EX [f(X)]

holds, which is called the Jensen inequality.
Random variables X1, X2, . . . , Xn form a Markov chain if

Pr [Xi = xi|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1] = Pr [Xi = xi|Xi−1 = xi−1]

for all i > 1.
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Chebychev’s inequality shows that for any real-valued random variable X and
any t ∈ R , t > 0,

Pr [|X − E[X]| ≥ t] ≤ V ar[X]
t2

.

The following lemma was proposed in [31] (see also in [30]). It gives an upper
bound that will be frequently used in the subsequent chapters.

Lemma 1.2.2 (Kolmogorov, [31]) For any real-valued random variable X and
real number u ≥ 0, the following two inequalities hold:

Pr [X ≥ r] ≤ E[e(X−r)u] and Pr [X ≤ r] ≤ E[e(r−X)u].

If X = {1, 2, . . . , n} and Pr [X = i] =
(
n
i

)
pi(1 − p)n−i, where 0 ≤ p ≤ 1, the

random variable X is called binomially distributed with parameters n and p. We
denote this by X ∼ Binomial(n, p).

Applying Lemma 1.2.2 to a binomially distributed random variable X, we have
the following theorem.

Theorem 1.2.3 Let X ∼ Binomial(n, p) and z = r
n−r · 1−p

p , where 0 < p < 1 and
0 < r < n. Then

Pr [X ≥ r] ≤ (pz + 1− p)n

zr

for integers r satisfying r ≥ n · p, and

Pr [X ≤ r] ≤ (pz + 1− p)n

zr

for integers r satisfying r ≤ n · p.

Proof: Since Pr [X = j] =
(
n
j

)
pj(1− p)n−j , we infer from Lemma 1.2.2 that for all

real values u ≥ 0

Pr [X ≥ r] ≤ E[e(X−r)u] =
n∑

j=0

(
n

j

)
pj(1− p)n−je(j−r)u = (p · eu + (1− p))n

/eur.

Replace eu by z and define f(z) = ln
(
E[z(X−r)]

)
= ln((pz + 1− p)n

/zr). Then
f ′(z) = ((n− r)pz− (1− p)r)/(z(pz + 1− p)), and f(z) achieves its minimum when
z = r

n−r · 1−p
p . To ensure z ≥ 1 (eu ≥ 1), r ≥ n · p is required.

Similarly, for all real values u ≥ 0 and z = e−u (z ≤ 1), probability

Pr [X ≤ r] ≤ E[z(r−X)] = (pz + 1− p)n
/zr

is minimized for z = r
n−r · 1−p

p . For z = r
n−r · 1−p

p ≤ 1, r should satisfy r ≤ n · p. tu
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1.2.2 Basic Concepts in Information Theory

In this thesis, log(x) denotes the binary logarithm of x. Let X : Ω → X and
Y : Ω → Y be random variables with probability distributions PX and PY .

Definition 1.2.4 (Shannon, [69]) The Shannon entropy of a random variable X
is defined as

H(X) = −
∑

x∈X
PX(x) log PX(x) = EX [− log PX ].

Here 0 log 0 is defined as 0 since limp↓0 p log 1/p = 0. The Shannon entropy H(X)
measures the average number of bits to describe a realization of a random variable
X. In other words, it measures the average uncertainty about X. When there exists
an x with PX(x) = 1, then the uncertainty about X achieves its minimum of 0;
When X is uniformly distributed, i.e., PX(x) = 1/|X |, the uncertainty about X
achieves its maximum of log |X |. That means 0 ≤ H(X) ≤ log |X |. When X is a
binary random variable, its entropy is completely characterized by p = Pr [X = 0] ,
and h(p) = −p log p− (1− p) log(1− p) is called the binary entropy function.

Definition 1.2.5 The conditional entropy of a random variable X given a random
variable Y is defined as

H(X|Y ) = EY [H(X|Y = y)] = −
∑

y∈Y
PY (y)H(X|Y = y),

where H(X|Y = y) is the entropy determined by the probability distribution PX|Y =y.

The quantity H(X|Y ) measures the amount of uncertainty about X when Y is
known. When the probability distribution PXY is given, H(XY ) can be defined like
H(X) in Definition 1.2.4. Then H(XY ) = H(X|Y ) + H(Y ) follows.

Definition 1.2.6 The mutual information between two random variables X and Y
is defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

The quantity I(X; Y ) measures how much information Y gives about X. It is
nonnegative since H(X) ≥ H(X|Y ) and is 0 when X and Y are independent of
each other. When I(X; Y ) is arbitrarily small, we say X and Y have a negligible
correlation.

Similarly, the conditional mutual information of X and Y given Z can be defined
as

I(X;Y |Z) = H(X|Z)−H(X|Y Z) = H(Y |Z)−H(Y |XZ).

Information theory led to two fundamental developments in communication the-
ory. One is the source coding theory, which shows that the description of a stochastic
source can be compressed to a length arbitrarily close to its entropy, but further
compression results in decoding errors. The other is the channel coding theory,
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which shows that the capacity of a communication channel is the maximal rate for
which the information can be transmitted over the channel reliably.

Suppose that a random variable X is the input to a channel, which outputs a
random variable Y. Then the channel is characterized by PY |X , and its capacity
C(PY |X) is determined by the maximal value of I(X; Y ), taken over all PX , i.e.,

C(PY |X) = max
PX

I(X;Y ).

Besides Shannon entropy, there are other entropy measures that apply to dif-
ferent contexts. The following two entropies are useful for the so-called privacy
amplification process to measure how many secret bits can be generated (we will
discuss privacy amplification in detail in Chapter 3).

Definition 1.2.7 Let X be a random variable with distribution PX . The collision
probability is given by

Pc(X) =
∑

x∈X
PX(x)2.

The Rényi entropy of order 2, Rényi entropy for short, is defined as minus the 2-log
of the collision probability of X, i.e.,

H2(X) = − log Pc(X).

The min-entropy of X is defined as

H∞(X) = − log max
x∈X

(PX(x)).

From Jensen’s inequality, we have

H2(X) = − log Pc(X) = − log EX [PX ] ≤ −EX [log PX ] = H(X).

We also have

H2(X) ≥ − log
∑

x∈X
(PX(x) max

x∈X
(PX(x))) = − log max

x∈X
(PX(x)) = H∞(X).

Therefore,
H∞(X) ≤ H2(X) ≤ H(X).

The equalities hold when X is uniformly distributed.
Similarly, Hα(X|Y ) can be defined for α = {2,∞}.

1.3 Information-Theoretic Secret Key Agreement

Another fundamental result of information theory is the necessary condition for the
so-called perfect secrecy. Before we introduce the definition of perfect secrecy and
its necessary condition, Shannon’s classical model of secrecy systems is described.
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Suppose that there are two legitimate users, namely Alice and Bob, who want
to communicate with each other secretly. They are able to use an insecure channel,
and Eve can see every message transmitted over the channel. A secret key K is
shared between Alice and Bob, and Eve knows nothing about K. Let M be the
plaintext that Alice wants to transmit to Bob over the insecure channel. Using K,
Alice first encrypts M to a ciphertext C, then sends it to Bob over the insecure
channel. After Bob gets C, he decrypts it using K to get M.

A cryptosystem is called perfectly-secret, if I(M ; C) = 0, i.e., M and C are
statistically independent. In other words, Eve gains no extra information about M
after she gets C.

A cryptosystem is called uniquely decodable, if a unique plaintext M can be
determined from the ciphertext C and the key K, i.e., H(M |CK) = 0.

Theorem 1.3.1 (Shannon, [70]) For every perfectly-secret uniquely decodable cryp-
tosystem, H(K) ≥ H(M) holds.

Proof: H(K) ≥ H(K|C) = H(K|C) + H(M |CK) = H(MK|C)
= H(M |C) + H(K|MC) ≥ H(M |C).
Hence I(M ; C) = H(M)−H(M |C) ≥ H(M)−H(K). The fact that I(M ; C) = 0

in a perfectly-secret system leads to H(K) ≥ H(M). tu
An example for perfectly-secret cryptosystems is the one-time pad, or Vernam

cipher. If the plaintext M = (M1,M2, . . . ,Mn) is an n-bit string and the key
K = (K1, K2, . . . , Kn) is uniformly distributed over {0, 1}n, then the ciphertext
C = (C1, C2, . . . , Cn) is determined by Ci = Mi ⊕ Ki, i = 1, 2, . . . , n. It is easy
to see that H(K) = n, H(K|MC) = 0, I(M ;K) = 0, and I(K; C|M) = n, which
results in I(M ;C) = 0.

Theorem 1.3.1 shows that perfect secrecy requires that the length of the secret
key is at least as long as that of the plaintext. Perfect secrecy seems to be impossible
unless Alice and Bob share a secret key beforehand.

However, if Shannon’s model for secrecy systems is slightly changed, perfect
secrecy is achievable without a secret key between Alice and Bob. An important
observation is that noise exists in any communication system, so Eve may not re-
ceive an exact copy of what Alice sends to Bob. A. Wyner [75] is the first researcher
who investigated the problem of transmitting secret messages over noisy channels.
In [75], a discrete memoryless channel, characterized by PY |X , was considered con-
necting sender Alice and receiver Bob, and another discrete memoryless channel,
characterized by PZ|Y , connecting Bob with the adversary Eve. Suppose that Alice
sends a message X, Bob gets Y while Eve obtains Z, then X → Y → Z is a Markov
chain. Later, I. Csiszár and J. Körner [15] generalized Wyner’s model by assum-
ing that Alice sends a message to Bob and Eve through two discrete memoryless
channels, which are characterized by PY Z|X . Then Wyner’s model of concatenation
of channels becomes a special case, namely PY Z|X = PY |X · PZ|Y , of Csiszár’s and
Körner’s broadcast channels. It was shown that when Eve’s channel is noisier than
Bob’s, Alice can always transmit secret information at some rate to Bob, i.e., the
advantage between Alice and Bob can always be converted to secrecy. However,
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when Eve’s channel is superior to Bob’s, no secrecy is achievable at all. In [43],
Maurer further perfected the model by adding a public channel between Alice and
Bob so that interactive communication is possible between them. If the public chan-
nel is authentic, i.e., the transmissions over the public channel cannot be modified or
suppressed by Eve, it was proved that secrecy can be achieved even if Eve’s channel
is better than Bob’s. Below we give Maurer’s model of secrecy systems.

(1) Alice, Bob, and Eve have access to

(a) noisy communication channel(s);

(b) a public, insecure, and error-free channel.

(2) Denote by C ′ the information that Eve gets about the plaintext M. A negligible
correlation between C ′ and M is allowed.

Any message, when transmitted, suffers from noise of the communication chan-
nel. This implies that neither Bob nor Eve will always get an exact copy of what
Alice sends to them. That is why we use C ′ instead of C in this model to denote
Eve’s information about M.

The assumption of a public channel is also reasonable since it is easy to obtain
such a channel. On the other hand, using error correction techniques, one can
assume that any message over the public channel is error-free.

The requirement for I(C;M) to be 0 in Shannon’s model is too strict to achieve
information-theoretic security. In Maurer’s model, a small correlation between C ′

and M is allowed. This can be described as I(C ′; M) < ε, i.e, H(M |C ′) = H(M)−ε,
for some ε > 0. When ε is very small, we call M highly secret.

Based on the above modified model, the notion of information-theoretic secret
key agreement was proposed in [43]. After a secret key is agreed to between Alice
and Bob, a one-time pad can be used to transmit plaintexts with perfect secrecy.

An information-theoretic secret key agreement can be described as follows.

(1) Initialization phase: through noisy communication channels, Alice, Bob, and
Eve obtain random variables X, Y, and Z, respectively, which are jointly dis-
tributed according to some probability distribution PXY Z .

(2) Communication phase: Alice and Bob exchange information over a public
channel. This is known as the public discussion and can be further divided
into three phases:

(a) During the advantage distillation phase, Alice and Bob exchange informa-
tion, denoted by a random variable U. Alice gets a new random variable
A from X and U. Similarly, Bob obtains a new random variable B from Y
and U. This should result in the situation that Bob has more information
about Alice’s random variable A than Eve has, or Alice knows more about
Bob’s random variable B than Eve does. In other words, H(A|X,U) = 0,
H(B|Y, U) = 0, and H(A|B) < H(A|Z, U) or H(B|A) < H(B|Z,U).
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(b) Alice and Bob exchange some redundant information to correct the dis-
crepancies between their random variables during the information rec-
onciliation phase. Denote the redundant information by V. Using V,
Alice and Bob arrive at a common string S, but Eve still has some un-
certainty about S. In formula, H(S|A, V ) = 0, H(S|B, V ) = 0, and
H(S|Z, U, V ) > 0.

(c) Privacy amplification enables Alice and Bob to generate a highly secret
string S′ from the common but partially secret S. The way to accom-
plish privacy amplification is that Alice chooses a proper hash function,
denoted by G, and sends it to Bob. Then they compute the hash value
S′ = G(S), hoping that H(S′|G,Z, U, V ) = H(S′)− ε for a small ε.

(3) Decision phase: Alice and Bob both either accept or reject the protocol exe-
cution, depending on whether or not they believe S′ = G(S) can serve as a
secret key.

We will assume in the rest of the thesis that Alice and Bob are honest players
and always correctly execute the protocol.

Definition 1.3.2 A (PXY Z , r, ε) secret key agreement protocol means that

• the three correlated random variables X, Y, and Z, which Alice, Bob, and Eve
get in the initialization phase, have probability distribution PXY Z .

• Alice and Bob generate an r-bit secret key S′, about which Eve’s informa-
tion is less than ε. In other words, H(S′|X, W ) = 0, H(S′|Y, W ) = 0, and
H(S′|Z,W ) = H(S′)− ε, where the random variable W denotes all the infor-
mation that Alice and Bob exchanged during the communication phase.

If we independently repeat the scenario of generating X, Y and Z during the ini-
tialization phase, we arrive at the so-called secret-key rate (see [43, 45, 64]). It allows
us to measure the ability of this scenario to generate secret keys asymptotically.

Definition 1.3.3 (Wolf, [64]) Suppose that Alice, Bob, and Eve get X = (X1, X2,
. . . , Xn), Y = (Y1, Y2, . . . , Yn), resp. Z = (Z1, Z2, . . . , Zn) during the initialization
phase. Let PXY Z =

∏n
i=1 PXiYiZi . We use X, Y, and Z to represent Xi, Yi, and

Zi, since the joint probability distributions of Xi, Yi, and Zi are the same for i =
1, 2, . . . , n. The secret-key rate of X and Y with respect to Z, denoted by S(X; Y ||Z),
is defined as the largest nonnegative real number R such that for every ε > 0 and
sufficiently large n = n(ε), there exists a (PXY Z , (R− ε)n, ε) protocol for secret key
agreement. More precisely, Alice and Bob get SA and SB respectively, which satisfy

H(SA)/n ≥ R− ε,

Pr [SA 6= SB ] ≤ ε,

I(SA;ZW ) ≤ ε,

H(SA) ≥ log |SA| − ε.

(Recall that W denotes the public information during the communication phase)
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It is easy to see that S(X;Y ||Z) is related to PXY Z . In [43], the following upper
bound and lower bound for S(X;Y ||Z) were proved:

S(X; Y ||Z) ≤ min{I(X;Y ), I(X;Y |Z)}, (1.1)

S(X; Y ||Z) ≥ max {I(X; Y )− I(X;Z), I(X; Y )− I(Y ; Z)} . (1.2)

If Eve sends a random variable Z over a channel, which is characterized by PZ|Z ,

and gets Z, we have S(X; Y ||Z) ≤ S(X; Y ||Z) ≤ I(X;Y |Z).
To state an upper bound for S(X; Y ||Z), the notion of intrinsic conditional

mutual information (intrinsic information for short) is needed (see [54, 53]).

Definition 1.3.4 For a distribution PXY Z , the intrinsic conditional mutual infor-
mation between X and Y given Z, denoted by I(X; Y ↓ Z), is defined as the infimum
of I(X; Y |Z), taken over all possible conditional distributions PZ|Z . Here Z is the
output of a channel characterized by PZ|Z . In formula,

I(X; Y ↓ Z) = inf

{
I(X; Y |Z) : PXY Z =

∑

z∈Z
PXY Z · PZ|Z

}
.

Note that Z is only related to Z, hence XY → Z → Z is a Markov chain. The
following inequalities hold.

I(X; Y ↓ Z) ≤ I(X;Y ↓ Z),

I(X; Y ↓ Z) ≤ I(X; Y |Z),

I(X; Y ↓ Z) ≤ I(X; Y ).

The definition of the intrinsic information and Inequality (1.1) lead to the fol-
lowing theorem.

Theorem 1.3.5 (Maurer, [53]) For arbitrary random variables X, Y, and Z,

S(X; Y ||Z) ≤ I(X; Y ↓ Z). (1.3)

1.4 Practical Scenarios for Secret Key Agreement

Throughout this thesis (except for Chapter 5), we will assume the so-called satellite
scenario in the initialization phase of information-theoretic secret key agreement.

Suppose that a satellite broadcasts random binary bits U = (U1, U2, . . . , UN )
with low signal power. Alice, Bob, and Eve receive X = (X1, X2, . . . , XN ), Y =
(Y1, Y2, . . . , YN ), and Z = (Z1, Z2, . . . , ZN ) through three binary symmetric channels
with respective bit error probabilities pA, pB , and pE . We shall assume that the
three channels are independent of each other (if the channels have a certain amount
of dependency they may sometimes still be transformed into independent ones, see
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BSC(pA) BSC(pB)

BSC(pE)

Alice Bob¾ -U
X Y

Z ?
Eve

Public channel

Figure 1.1: The satellite scenario

[43] for examples). Suppose that Alice and Bob are connected by a public channel,
i.e., Eve can see any message between them (passive attack). The public channel
can be either an authentic one or a non-authentic one. Authentic channels refers
to the channels that physically unjammable. For instance, the voice channel or
the newspapers. With these channels, Eve cannot modify or introduce fraudulent
messages (active attack) without detection . However, such authentical channels are
far from practical when Alice and Bob need to interactively exchange a large amount
of data. With non-authentic channels, Eve can implement active attacks. Then the
cryptographic techniques should be used to convert a non-authentic channel into a
conceptually authentic channel.

This scenario uses models of binary discrete memoryless sources and channels,
and such models are relatively easy to analyze and have often been considered
in information theory. With this scenario for PXY Z , Alice and Bob implement
advantage distillation, information reconciliation, and privacy amplification over
the public channel to arrive at a secret key. This scenario was first proposed by
Maurer et al. (see [43]). A considerable amount of work for advantage distillation
and information reconciliation has been done based on this scenario because of its
simplicity and practicality [26, 23, 18, 19, 17].

Another practical scenario is that Alice uses a quantum channel to transmit the
polarization information of photons to Bob. This process is also called a quantum
transmission session. A quantum channel can be considered as a BSC channel con-
necting Alice and Bob, but the bit error probability is controlled by Eve, since the
uncertainty principle of quantum mechanics ensures that Eve’s eavesdropping intro-
duces errors to what Bob receives. With a quantum transmission session serving as
the initialization phase, quantum key agreement can achieve unconditional security.
The only difference from information-theoretic secret key agreement is that there
is no advantage distillation phase in quantum key agreement. The reason is that
Alice and Bob only use those quantum transmission sessions, in which they have
an advantage over Eve, to distill a secret key. Quantum cryptography was devel-
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oped by Bennett et al. in [2]. How quantum transmission works will be discussed in
Chapter 5.

1.5 Outline of the Thesis

In this thesis, we will answer the following questions:

• Given an authentic, public channel, what is the optimal way to implement
advantage distillation and information reconciliation? In Chapter 2, we will
first introduce the protocols proposed up to now for advantage distillation
and information reconciliation. Then a protocol that combines advantage
distillation and information reconciliation is presented so that Eve gets as
little information as possible.

• When the public channel is non-authentic, the communications between Alice
and Bob are vulnerable to Eve’s active attacks, i.e., Eve may introduce fraud-
ulent messages or modify Alice’s or Bob’s messages over the public channel.
In the context of privacy amplification, Alice and Bob share common, though
partially secret, strings. If a common string is used as an authentication key,
what is the upper bound on Eve’s information about the common string so
that authentication is possible? How do Alice and Bob use the common string
to authenticate messages during the privacy amplification phase? These ques-
tions will be answered in Chapter 3.

• Privacy amplification is a special case of secret key agreement. In the general
context of secret key agreement, Alice and Bob only have access to some
correlated strings. How do Alice and Bob in this case achieve authenticity to
thwart Eve’s active attacks on their communications over the public channel?
In Chapter 4, we will study how Alice and Bob use their correlated strings
obtained during the initialization phase, for authentication. When there is
some advantage between Alice and Bob over Eve, Alice and Bob can use this
advantage to accomplish authenticity.

• Just like in the satellite scenario, quantum key agreement can achieve un-
conditional security. However, a quantum channel provides another scenario,
namely the quantum transmission session. The information Eve gets during
a quantum transmission session is closely related to the length of the final
secret key generated by Alice and Bob. How much information does Eve ob-
tain during a quantum transmission session? In Chapter 5, we will study how
to use some known information, such as the number of errors in Bob’s quan-
tum bits, the density of the light pulses, and so on, to derive a probabilistic
upper bound on the amount of information Eve can learn from a quantum
transmission session.



Chapter 2

Combining Advantage
Distillation and Information
Reconciliation

2.1 Introduction

We consider the so-called satellite scenario (see Section 1.4) in the initialization
phase of an information-theoretic secret key agreement protocol. A satellite broad-
casts random binary bits U = (U1, U2, . . . , UN ) with low signal power. Alice,
Bob, and Eve receive A = (A1, A2, . . . , AN ), B = (B1, B2, . . . , BN ) and E =
(E1, E2, . . . , EN ) through three independent, binary symmetric channels with re-
spective bit error probabilities pA, pB , and pE . After that, Alice and Bob begin
public discussions over the public channel. In this chapter, we assume that the pub-
lic channel connecting Alice and Bob is authentic. Eve can see any message between
them, but she cannot modify or introduce fraudulent messages without detection.
The public discussion consists of three phases, namely, advantage distillation (AD),
information reconciliation (IR), and privacy amplification (PA).

This chapter focuses on practical protocols for advantage distillation and infor-
mation reconciliation for this specific “realistic” satellite scenario. Since we want to
discuss advantage distillation, it is necessary to assume that Eve has better equip-
ment than the legitimate partners, i.e., pA > pE and pB > pE (otherwise Alice and
Bob already have an advantage).

As defined in the previous chapter, the so-called secret-key rate of A and B with
respect to E, denoted by S(A; B||E) (see Definition 1.3.3), is the maximal rate at
which Alice and Bob can generate a highly secret key by communication over the
insecure, public channel, i.e., the fraction of secret bits that can be generated per
realization of A, B, and E.

13
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According to (1.2), we have

S(A; B||E) ≥ max {I(A;B)− I(A;E), I(B;A)− I(B;E)} . (2.1)

This lower bound is not tight, but it does give a sufficient condition for the existence
of an information-theoretic secret key agreement protocol. In the next section, we
will show how Alice and Bob can employ the authenticity of the public channel
to gain an advantage over Eve, i.e., how they start with I(A;B) ≤ I(A; E) and
I(A; B) ≤ I(B;E) but arrive at the situation either I(A; B|C) > I(A; E|C) or
I(A; B|C) > I(B;E|C) after some communication, denoted by the random variable
C, over the public channel.

All known protocols for advantage distillation and information reconciliation
will be presented in Section 2.2 and Section 2.3 respectively. We will also propose a
general protocol in Section 2.4 to implement both advantage distillation and infor-
mation reconciliation. The analysis for the proposed protocol and the corresponding
simulation results of the protocol will be presented in Section 2.5. In Section 2.6, the
relationship between our protocol and other known protocols will also be discussed.
The conclusion of this chapter will be given in Section 2.7.

This chapter is mainly based on [36, 38].

2.2 Advantage Distillation Protocols

This section will describe the known advantage distillation protocols based on the
aforementioned scenario.

2.2.1 The Repetition Code Protocol

The repetition code protocol is introduced in [43].
Every time Alice wants to transmit an information bit R to Bob, she generates

the N -bit repetition codeword R = (R,R, . . . , R), and transmits R + A = (R +
A1, R+A2, . . . , R+AN ) over the public channel to Bob. Bob computes R+A+B =
(R+A1+B1, R+A2+B2, . . . , R+AN +BN ). He accepts R if and only if it is exactly
equal to either the all-zero codeword 0, in which cases he assumes that R = 0, or the
all-one codeword 1, in which cases he assumes that R = 1. He tells Alice through
the public channel whether he has accepted R.

The initial bit error probability between Alice’s and Bob’s strings A and B is
ε0 = pA + pB − 2pApB . According to the protocol, Alice and Bob accept a bit
only when A ⊕ B = 0 or 1, which occurs with probability εN

0 + (1 − ε0)N . With
probability 1 − εN

0 − (1 − ε0)N they get nothing. In other words, with probability
εN
0 +(1− ε0)N they distill 1 bit from their N -bit initial strings. The a posteriori bit

error probability between their distilled bits is given by

β =
εN
0

εN
0 + (1− ε0)N

. (2.2)
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To compute Eve’s expected error probability we define

qA = 1− pA;
qB = 1− pB ;
qE = 1− pE ;

α00 = qAqBqE + pApBpE ;
α01 = qAqBpE + pApBqE ;
α10 = qApBqE + pAqBpE ;
α11 = qApBpE + pAqBqE .

(2.3)

When Alice transmits R+A to Bob through the public channel, Eve intercepts it
and she can calculate R+A+E using her own string E. Let pw denote the probability
that the calculated vector is a particular given vector of Hamming weight w, 0 ≤
w ≤ N, given that Bob accepts a bit afterwards. Then pw = αN−w

00 αw
01 + αN−w

10 αw
11.

Eve’s best strategy is to guess R = 0 when the weight of R + A + E, is (strictly)
less than dN/2e and R = 1 otherwise. Therefore, Eve’s expected error probability
with respect to Alice’s distilled bits is given by

γ =
1

εN
0 + (1− ε0)N

N∑

w=dN/2e

(
N
w

)
pw. (2.4)

Now we discuss the lower bound on the secret-key rate determined by the repe-
tition code protocol. After the protocol, the mutual information between Alice and
Bob is IB = 1− h(β) while that between Alice and Eve is given by

IE =
N∑

w=0

(
N
w

)
pw

εN
0 + (1− ε0)N

[
1− h

(
pw

pw + pN−w

)]
.

It follows from (2.1) that the secret-key rate satisfies

S(A;B||E) ≥ r · (IB − IE), (2.5)

where the coefficient r =
[
(1− qAqB − pApB)N + (qAqB + pApB)N

]
/N reflects the

reduction in bits for Alice and Bob (they go from N bits to 1 only when a word in
the repetition code is received). For N large enough, IB will be larger than IE , so
β will be smaller than γ and the secret-key rate S(A;B||E) is strictly positive as
long as pE > 0.

Since r is an important parameter in the evaluation of the performance of a
particular advantage distillation or information reconciliation protocol, we give a
formal definition of it.

Definition 2.2.1 Let n be the length of Alice’s and Bob’s original strings, where
Bob’s string is obtained from a transmission of Alice’s string over a BSC with error
probability p. Let Q be the side information that Alice and Bob exchanged over
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the public channel during an AD/IR protocol. The protocol ends with Alice having
obtained string A′ and Bob B′.

Let β be the a posteriori bit error probability between A′ and B′, and let I(A′|Q)
denote Eve’s information about A′ knowing Q. The information rate of the protocol
is given by

Rβ(p) = 1− I(A′|Q)/n.

If Alice and Bob discard the bits from their strings needed to compensate for
the information leaked to Eve because of their discussion over the public channel,
their strings have shrunk after the reconciliation protocol. Thus, the information
rate is just the length of the final reconciled strings divided by the length of original
strings.

Without loss of generality, we may assume that it is always Bob who corrects
the differences between his string and Alice’s string.

The aim of AD/IR protocols is to let p approach to 0, while keeping R0(p) as
large as possible. The higher value of R0(p) the protocol can achieve, the better
the protocol. The amount of information exchanged over the public channel for
distillation/reconciliation is lower bounded by H(A|B) = n · h(p), where h(p) =
−p log(p) − (1 − p) log(1 − p) denotes the binary entropy function. Therefore, an
upper bound for R0(p) is 1 − h(p). Recall that log is used to denote the binary
logarithm.

Note that the probability that Ai 6= Bi, 1 ≤ i ≤ n, is given by ε0, so the
information rate of the repetition code protocol is given by

Rβ(ε0) = r =
εN
0 + (1− ε0)N

N
, (2.6)

where the value of N follows from (2.2) and the value of β.

2.2.2 The Iteration Protocols

The repetition code protocol has the property that when N increases, β decreases
faster than γ. Hence, there exists an N0 such that β < γ when N ≥ N0. However,
when N increases, Rβ(ε0) decreases exponentially in N. The repetition code protocol
turns out to be extremely inefficient in terms of information rate. This case occurs
when pE is much smaller than pA and pB , since a large codeword length N has
to be employed by Alice and Bob to gain an advantage over Eve. To improve the
efficiency of the protocol, Maurer proposed to use iteration protocols in [42]. An
iteration protocol consists of several rounds, and each round uses a repetition code
protocol but with only shorter codeword length b. Alice’s and Bob’s strings shrink
round after round, but their strings become more and more reliable. It was shown
in [42] that a k-round iteration protocol with code length b corresponds to a N = bk

repetition code protocol, except that the iteration protocol comes up with a larger
information rate than the iteration protocol. We give the following formal definition
of an iteration protocol.
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Definition 2.2.2 A k-round iteration protocol with code length b for advantage dis-
tillation, a [b, k] iteration protocol for short, is a protocol that

• consists of k rounds and

• a repetition code protocol of length b is employed in each round, where the
resulting bits serve as input for the next round.

According to the above definition, a repetition code protocol of length N is just
an [N, 1] iteration protocol.

Let us go back to the general iteration protocol. The following theorem states
the performance of a general [b, k] iteration protocol.

Theorem 2.2.3 For the scenario in Section 1.4, let ε0 = pA +pB−2pA ·pB denote
the initial bit error probability, then a [b, k] iteration protocol satisfies the following
properties:

(1) Bob gets a new distilled string of bit error probability

β =
εbk

0

εbk

0 + (1− ε0)bk
, (2.7)

and the mutual information between each bit of Alice’s new string and the
corresponding one of Bob’s new string is

IB = 1− h(β); (2.8)

(2) with her best strategy, Eve can get a new string with bit error probability

γ =
1

εbk

0 + (1− ε0)bk

bk∑

w=dbk/2e

(
bk

w

)
pw, (2.9)

with pw = αbk−w
00 αw

01 + αbk−w
10 αw

11, where α00, α01, α10, and α11 are defined in
(2.3), and the mutual information between each bit of Alice’s new string and
that of Eve’s new string is

IE =
bk∑

w=0

(
bk

w

)
pw

εbk

0 + (1− ε0)bk

[
1− h

(
pw

pw + pbk−w

)]
; (2.10)

(3) the information rate of the protocol is determined by

Rβ(ε0) =
1
bk

εbk

0 + (1− ε0)bk

∏k−1
i=1

(
εbi

0 + (1− ε0)bi
)b−1

, (2.11)

and the secret-key rate between Alice and Bob with respect to Eve satisfies

S(A;B||E) ≥ Rβ(ε0) · (IB − IE). (2.12)
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Proof: In a [b, k] iteration protocol, for every bit that Alice and Bob get after a
round, b bits from the previous round are used to transmit the bit. Therefore, for
each bit obtained after k rounds, a bk-bit substring in the original string can be found
related to this bit. For Alice and Bob to accept this bit, the error vector between
the two bk-bit strings should be a repetition codeword, i.e., the 1 vector or the 0
vector. That means that a [b, k] iteration protocol corresponds to a repetition code
protocol of length bk (except that information rates are different), which explains
the first two items in the theorem.

Now we explain how to determine the information rate Rβ(ε0) for the iteration
protocol. After the first round, only a fraction εb

0 + (1 − ε0)b of the original
string is used to get a new shorter string (shrinking by 1/b) which has bit error
rate ε1 = εb

0
εb
0+(1−ε0)b . This applies to every round. In round i, a fraction

εb
i−1 + (1 − εi−1)b of the string obtained in round i − 1 is used to get a new

1/b shorter string of bit error rate εi = εb
i−1

εb
i−1+(1−εi−1)b = εbi

0

εbi
0 +(1−ε0)bi . Hence,

the information rate is Rβ(ε0) = 1
bk

∏k−1
i=0

[
εb
i + (1− εi)b

]
, and we get (2.11) by

substituting εi = εbi

0

εbi
0 +(1−ε0)bi . According to the lower bound on the secret-key rate

S(A; B||E) ≥ I(A;B)− I(A;E), Equation (2.12) follows. tu
In such an iteration protocol, both the a posteriori bit error probability β between

Alice’s and Bob’s distilled string and the information rate Rβ(ε0) are related to
the code length b and the number of rounds k. Therefore, we use a new symbol
Rβ(ε0)[b, k] to denote the information rate. The following statement holds:

Rβ′(ε0)[b, k + 1] ≈ Rβ(ε0)[b, k]
b

(2.13)

if ε0 is small or k is large, where

β′ =
βb

βb + (1− β)b
.

To prove the above statement, it is sufficient, according to (2.11), to prove that

εbk+1

0 + (1− ε0)bk+1

∏k
i=1

(
εbi

0 + (1− ε0)bi
)b−1

≈ εbk

0 + (1− ε0)bk

∏k−1
i=1

(
εbi

0 + (1− ε0)bi
)b−1

,

i.e.,

εbk+1

0 + (1− ε0)bk+1 ≈
[
εbk

0 + (1− ε0)bk
]b

.

The above formula holds when ε0 is very small or k is large (which implies that bk

is very large), since εbk

0 ≈ 0.
A [b, k + 1] iteration protocol has one round more than a [b, k] protocol, and

increases the reliability of Alice’s and Bob’s distilled strings with a smaller β′ than
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β, while the price is that the information rate Rβ′(ε0)[b, k+1] is reduced to a fraction
1/b of Rβ(ε0)[b, k].

If ε0 is small, (2.13) holds even when k is small. In this case, we get

Rβ(ε0)[b, k] ≈ εb
0 + (1− ε0)b

bk
(2.14)

from (2.13) and Rβ′′(ε0)[b, 1] =
[
εb
0 + (1− ε0)b

]
/b where β′′ = ε20/(ε20 + (1− ε0)2).

We note that the [2, k] iteration protocol is the most efficient one, in terms of
information rate, among all [b, k] iteration protocols.

Let b1, k1 and b2, k2 be the parameters of two iteration protocols respectively.
Suppose that 2 ≤ b1 < b2 and bk1

1 = bk2
2 . According to Theorem 2.2.3, the two

iteration protocols have the same performance, for example β = β
b

k1
1

= β
b

k2
2

, except
for the information rates.

If ε0 is small, from (2.14) we get that Rβ(ε0)[b1, k1] ≈
(
εb1
0 + (1− ε0)b1

)
/bk1

1 and

Rβ(ε0)[b2, k2] ≈
(
εb2
0 + (1− ε0)b2

)
/bk2

2 . It is easy to see that

Rβ(ε0)[b1, k1] > Rβ(ε0)[b2, k2], (2.15)

since b1 < b2.
On the other hand, even if ε0 is not small, Figure 2.2 shows that (2.15) still holds.

Therefore, we conjecture that [2, k] iteration protocol is the most efficient iteration
protocol. We show the information rate Rβ(ε0)[b, k] as a function of N = bk for
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Figure 2.1: The information rate Rβ(ε0)[b, k] as a function of N = bk for ε0 = 0.1
for a [b, k] iteration protocol

ε0 = 0.1 (a small value) in Figure 2.1 and for ε0 = 0.4 (a large value) in Figure 2.2.
It is easy to see that the curves for different b’s are almost straight lines with slopes
log10 b because log10 Rβ(ε0)[b, k]− log10 Rβ(ε0)[b, k + 1] ≈ log10 b.
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Figure 2.2: The information rate Rβ(ε0)[b, k] as a function of N = bk for ε0 = 0.4
for a [b, k] iteration protocol

2.2.3 The Bit Pair Iteration Protocol

The bit pair iteration protocol is proposed by Gander et al. in [26] (see also [8]). It
consists of a number of rounds and operates on the binary strings of Alice and Bob.
In each round, Alice and Bob perform the following steps:

They both divide their strings into pairs of bits.

Round i: Alice sends Bob the parity of each of her bit pairs over the public
channel. Bob computes the parity bit of each of his bit pairs, and compares it to
the parity bit received from Alice.

If the parities match, Bob announces OK on the public channel. The first bit of
the pair is discarded to compensate for the information that leaked to Eve with the
parity bit. The second bit of the pair is retained for the next round.

If the parities differ, the bit pair is discarded entirely.
The retained bits (those not discarded) are taken together and form the input

bit string for the next round.

In each round of the protocol, Alice and Bob accept a bit if and only if their
parities for a pair of bits coincides with each other. In that case, the error pattern
between the two pairs is either (0,0) or (1,1). It is easy to see that after round
i, Alice and Bob accept a bit with probability ε2i−1 + (1− εi−1)2, and Bob’s bit

error probability will decrease from εi−1 to εi = ε2i−1

ε2i−1+(1−εi−1)2
. Therefore, a k-

round bit pair iteration protocol is just a [2, k] iteration protocol with information
rate Rβ(ε0)[2, k]. It has the same effect as long repetition code protocols but with
a much higher efficiency in terms of information rate. Round after round, Eve’s
advantage is reduced even though Eve has more information about Alice’s bits than
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Bob does in the first few rounds.
The lower bound on the secret-key rate derived in [26] is given by

S(X;Y ||Z) ≥ Rβ(ε0)[2, k] · (IB − IE) , (2.16)

where IB and IE have the same value as in (2.5), but

Rβ(ε0)[2, k] =
1
2k

ε2
k

0 + (1− ε0)2
k

∏k−1
i=1

(
ε2

i

0 + (1− ε0)2
i
) ≈ ε20 + (1− ε0)2

2k
. (2.17)

Recall that the information rate of the repetition code protocol of length 2k

is Rβ(ε0)[2k, 1] = ε2
k

0 +(1−ε0)
2k

2k . We see that Rβ(ε0)[2, k] >> Rβ(ε0)[2k, 1]. As we
claimed in the previous subsection, the [2, k] iteration protocol, thus the bit pair
iteration protocol, is the most efficient iteration protocol.

2.3 Known Practical Information Reconciliation Protocols

Information reconciliation takes place after advantage distillation in information-
theoretic secret key agreement, i.e, it is performed after Alice and Bob have gained
an advantage over Eve in terms of mutual information between their strings. The
need for information reconciliation first showed up in the practical quantum key
agreement protocol [2]. During this protocol, Alice and Bob first use a quantum
channel to transmit quantum bits. Possible eavesdropping by Eve and natural noise
inherent to practical quantum facilities (such as a malfunction of the photon detector
or system misalignment), cause discrepancies (errors) between Alice’s and Bob’s
quantum bits. Alice and Bob need to reconcile their quantum bits over an authentic
public channel to eliminate all the discrepancies before they use privacy amplification
techniques to distill a secret key.

The usual model of information reconciliation is that two channels, a binary
symmetric channel (BSC) with bit error probability p and a public channel, connect
Alice and Bob. Alice has a binary string A, which she transmits over the BSC
channel to Bob who receives it as B. Alice and Bob then use the public channel to
exchange some information to reconcile their strings. All information sent over the
public channel can be seen by Eve. The more Eve knows, the fewer secret bits Alice
and Bob can distill from the reconciled common string in the subsequent privacy
amplification phase. Therefore, the aim of information reconciliation is to remove
all the errors in B while reducing the information leakage to Eve.

To evaluate the performance of information reconciliation protocols, we can use
the information rate R0(p) defined in Section 2.2. As we showed in Subsection 2.2.1,
the upper bound for R0(p) is 1 − h(p). Here we assume that A and B have length
n, and h(p) = −p log(p)− (1− p) log(1− p) is the binary entropy function.

In [2], Bennett et al. discuss for the first time a reconciliation protocol that
proceeds after a quantum transmission protocol. We will refer to it as the BBBSS
protocol. In this protocol, Alice and Bob first randomly permute the bit positions
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in their strings and partition them into blocks. For each block they compute and
compare the parities. If Alice’s and Bob’s parity check bits corresponding to the
same block are different, a binary search is performed to locate an error in this block
(we will explain the procedure of binary search in Subsection 2.3.2). They repeat
this procedure with increasing block lengths until all errors are removed. However,
no rule was suggested to determine the block lengths.

Yamazaki et al. [76] and van Dijk [18] independently developed the same rule
to determine the block length. The idea of the rule is to minimize the number of
parities Alice and Bob have to exchange over the public channel to remove an error.
Applying this rule to the BBBSS protocol, Yamazaki presented an optimized BBBSS
protocol in [76]. We denote this protocol as BBBSSopt. This protocol improves upon
the information rate of the BBBSS protocol.

Brassard et al. proposed another practical protocol, named Cascade [7], which
is performed in several passes. The block lengths are chosen such that, from Pass 2
onwards, at least half of the errors are corrected per pass. Furthermore, the error
correction in some Pass i involves the error corrections in other passes. Cascade
achieves a higher information rate than the BBBSSopt protocol when p is small, but
a lower rate for larger p.

In [73], Sugimoto and Yamazaki gave an optimized version of Cascade by choos-
ing block lengths for each pass in a different way, and a slight improvement on it
was given in [77]. We call their protocol that was presented in [77] optimized Cas-
cade, and denote it by Cascadeopt. According to their simulation results, Cascadeopt

achieves the highest R0(p) among all known practical information reconciliation pro-
tocols. We will reprint simulation results for all reconciliation protocols mentioned
above in Table 2.1 in Subsection 2.3.5.

In the following subsections, we will discuss each protocol mentioned above in
more detail. The framework of each protocol is described first, and the rules for
selecting the block length will be presented afterwards. The ideas of these proto-
cols will help us to develop our own general protocol which will be presented in
Section 2.4.

First we will introduce the BICONF primitive since it often serves as a last major
primitive in reconciliation protocols.

2.3.1 The BICONF Primitive

The BICONF primitive was first introduced in [2] (it is a combination of two prim-
itives named BINARY and CONFIRM, see [7] for more details). It was used as
a primitive in [7, 76, 73, 77]. It deals with the case when there are only a small
number of errors or no errors left in Bob’s string (Alice and Bob may not know that
they are in this case).

Alice and Bob begin by choosing the same randomly generated subset of bits
from their strings. Then Alice tells Bob the parity of her subset, and Bob checks
whether his subset has the same parity. The primitive ends in case of identical
parity, otherwise a binary search is performed to locate an error.

If Alice’s string is different from Bob’s, the BICONF primitive will detect this
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with probability 1/2; if the two strings are identical, the primitive says so with
probability 1. Therefore, if the primitive is executed sufficiently many times, say
l times, with the same parities for Alice and Bob, Alice and Bob will be rightly
convinced that their strings are identical with probability at least 1− 2−l.

2.3.2 Optimized BBBSS

The BBBSSopt protocol was presented in [76]. Alice and Bob begin with two binary
strings a and b, of length n and with bit error rate p. It proceeds in several passes.
After Pass i (i = 1, 2, . . . ), the protocol arrives at two strings a(i) and b(i), for
Alice and Bob respectively, of length n(i) with bit error rate p(i). Initialize a(0) = a,
b(0) = b, and p(0) = p.

Pass i can be described in the following way.

1 Randomly permute bit positions of string a(i−1) (and b(i−1) in the same way) so
that errors are randomly distributed in b(i−1).

2 Determine the optimal block length wi using p(i−1) (how to do this will be shown
later). Divide a(i−1) and b(i−1) into blocks of length wi. Alice and Bob ex-
change parities for each block over the public channel. If the two parities are
the same, they go to the next block. Otherwise, they run a binary search to
locate and remove an error in the block (as a result, the block is divided into
several subblocks due to the binary search), before going to the next block.
The binary search is performed in this way,

(1) Alice halves her block into two subblocks, and sends Bob the parity of
the first subblock over the public channel.

(2) Bob also divides his block in the same way. After he gets Alice’s parity, he
compares it with the parity of his own first subblock. If the two parities
agree with each other, Alice and Bob perform a binary search to the
second subblock, otherwise to the first subblock, until the block size is
one, in which case an error has been located.

3 Alice and Bob discard the last bit of each block (or subblock) to compensate the
information leakage by parity. They get new strings a(i) and b(i) with bit error
probability p(i).

The bit error probability p(i) after Pass i is determined with the help of the
number of errors, denoted by z, corrected up to Pass i in the following way:

p(i) =
np− z

n(i)
.

Now we show how to select the optimal block length wi based on the bit error
probability p(i). Suppose that the blocks have length w, then the probability of
detecting an error in such a block is given by

w
2∑

l=1

(
w

2l − 1

) (
p(i)

)2l−1 (
1− p(i)

)w−2l+1

=
1− (

1− 2p(i)
)w

2
, (2.18)
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where for the sake of convenience we assume that w is even.
To locate an error Alice and Bob need to exchange 1 + log(w) parity check bits

over the public channel (we point out that 1 + log(w − 1) is used in [76] which is
not precise). However, if the block has an even number of errors, which happens
with probability (1 + (1− 2p(i−1))w)/2, only one parity bit needs to be transmitted
over the public channel. Therefore, the expected number of parities that need to be
exchanged for removing one error during Pass i is given by:

1+(1−2p(i−1))w

2 + 1−(1−2p(i−1))w

2 (log w + 1)
1−(1−2p(i−1))w

2

= log w +
2

1− (1− 2p(i−1))w
. (2.19)

The denominator reflects the expected number of errors that will be removed during
the pass. The optimal block length wi should minimize (2.19). However, when
wi > n(i)/2, Alice and Bob set wi = n(i)/2, and run the BICONF primitives for
subsequent passes. When no errors are found in a number of successive passes, say
10, Alice and Bob stop running the protocol and accept the final strings as reconciled
strings. The failure probability of the protocol is about 2−10.

2.3.3 Van Dijk and Koppelaar’s Protocol

Van Dijk and Koppelaar developed the same rule as described in the previous sub-
section for determining the optimal block length from the bit error rate in [19] (see
also [23]). We call their protocol DK protocol. In the DK protocol, whenever a new
block needs to be created, the bit error probability is estimated first by the number
of errors that have been corrected, then the optimal block length is computed by
minimizing (2.19). Let the string length be n and Bob’s initial bit error probability
be p. Then Pr [l] =

(
n
l

)
pl(1 − p)n−l is the probability that Bob’s string contains

l errors. The probability that Bob’s string contains exactly l errors given that it
contains at least z errors is given by

Pr [l| ≥ z] =
Pr [l]∑

j≥z Pr [j]

if l ≥ z and Pr [l| ≥ z] = 0 if l < z. The bit error probability when z errors have
been corrected is estimated by

p̂ =
∑

l≥z

Pr [l| ≥ z]
l − z

n
. (2.20)

As we will point out in Subsection 2.6.4, their method of estimating bit error
probability is not precise, because the information of the number of errors is not
complete for estimating accurate bit error probabilities.

2.3.4 The Cascade Protocol

The Cascade protocol [7] also consists of several passes. In the first pass, the block
length w1 is determined by the initial bit error probability p according to some rule
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(we will show the rule later). The positions of the bits in Alice’s and Bob’s initial
strings are indexed by 1, 2, . . . , n. Alice and Bob divide their strings into blocks.
Block v in Pass 1, denoted by Block1

v, is composed of those bits whose positions
come from the set K1

v = {l|(v − 1)w1 < l ≤ vw1}. For each block, they exchange
parities and perform a binary search to correct an error in case of different parities.
After Pass 1, all blocks or sublocks have an even (including zero) number of errors.

In Pass i, i > 1, Alice and Bob set the block length to wi = 2wi−1. After a
random permutation of their strings, they separate the strings into d n

wi
e blocks,

not necessarily of equal size. More precisely, they choose a random function fi :
[1, 2, . . . , n] → [1, 2 . . . , d n

wi
e], and the bits from the set Ki

j = {l|fi(l) = j} form
Blocki

j . Let K denote the set of all the blocks, in this and all preceding passes,
containing an odd number of errors. The set K can be determined by Alice and Bob
by exchanging the parities of all blocks over the public channel.

For the smallest block in K (if there are more Alice and Bob randomly choose
one) a binary search is executed to locate and remove an error from this block. Let
l′ be the position of this error. Let B be the set of blocks (in this and all other
passes) that contain bit l′. Update K by (B⋃K) \ (B⋂K). Set B⋂K consists of
the blocks that used to contain an odd number of errors but now contain an even
number of errors due to the correction of the error in bit l′. Set K is updated by
excluding B⋂K from B⋃K, so the new K consists of the blocks containing an odd
number of errors. Repeat this procedure until K = ∅.

Now let us see how the block length wi for Pass i is determined. The idea to
determine wi is to decrease the number of errors at least by half in each pass from
Pass 2 onwards. Let δi(j) be the probability that 2j errors remain in K1

v after Pass
i. Let Ei be the expected number of errors in K1

v after Pass i. Then the following
equation holds,

Ei = 2
bw1

2 c∑

j=1

jδi(j),

with

E1 = w1p− 1− (1− 2p)w1

2
.

Let γi be the probability that at least 2 errors are corrected in Pass i, i > 1. Then
a lower bound on it is given by

γi ≥ 1−
(

1−
(
1− wi

n

)nEi−1
w1

)2

≈ 1−
(

1− e−
wiEi−1

w1

)2

when n →∞.
As a consequence, δi(j) is bounded by

δi(j) ≤



bw1

2 c∑

l=j+1

δi−1(l)


 + δi−1(j)(1− γi).
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Choose w1 such that
bw1

2 c∑

l=j+1

δ1(l) ≤ 1
4
δ1(j)

and

E1 ≤ ln 2
2

.

Let wi+1 = 2wi for i > 1. It follows that 1− γi ≤
(
1− e−2E1

)2 ≤ 1
4 . Then we have

δi(j) ≤ δi−1(j)/2, hence Ei ≤ Ei−1/2.
The suggested number of passes is 4. According to the simulation for p = 0.01,

0.05, 0.10, 0.15 and n = 10000 in [7], all errors are removed after 4 passes with
Cascade.

2.3.5 The Optimized Cascade Protocol

Sugimoto and Yamazaki did more work on the Cascade protocol in [73]. Observing
the simulation results of Cascade, they found that almost all errors are corrected
during the first two passes, and only very few errors were left for further passes to
correct. Another observation is that almost half of the errors are removed in Pass 1,
and the other half in Pass 2. The block lengths w1 and w2 are selected to minimize
the number of publicly exchanged parities. After Pass 2, the BICONF primitive is
employed in each pass to correct the few remaining errors. We call such a pass a
BICONF pass. When one error is found in a BICONF Pass i, where i > 2, other
errors may also be corrected by going back to blocks of previous passes that contain
the newly corrected error. If no error is detected after l subsequent passes, Alice’s
string will agree with Bob’s with probability at least 1− 2−l.

There are np errors in Bob’s string on average. If half of the errors are corrected
in Pass 1, then the expected number of parities exchanged is

L(Pass 1)
exp =

n

w1
+

np

2
log(w1). (2.21)

The other half is corrected by pairs in Pass 2. For any pair of errors, one is corrected
in some block of Pass 2, where log(w2) more parities are expected to be exchanged,
while the other in some block of Pass 1, where about log(w1) more parities are
expected to be exchanged. Therefore, the expected number of parities in Pass 2 is

L(Pass 2)
exp =

n

w2
+

np

4
[log(w1) + log(w2)] . (2.22)

The optimal values w1 =
⌊

4 ln 2
3p

⌋
and w2 =

⌊
4 ln 2

p

⌋
are determined by minimizing(

L
(Pass 1)
exp + L

(Pass 2)
exp

)
.

Later, Yamazaki and Sugimoto made a further improvement, because the number
of corrected errors in Pass 1 and Pass 2 is not half to half when p is large (for example
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p = 0.15). According to (2.18), the probability that an error can be detected in a
block of Pass 1 is given by

Podd =
1− (1− 2p)w1

2
.

There are n/w1 blocks, so about Podd · n/w1 errors are expected to be corrected in
Pass 1, and np− Podd · n/w1 errors are left for Pass 2. Therefore, (2.21) and (2.22)
should be replaced by the following two equations

L(Pass 1)
exp =

n

w1
+

n · Podd

w1
log(w1). (2.23)

L(Pass 2)
exp =

n

w2
+

1
2

(
np− n · Podd

w1

)
[log(w1) + log(w2)] . (2.24)

The optimal w1 and w2 are obtained by minimizing
(
L

(Pass 1)
exp + L

(Pass 2)
exp

)
.

There are no explicit formulas for w1 and w2 in this case, but numerical optimal
values for w1 and w2 can be obtained. We show the block lengths w1 and w2 in
Table 2.1 compared with those in the Cascade protocol. The corresponding simu-
lation results for the information rate R0(p) for different protocols, with n = 10000
as the length of the to be reconciled strings, are reprinted in Table 2.2. Recall that
1− h(p) is an upper bound of R0(p).

protocol p = 0.01 p = 0.05 p = 0.10 p = 0.15
Cascade w1 = 73 w1 = 14 w1 = 7 w1 = 5

Cascadeopt w1 = 70 w1 = 14 w1 = 7 w1 = 4
Cascade w2 = 146 w2 = 28 w2 = 14 w2 = 10

Cascadeopt w2 = 301 w2 = 61 w2 = 31 w2 = 25

Table 2.1: Block lengths of the first two passes in Cascade and Cascadeopt

protocol R0(0.01) R0(0.05) R0(0.10) R0(0.15)
BBBSSopt 0.8996 0.6491 0.4471 0.3063
Cascade 0.9090 0.6609 0.4233 0.2305

Cascadeopt 0.9139 0.6917 0.4904 0.3316
Upper bound for R0(p) 0.9192 0.7136 0.5311 0.3902

Table 2.2: Information rates for different protocols for n=10000

It seems that the Cascadeopt protocol is the best protocol up to now. The ques-
tion is, can we do better than the Cascadeopt protocol? The answer is affirmative,
as we will show in the next section.
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2.4 A General Protocol for Advantage Distillation and Infor-
mation Reconciliation

Our protocol keeps the basic idea of other reconciliation protocols. During the
protocol, Bob’s string is being reconciled to approach Alice’s string (her string is
also changing due to discarding). We call these strings to be reconciled working
strings. Our protocol is summarized as follows and will be explained in detail later.

1 Given a bit error probability ε for Bob’s working string in some Pass i, the main
principle for choosing the optimal block length wi is to minimize the amount
of information publicly exchanged (i.e., the information that is leaked to Eve)
for correcting one error.

2 Alice and Bob first apply a random permutation to their strings of bits before
each pass, and then create new blocks from their strings. The block length is
optimally chosen to minimize the information leakage. A pass ends when all
bits are involved in some block and Alice and Bob have the same parities for
all blocks (or subblocks).

3 A new block is created only when all previously constructed blocks (or split
subblocks) contain an even number of errors. For each newly created block,
Alice and Bob exchange the corresponding parities. Different parities for some
block indicates that an odd number of errors exist in Bob’s version of this
block. Alice and Bob always choose one of the blocks of minimal cardinality
(if there are more they randomly agree on one) that contains an odd number
of errors to perform a binary search for an error.

4 Define t to be the first pass with the optimal weight, determined by the main
principle, larger than 2. The protocol can be divided into three parts:

• Pass 1 up to t − 1. The optimal block length wi, i = 1, . . . , t − 1, is
determined to be 2 by the main principle.

• Pass t and Pass t + 1. Almost all remaining errors will be eliminated in
these two passes. Whenever an error is detected in a block of Pass t + 1,
another error can be found and removed in some block of Pass t. Since
blocks in Pass t are also involved in correcting errors in Pass t+1, the main
principle does not apply to Pass t. The optimal block length wt should
be chosen to minimize the amount of publicly exchanged information
needed to remove all the remaining errors. The optimal block length
wt+1 for Pass t + 1 is determined by the main principle. Bob’s bit error
probability is decreasing during Pass t+1, hence wt+1 has to be increased
correspondingly.

• Pass i, i > t + 1. The protocol runs BICONF primitives. We call a
pass which runs the BICONF primitive a BICONF pass. These passes
will remove the remaining few errors left and also determine when the
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protocol should cease. Finding one error also leads to error corrections in
blocks of previous passes. After l successive BICONF passes without an
error detected, the protocol can stop with a failure probability at most
2−l.

When the initial bit error probability p is small enough to make w1 larger than
2, the protocol turns out to consist only of the last two parts.

5 For Pass i, i > t + 1, only a few errors are left (which has been verified by the
simulation results in [73]), and the bit error probability p(t+1) after Pass t + 1
is so small that the optimal block length wi, i > t + 1, according to the main
principle, is as large as half of the length of the working strings. Consequently,
there are only two blocks of almost equal length, and Alice and Bob will have
to check just one of the two blocks. That explains why Pass i, i > t + 1,
actually runs a BICONF pass.

6 To compensate for the parity information leaked to Eve, Alice and Bob discard
one bit (the first bit for example) from each block (or subblock). Therefore,
the working strings are shrinking from pass to pass.

7 During a binary search for error correction, some bits are explicitly exposed. We
call these bits explicit bits. They are the subblocks containing only one bit.
Those explicit bits should be excluded from other blocks that contain them.
This may create new explicit bits, which should also be excluded in the same
way until no explicit bits show up any more.

In the context of the satellite scenario as described in Section 1.4, suppose that
Alice has a as a particular realization of A, and that Bob has b. We can think of Bob
having received his string b from Alice who in fact has transmitted the string a over
a Binary Symmetric Channel (BSC) with error probability p = pA + pB − 2pApB .

From now on, we view the reconciliation problem from a coding theory point of
view. Let e = a ⊕ b be the error pattern between a and b. We use an n-bit binary
vector h to represent each block, and we call it the parity check vector. The index
set of h records the indexes of nonzero elements in h, i.e., the positions of the bits
composing the block. Then Alice’s parity check for the block is given by h · aT ,
and Bob’s by h · bT . The difference between these two parity checks, h · eT = 0
or 1, is called the syndrome. All the row vectors h form a parity check matrix H,
and sT = HeT is called the syndrome vector. Now the problem of reconciliation
becomes how to dynamically construct a parity check matrix H with the help of
the known syndrome vector such that the number of parity check vectors needed
for H to correct all the errors in b is as small as possible. A parity check matrix
Hk×n uniquely (in isomorphic sense) determines an [n, n− k] code, so the problem
can also be described as how to construct an [n, n − k] code with feedback of the
corresponding syndrome information such that the code rate (n − k)/n is as large
as possible.

Before we continue to describe the protocol in more detail, we shall summarize
the notation that will be used.
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p: the bit error probability of the BSC connecting Alice and Bob (Alice transmits
a random string A, but Bob receives this over a BSC with error probability p and
obtains string B).

n: the length of Alice’s initial string A and Bob’s string B.
a, b: concrete realizations of the random variables A and B, both of which are

of length n.
e: the error pattern resulting from the transmission over the BSC. It is the vector

of length n given by e = a⊕ b.
H: the parity check matrix.
hl: the lth row of the parity check matrix H.
s: the syndrome vector determined by HeT .
k(i): the number of rows in H after Pass i.

a(i), b(i): the working strings after Pass i. Their length is n− k(i).
J(i) = {l1, l2, . . . , lk(i)}: the set of k(i) positions that eventually will be discarded

after Pass i. (At the beginning of the protocol we set J(0) to ∅.)
Q(i): the valid position set during Pass i with initial value {1, 2, . . . , n} \ J(i−1).

It decreases in size during Pass i until it is empty, i.e., no valid positions left for a
vector. The initial value denotes all the n−k(i−1) valid bit positions which constitute
the string a(i−1) (and b(i−1)) and which will be involved in Pass i.

Construction for H starts with a rowless matrix. Set J(0) = ∅ and k = 0 at the
beginning.

Description of Pass i:

Step 1 At the beginning of Pass i, Alice has a(i−1) and Bob b(i−1). The positions of
the bits making up a(i−1) (or b(i−1)) are given by Q(i) = {1, 2, . . . , n} \J(i−1).
Set J(i) = J(i−1). Determine the current optimal weight wi (how to determine
the optimal weight will be explained in Subsection 2.5.3) for Pass i. Let t be
the first pass with the optimal weight wt larger than 2. Pass i is divided into
several rounds. Each round involves the creation of a new vector (refer to item
3 in the summary of our protocol).

Step 2 In case of Pass t + 1, the current optimal weight is determined before every
round. Alice adds a new row vector hk+1 of weight wi to H which has 1’s in
wi positions, say {lj1 , lj2 , . . . , ljwi

} in ascending order, randomly chosen from
Q(i), and 0’s in the other positions. Update Q(i) by Q(i) \ {lj1 , lj2 , . . . , ljwi

},
and J(i) by J(i)

⋃{lj1}. Alice sends hk+1 and the value of the parity check
hk+1 · aT to Bob over the public channel. Bob also adds the vector hk+1 to
his parity check matrix H and then calculates and tells Alice the syndrome
sk+1 = hk+1 · aT ⊕ hk+1 · bT = hk+1 · eT .
Both increase k by 1 and continue with the next step.

Step 3 Alice and Bob check if any of the row vectors hl, 1 ≤ l ≤ k, has weight at least
2 and syndrome 1. If that is the case, they continue with Step 4, otherwise
Alice and Bob check |Q(i)|.
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– For Pass i, i ≤ t+1, if |Q(i)| ≤ wi, let wi = |Q(i)|. Go back to Step 2 for
the last round;

– For Pass i, i > t + 1, this is the last round;

– In case of the last round, Go to step 5. Otherwise, Alice and Bob go back
to Step 2 for the next round.

Step 4 Alice and Bob both select the row vector hm with 1 ≤ m ≤ k, which is of
lowest weight among those rows of H whose weights are at least 2 and which
have syndromes equal to 1 (if there are more of such vectors, Alice and Bob
select the first one).

Alice and Bob perform a binary search to locate an error in the index set
corresponding to the 1-entries of hm in the following way. Alice selects half
of the elements from hm’s index set to get a new vector hk+1 whose weight is
about half that of hm. Alice updates H by adding hk+1 to it and replacing hm

by hm ⊕ hk+1. Alice sends hk+1 and hk+1 · aT to Bob. Bob updates H in the
same way, and feeds back the syndrome sk+1 = hk+1 · aT ⊕ hk+1 · bT to Alice.

Alice and Bob repeat Step 4 (each time increasing k by 1) until they get a vec-
tor (either hk or hm) of weight 1 and with syndrome equal to 1, i.e., they have
located an error, and Bob corrects it. Whenever a vector of weight 1 shows up
in H, let l be the index of the nonzero element in the vector. Alice and Bob
set all other elements in column l of H to be zero. The syndrome vector is up-
dated correspondingly. In other words, Alice and Bob eliminate the influence
of the explicit bit by removing it from all other parity check equations. Reset
J(i) = {l1, l2, . . . , lk}, where {l1, l2, . . . , lk} is the set of the first nonzero ele-
ments of the k row vectors in H. Update Q(i) by Q(i)

⋂ ({1, 2, . . . , n} \ J(i)

)
.

Return to Step 3.

Step 5 Alice and Bob discard the first nonzero elements, h1,l1 , h2,l2 , . . . , hk(i),lk(i)
, of

each row of H. With discarding we mean that these coordinates no longer
play a role in successive passes. Removing those corresponding coordinates in
a and b leads to a(i) and b(i).

Alice and Bob now have some set J(i) = {l1, l2, . . . , lk(i)}. They both go to the
next pass in Step 1.

At the end of each full pass of the protocol, Bob has changed b(i) into a vector
ā(i) that may still differ from a(i), but very likely in fewer places. Continuing with
the successive passes, ā(i) will approach or become equal to a(i). Alice and Bob stop
with the reconciliation protocol when the last l passes (out of a total of r passes
with r > l + t) do not locate any errors. The protocol fails with probability less
than 2−l.
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2.5 Analysis of the Protocol

2.5.1 Selecting the Weight for a New Parity Check Vector

We shall first discuss the selection of the weight of the new row vectors (parity
check vectors) for the parity check matrix H, given that Bob’s working string has
bit error rate ε. This problem is equivalent to the determination of the optimal
length of the blocks in Subsection 2.3.2. The principle for choosing the optimal
weight is to minimize the expected number of parity check bits (syndromes) that
needs to be transmitted publicly to correct one error.

Suppose that the bit error probability is ε and that the weight of the newly
created row vector for H is w in some pass i. The binary search can only split a
parity check vector and locate an error when the vector contains an odd number of
errors. Hence, the probability of detecting an error in such a vector is given by

w
2∑

i=1

(
w

2i− 1

)
ε2i−1(1− ε)n−2i+1 =

1− (1− 2ε)w

2
, (2.25)

where w is assumed to be even for simplicity.
Alice and Bob publicly exchange their parity check bits to determine the corre-

sponding syndrome for the parity check vector. If the syndrome is 1, which happens
with probability (1− (1− 2ε)w)/2, then log(w) more parity check bits should be ex-
changed over the public channel to locate the error. Therefore, the expected number
of parity check bits that need to be exchanged for a vector of weight w is

1 +
1− (1− 2ε)w

2
· log(w). (2.26)

The expected number of parity check bits for removing one error is given by (2.26)
divided by (2.25), i.e.,

1 + 1−(1−2ε)w

2 · log(w)
1−(1−2ε)w

2

= log(w) +
2

1− (1− 2ε)w
. (2.27)

Define the function f(w, ε) = log(w)+2/(1− (1− 2ε)w). It is convex for fixed ε. The
rule for determining the optimal weight is to select a w such that the value of f(w, ε)
is as small as possible, but with the constraint that w ≥ 2 (since it makes no sense
when w = 1). We have no explicit formula for the optimal weight w as a function of
ε but numerical data are shown in Figure 2.3. We see that when ε is small enough w
grows exponentially but when ε is larger than 0.20, w is 2. On the other hand, the
length n of the string that is to be reconciled also has some influence on the optimal
weight. For example, if the optimal weight w determined by minimizing f(w, ε) is
larger than n/2, there will be two vectors, one of weight w while the other of weight
less than w. In this case, it is better to choose w = n/2 (and to get two vectors of
equal weight) because of the convexity of f(w, ε). Therefore, the optimal weight for
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Figure 2.3: The optimal weight w for different bit error rates ε

constructing a new vector in our protocol is given by

wopt = min
{

max
{

2,

{
w|f(w, ε) = min

x∈N
f(x, ε)

}}
,
n

2

}
, (2.28)

where ε is the bit error probability and n is the length of Bob’s (Alice’s) working
string, and f(x, ε) = log(x) + 2/(1− (1− 2ε)x).

It should be noted that this rule does not apply to the case that the vectors will
be further split into successive passes to find other errors.

2.5.2 The Bit Error Rate after Every Pass

From (2.28) we can see that the current bit error probability plays an important role
in determining the optimal weight. We will show in this section how to estimate the
bit error probability for each pass. Obviously, the difference between the original
strings a and b is determined by the BSC which has bit error probability p. Hence,
p(0), the bit error probability when Pass 1 begins, is given by p(0) = p. (In the
satellite scenario p = pA + pB − 2pApB .)

The error pattern e = a⊕b is a concrete realization. But for either Alice or Bob,
it is still a random variable because neither is sure about the other party’s string
until the end of the protocol.

The columns of the parity check matrix H are indexed by the bit positions in the
error vector e and the rows by bit positions in the syndrome vector s. A so-called
belief network is defined by H, in which every bit el is the parent of some syndromes,
and each syndrome sm is the child of some bits. The network of bits and syndromes
form a bipartite graph: bits are only connected to syndromes, and vice versa.

As an example, we consider the simple case that in our protocol t = 4, i.e.,
w1 = w2 = w3 = 2. After discarding a bit from each parity check set, a remaining
bit after Pass 3 is typically related to 8 original bits. Suppose that the 8 original
bits are indexed with 1, 2, . . . , 8. The first pass results in the first 4 rows in a parity
check matrix H (see (2.29)). Then bits 1, 3, 5, and 7 are discarded (not involved
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in successive passes). Bits 2, 4, 6, and 8 compose the 5th and 6th rows in H (see
(2.29)) in Pass 2. Then bit 2 and bit 6 are discarded. In Pass 3, bit 4 and bit 8
compose the 7th row in H (see (2.29)), then bit 4 is discarded. We do not include
the parity check vectors with syndrome 1 in H, since the two bits making up the
vector will be discarded after splitting, and have nothing to do with the remaining
bits. The parity check matrix for bit 8 is

H =




1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1




, (2.29)

and the syndrome vector is

s = (0, 0, 0, 0, 0, 0, 0).

The belief network concerning this bit for the first 3 passes is shown in Figure 2.4
(a). The white circles denote bits el while black bullets represent syndromes sm.
In Figure 2.4 (b) the same belief network is depicted in a more symmetric way.
Notice that only bit 8 remains after Pass 3 since all other bits have been discarded
according to our protocol.
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Figure 2.4: Typical belief network for a final bit after t− 1 (=3) passes

After 3 passes, the whole belief network should consist of separate belief networks
depicted in Figure 2.4, and the number of retained bits after 3 passes decides the
number of separate belief networks. We point out that we neglected those vectors in
H that are split since they have become discarded explicit bits. If we include these
bits in the belief network, they are also separate bipartite graphs (such a typical
graph can be drawn as a circle connected with a black bullet), but have nothing to
do with the final reconciled bits. This is the reason why we do not include them in
our belief network.
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Pass t is the first pass in which the optimal weight wt of the new vectors ex-
ceeds 2. Since each newly created check vector will either be split up or remain
the same depending on the value of its syndrome, a typical belief network after
Pass t should look like the graph in Figure 2.5 with the number of “leaves” being
wt, wt/2, wt/4, . . . , 2 or 1 (for the sake of convenience we assume here that wt is a
power of 2). As a graph it is a tree. It contains no loops and its “leaves” are those
bits that have not been discarded from the preceding t− 1 passes.
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Figure 2.5: Typical belief network for Pass t

For the first t passes we can determine the a posteriori error probabilities

Pr [el = 1|s = H · e] , l = 1, 2, . . . , n,

for all the n bits with the Belief Propagation Decoder (BPD) Algorithm (originally
investigated by R.G. Gallager in [24]) from [40]. The BPD-algorithm uses p, Hk×n

and s as its inputs, and can be described as follows.

BPD(p, Hk×n, s) Algorithm

Notation:
p = (p1, p2, . . . , pn): vector for the n individual a priori bit error probabilities.
sm: syndrome bit of row m of H, m = 1, 2, . . . , k. It is the m-th bit in s.
L(m) = {l : Hm,l = 1}: the set of bits that participate in syndrome sm.
M(l) = {m : Hm,l = 1}: the set of syndromes in which bit l participates.
L(m) \ l: the set L(m) with bit l excluded.
M(l) \m: the set M(l) with syndrome m excluded.
qx
ml: the probability that bit l of e is x, given the information obtained via

syndromes other than syndrome sm.
rx
ml: the probability of syndrome sm being satisfied if bit l of e is considered

to be fixed at value x and the other bits have a separate distribution given by the
probabilities {q0

ml′ , q
1
ml′} : l′ ∈ L(m) \ l.

Initialization:
For every (l,m) such that Hml = 1, let q0

ml = 1− pl and q1
ml = pl.

Horizontal Step:
Compute two probabilities for all syndromes sm and each l ∈ L(m). The first

probability, denoted by r0
ml, is the probability that the observed syndrome sm occurs

given that el = 0. In the expression below, we sum over all possible values of the
other bits {el′ : l′ 6= l}. These have a distribution that can be expressed in the
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probabilities {q0
ml′ , q

1
ml′}. We get

r0
ml =

∑

{el′ | l′∈L(m)\l}



Pr [sm | el = 0, {el′ | el′ ∈ {0, 1}, l′ ∈ L(m) \ l}]

∏

l′∈L(m)\l
q

el′
ml′



 .

(2.30)
The other probability, denoted by r1

ml, is defined similarly but with el = 1. So, it is
given by

r1
ml =

∑

{el′ | l′∈L(m)\l}



Pr [sm | el = 1, {el′ | el′ ∈ {0, 1}, l′ ∈ L(m) \ l}]

∏

l′∈L(m)\l
q

el′
ml′



 .

(2.31)
The conditional probabilities in these summations are either zero or one, depending
on whether the observed sm matches the hypothesized values for el and el′ .

Vertical Step:
Update the values of the probabilities q0

ml and q1
ml with the computed values of

r0
ml and r1

ml. For each (l, m) such that Hml = 1, compute

q0
ml = αml · (1− pl)

∏

m′∈M(l)\m
r0
m′l, (2.32)

q1
ml = αml · pl

∏

m′∈M(l)\m
r1
m′l, (2.33)

where the scalar αml is chosen such that the new values add up to one, i.e., q0
ml +

q1
ml = 1.

Output:
q0
l = αl · (1− pl)

∏

m∈M(l)

r0
ml, (2.34)

q1
l = αl · pl

∏

m∈M(l)

r1
ml, (2.35)

where the scalar αl is chosen such that q0
l + q1

l = 1.
When the bipartite graph defined by the matrix H contains no cycles [61] (in our

protocol this is the case for the first t passes), the algorithm will produce the exact
a posteriori bit error probability q1

l of bit l given the states of all the syndromes in
a truncated belief network. The truncated belief network is formed by centering on
bit l and extending out to a radius equal to twice the number of iterations of the
two steps. But in the last iteration, the vertical step is replaced by the execution of
the output subroutine.

Let p(i) = (p(i)
1 , p

(i)
2 , . . . , p

(i)
n ) be the error probability vector after Pass i. Let p(i)

denote Bob’s average bit error rate after Pass i. Let H(i) denote the part of H that is
constructed during Pass i, and s(i) be the corresponding syndrome vector. Let H(i)
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denote the part that is constructed during i passes and s(i) be the corresponding

syndrome vector. We can get the bit error probabilities p(i) = (p(i)
1 , p

(i)
2 , . . . , p

(i)
n ) in

the following two ways.

(1) Input p(0) = (p, p, . . . , p), H(i) and s(i) to the BPD-algorithm, iterate i times,

and output (q1
1 , q1

2 , . . . , q1
n). Set p

(i)
j = q1

j , for j = 1, 2, . . . , n.

(2) The BPD-algorithm is executed i times. Each time run the horizontal step
and the output subroutine once but with p(l−1), H(l) and s(l) as input instead,

and output p(l) = (p(l)
1 , p

(l)
2 , . . . , p

(l)
n ) = (q1

l , q1
2 , . . . , q1

n) where l = 1, 2, . . . i.

In the following analysis for bit error probabilities for each pass, we use the latter
method.

Remark. For any explicit bits, the bit error probability is either 0 or 1 depending
on whether the value of the corresponding syndrome is 0 or 1. An explicit bit with
syndrome 1 means an error has been located. Another note is that for those bits
that are discarded before Pass l, the corresponding columns in H(l) will consist of
0’s, and the corresponding elements in p(l) will not be defined.

Pass 1 up to Pass t − 1:
After Pass i (1 ≤ i ≤ t − 1), the remaining bits are mutually independent and

have the same bit error probability, so the average bit error rate is just equal to any
individual bit error probability.

After Pass t−1, a retained bit is related to a parity check matrix H(2t−1−1)×2t−1

(like H7×8 in (2.29)). A corresponding belief network like Figure 2.4 can also be
drawn. Now we split H(2t−1−1)×2t−1 into H

(1)
2t−2×2t−1 for Pass 1, H

(2)
2t−3×2t−1 for Pass

2, and so on.
In Pass 1, we have

H
(1)
2t−2×2t−1 =




1 1 0 0 0 0 0 0 . . . . . . 0 0 0 0
0 0 1 1 0 0 0 0 . . . . . . 0 0 0 0
...

...
...

...
...

...
...

... . . . . . .
...

...
...

...
0 0 0 0 0 0 0 0 . . . . . . 0 0 1 1


 ,

Initialize q0
ml and q1

ml to 1 − p(1) and p(1) respectively for m = 1, 2, 3, . . . , 2t−2

and l = 1, 2, 3, . . . , 2t−1. The horizontal step results in r0
ml = (1 − p) and r1

ml = p
according to (2.30) and (2.31). Therefore the bit error probability for each bit (as
well as the average bit error probability) after Pass 1 is

p(1) = p
(1)
1 = p

(1)
2 = · · · = p

(1)
2t−1 =

p2

p2 + (1− p)2

by (2.34) and (2.35). After discarding the first bit from each vector, only bits
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2, 4, . . . , 2t−1 are left. In Pass 2, we have

H
(2)
2t−3×2t−1 =




0 1 0 1 0 0 0 0 . . . . . . 0 0 0 0
0 0 0 0 0 1 0 1 . . . . . . 0 0 0 0
...

...
...

...
...

...
...

... . . . . . .
...

...
...

...
0 0 0 0 0 0 0 0 . . . . . . 0 1 0 1


 .

For each (m, l) such that H
(2)
m,l = 1, q0

ml and q1
ml are initialized to the values of

1 − p(1) and p(1) respectively. The horizontal step results in r0
ml = (1 − p(1)) and

r1
ml = p(1) and the bit error probability for each bit after Pass 2 is

p(2) = p
(2)
2 = p

(2)
4 = · · · = p

(2)
2t−1 =

(
p(1)

)2

(
p(1)

)2 +
(
1− p(1)

)2 =
p4

p4 + (1− p)4

according to (2.34) and (2.35).
It is easy to see that passes 1 up to t − 1 of the protocol turn out to run a [2,

t− 1] iteration protocol. Therefore, the bit error probability for each bit after Pass
t− 1 is

p(t−1) = p
(t−1)
2t−2 = p

(t−1)
2t−1 =

(
p(t−2)

)2

(
p(t−2)

)2 +
(
1− p(t−2)

)2 =
p2t−1

p2t−1 + (1− p)2t−1

according to (2.11). Finally, only bit, namely 2t−1, remains after discarding bit
2t−2.

According to the properties of a [2, t − 1] iteration protocol, the information
rate of the iteration protocol, or the proportion of remaining bits, is determined by
(2.7), i.e.,

Rβ(p)[2, t− 1] =
1

2t−1

p2t−1
+ (1− p)2

t−1

∏t−2
i=1

(
p2i + (1− p)2i

)

with β = p(t−1).

Pass t:
Pass t is the first pass with initial bit error probability p(t−1) < 0.2. So the

optimal weight should be larger than 2 if (2.28) is employed. However, (2.28) is not
applicable to Pass t any more, since the vectors may be involved in error corrections
in successive passes.

After Pass t, the syndrome is always 0 for those row vectors in H(t) with weight
w ≥ 2, otherwise the vector would have been split. That means syndrome 1 only
accompanies vectors of weight 1. We will not consider the vectors of weight 1 since
they are explicit bits (their bit error probabilities are either 1 or 0) and will be
discarded. Let us analyze the bit error probabilities after Pass t for those bits that
are in a row vector, say hm, of weight w, w ≥ 2, with corresponding syndrome being
0. We index the nonzero elements in hm by 1, 2, . . . , w for simplicity. According
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to the BPD-algorithm, q0
ml and q1

ml are initialized to 1 − p(t−1) and p(t−1) for l =
1, 2, . . . , w. Equation (2.30) can be simplified as the probability that an even number
of errors are in the (w − 1) remaining 1-entries (other than the l-th entry) of hm,
i.e.,

r0
ml =

1 +
(
1− 2p(t−1)

)w−1

2
.

Similarly, (2.31) is just the probability that an odd number of errors are in the
(w − 1) remaining 1-entries of hm, i.e.,

r1
ml =

1− (
1− 2p(t−1)

)w−1

2
.

According to (2.34) and (2.35), the bit error probability for each bit in hm after
Pass t is

p
(t)
1 = p

(t)
2 = · · · = p(t)

w =
p(t−1) · 1−(1−2p(t−1))w−1

2

p(t−1) · 1−(1−2p(t−1))w−1

2 +
(
1− p(t−1)

) · 1+(1−2p(t−1))w−1

2

.

(2.36)
Pass t generally results in row vectors of different weights in H(t) afterwards. The
error probabilities are the same for bits that are in row vectors of equal weight, but
differ for those that are from vectors of different weights. Contrary to the previous
passes, the elements in p(t) are generally not equal. Having calculated all individual
bit error probabilities, the average bit error rate p(t) can be calculated with those
n− k(t) retained bits, i.e.,

p(t) =
1

n− k(t)

n−k(t)∑
c=1

p
(t)
lc

. (2.37)

Pass i, i > t:

From Pass t + 1 on, the belief network will contain loops, so the a posteriori bit
error probability vector, p(i), i ≥ t+1, cannot be determined by the BPD-algorithm.
In fact, the computation of the a posteriori probabilities has been shown to be
intractable in [61] for belief networks that correspond to the problem He′T = s′T

and contain loops. We cannot get the exact value for p(i), i ≥ t + 1, but we know
that the bit error rate is not fixed at p(t) with Pass t+1 going on. More precisely, it
is decreasing due to the involvement of vectors of Pass t in error corrections. Below
we will try to approximate the decreasing average bit error rate during Pass t + 1
and that after Pass i, i ≥ t + 1.

The initial average bit error rate for Pass t + 1 is p(t). Let n′′ = n− k(t) be the
string length before Pass t + 1 begins. Let z count the number of errors corrected
from Pass t + 1 onwards. With the help of p(t) and z, we estimate the average bit
error rate from Pass t + 1 onwards in the following way.
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We assume that errors in Bob’s current string are binomially distributed with
parameters n′′ and p(t). Let Pr [l] =

(
n′′

l

) (
p(t)

)l (
1− p(t)

)n′′−l
be the probability

that Bob’s current string contains l errors. Let Pr [l| ≥ z] denote the probability
that Bob’s working string contains l errors given that it contains at least z errors,
i.e.,

Pr [l| ≥ z] =
Pr [l]∑

j≥z Pr [j]

if l ≥ z and Pr [l| ≥ z] = 0 if l < z. If z errors have already been corrected from
Bob’s working string since Pass t + 1, there are on average at least 2z explicit bits
(about half in error and half correct) showing up during binary searches for the z
errors. Hence the current average bit error probability in Pass t+1, denoted by p̂[z],
can be approximated by

p̂[z] =
∑

l≥z

Pr [l| ≥ z]
l − z

n′′ − 2z
. (2.38)

It is easy to see that the average bit error rate p̂[z] is decreasing with increasing z.
The average bit error rate after Pass i, i ≥ t + 1, can be approximated in the same
way, i.e.,

p(i) = p̂[z],

where z is the number of errors corrected from Pass t + 1 onwards.

2.5.3 Determining the Optimal Weight in Each Pass

In the previous two subsections, we have introduced the rule for choosing the optimal
weight for the parity check vectors making up H, and the method of estimating the
bit error rate in each pass. Now it is time to determine the optimal weight (or block
length) for each pass.

Pass 1 up to Pass t− 1

For Pass 1, the initial bit error probability is given by p (= p(0)). Since the bit
error probability does not change with the pass going on, the optimal weight deter-
mined by (2.28) remains constant during the whole pass. As shown in Figure 2.3 in
Subsection 2.5.1, w = 2 as long as the bit error probability is at least 0.20.

Pass 1 up to Pass t− 1 are described in the following algorithm.

Algorithm 2.5.1
Initialize i = 1;
While

(
p(i−1) ≥ 0.20

)
{
(1) Determine wopt

i = 2;

(2) Construct H(i) according to the protocol;
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(3) Run the BPD
(
p(i−1),H(i)

)
algorithm and output p(i) with

p(i) = p
(i)
j =

(
p(i−1)

)2

(
p(i−1)

)2 +
(
1− p(i−1)

)2 , j = 1, 2, . . . , n;

(4) Determine the information rate by

Rp(i)(p) =
∏i−1

k=0

(
p(k)

)2
+

(
1− p(k)

)2

2i
;

(5) i ← i + 1.

}
t ← i.

In these passes, the individual bit error probabilities in vector p(i) are all equal,
so the average bit error rate p(i) is also equal to the individual ones.

Pass t and Pass t + 1

Pass t is the first pass with an initial bit error probability p(t−1) < 0.20. The optimal
weight determined by (2.28) should have been larger than 2. However, the rule for
selecting the optimal weight by (2.28) assumes that the row vectors constructed
in some pass are involved in error corrections only in this very pass. Pass t is an
exception to this assumption since the row vectors of Pass t may also be involved
in the error corrections during Pass t + 1. The selection of the optimal weight wt

should minimize the total amount of leaked information to remove all remaining
errors. Since the bit error probability for the remaining bits is constant during Pass
t, the optimal weight wopt

t is fixed as well.
On the other hand, Equation (2.28) does apply to Pass t + 1 because almost all

remaining errors will be corrected in this pass. There may be some (very few) errors
left for subsequent passes to correct. Correcting these errors may also involve the
vectors of Pass t+1, but the number of errors left is so small (this has been verified
by simulation results in [73]) that determining the optimal weight for Pass t + 1 by
(2.28) gives negligible deviation.

Pass t + 1 and Pass t are correlated in two aspects: first of all, the value of
wt influences the initial average bit error rate p(t) for Pass t + 1. Secondly, error
corrections in vectors of Pass t resulting from error corrections during Pass t + 1
decrease the average bit error rate of Pass t + 1.

Now we are ready to describe how to estimate the amount of the information
leaked to Eve from Pass t onwards until all errors are removed, given that

p(t−1) =
(
p(t−1), p(t−1), . . . , p(t−1)

)

is the initial bit error probability vector and wt is the weight for vectors (before
splitting) of H(t). Suppose that Alice’s and Bob’s working strings have length n′
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before Pass t begins. Let Podd denote the probability that an odd number of errors
exist in a row vector of weight wt. Then Podd =

(
1− (

1− 2p(t−1)
)wt

)
/2 according

to (2.25).
Let the random variable Z1 denote the number of errors corrected during Pass

t. It is binomially distributed with parameters ( n′
wt

, Podd). The probability that z1

errors are corrected in Pass t is given by

Pr [Z1 = z1] =
( n′

wt

z1

)
Podd

z1(1− Podd)
n′
wt
−z1 . (2.39)

The amount of information (the number of syndrome bits) shown publicly during
Pass t given that Z1 = z1 is determined by

L(Pass t)
wt

[z1] = n′/wt + z1 log(wt).

After Pass t, there are n′/wt − z1 row vectors of weight wt in H(t) while z1 row
vectors have been split in binary searches to find and correct z1 errors. Assume for
a moment that wt is a power of 2, say wt = 2m. Then a row vector of weight wt

will be split into m + 1 vectors of weights wt/2, wt/4, . . . , 2, 1, 1, respectively. The
belief network for H(t) consists of a collection of independent bipartite graphs like in
Figure 2.5: each of the n′/wt − z1 graphs are with wt leaves while the other graphs
are with less leaves such as wt/2, wt/4, . . . , 2, 1.

For a typical bipartite graph with w leaves, which is determined by some row
vector h in H(t), let the bits corresponding to the w leaves be indexed by 1, 2, . . . , w.
According to the BPD-algorithm shown in Subsection 2.5.2, the error probabilities
for the w bits, after Pass t, are given by

p
(t)
1 = p

(t)
2 = · · · = p(t)

w = BER
(
p(t−1), w

)
,

where BER
(
p(t−1), w

)
is defined by

BER
(
p(t−1), w

)
=

p(t−1) · 1−(1−2p(t−1))w−1

2

p(t−1) · 1−(1−2p(t−1))w−1

2 +
(
1− p(t−1)

) · 1+(1−2p(t−1))w−1

2

.

(2.40)
After discarding a bit from each row vector in H(t), we can calculate the average

bit error rate after Pass t by

p(t) =

(
n′
wt
− z1

)
· (wt − 1) · BER

(
p(t−1), wt

)
(

n′
wt
− z1

)
· (wt − 1) + z1 ·

∑m−1
l=1

(
wt

2l − 1
) .

+
z1 ·

∑m−1
l=1

{(
wt

2l − 1
) · BER

(
p(t−1), wt

2l

)}
(

n′
wt
− z1

)
· (wt − 1) + z1 ·

∑m−1
l=1

(
wt

2l − 1
)

(2.41)
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When wt is a power of 2, the splitting is unique (we do not care about the order).
Unfortunately, not every wt happens to be a power of 2. Hence the splitting is a
probabilistic process. For instance, when w = 7, it can be split in the following
three ways

7





3

4





2

2
{

1
1 ,

7





4

3





1

2
{

1
1 ,

and 7





4

3
{

2
1 .

The split

row vectors are with weights (3,2,1,1), (4,1,1,1), or (4,2,1).
We remark that during a bisective search to locate an error in a vector of weight

w, the average number of explicit bits showing up is between 2 and 7/3. The reason
is the following: during the bisective search, an error will lie in a vector of weight
either 2 or 3. When the error lies in a vector of weight 2, two bits will become
explicit (one in error, the other is correct); When the error lies in a vector of weight
3, with probability 1/3, only the error bit will become explicit, and with probability
2/3, three explicit bits will show up (one in error, the other two are correct), so
there are 1/3 + (2/3) · 3 = 7/3 explicit bits on average. We assume for reasons of
simplicity that 2 explicit bits will be exposed whenever an error is removed.

Now we show how to estimate p(t), taking into account the probabilistic behavior
of splitting in a binary search. Suppose that wt is divided into two halves, namely
wl =

⌊
wt

2

⌋
and wr = dwt

2 e. Since errors are randomly located, splitting will continue
with the left half with probability about wl

wt
while with the right half with probability

about wr

wt
. After splitting a vector of weight wt and discarding one bit from each

split sub-vectors, the number of bits contributes to the new reconciled string after
Pass t is given by the following recurrence relation

NUM(wt) =
wl

wt
[(wr − 1) + NUM(wl)] +

wr

wt
[(wl − 1) + NUM(wr)]

with initial value NUM(1) = 0. The sum of the corresponding error probabilities for
those bits is given recursively by

PROB
(
wt, p

(t−1)
)

=
wl

wt

[
(wr − 1) · BER

(
p(t−1), wr

)
+ PROB

(
wl, p

(t−1)
)]

+
wr

wt

[
(wl − 1) · BER

(
p(t−1), wl

)
+ PROB

(
wr, p

(t−1)
)]

with initial value PROB(1) = 0.
When the vectors of weight wt that have not been split are also taken into

account, the average bit error rate after Pass t is determined by

p(t) =

(
n′
wt
− z1

)
· (wt − 1) · BER

(
p(t−1), wt

)
+ z1 · PROB

(
wt, p

(t−1)
)

(
n′
wt
− z1

)
· (wt − 1) + z1 ·NUM(wt)

. (2.42)

Note that (2.41) is a special case of (2.42).
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The length of the working strings after Pass t is

n′′ = n′ − L(Pass t)
wt

[z1].

Let J (t) be the set of positions of those bits discarded during Pass t. Then
|J (t)| = L

(Pass t)
wt [z1]. The expected number of errors left after Pass t is

Remerr = n′ · p(t−1) −
∑

l∈J (t)

p
(t)
l .

Let z2 record the number of errors corrected from Pass t + 1 onwards. With
n′′, p(t), and z2 we can estimate the average bit error rate p[z2], given that z2 (z2 =
0, 1, . . . , Remerr) errors are removed during Pass t + 1, according to (2.38).

We shall now describe Pass t + 1 in greater detail. Let L
(Pass> t)
wt [z1] record the

number of bits discarded after Pass t given that z1 errors were corrected in Pass t.
Let U record the number of bits which were involved in Pass t + 1. U starts with 0,
and increases during Pass t + 1 until U = n′′, i.e., all bits are involved in some row
vectors in H(t+1).

Pass t + 1 begins with n′′ = n′ − L
(Pass t)
wt [z1], L

(Pass> t)
wt [z1] = 0, U = 0, z2 = 0

and p[z2] = p[0] = p(t).

Determine the optimal weight wopt
t+1[z2] with p[z2] according to (2.28). The prob-

ability that an odd number of errors occur in a vector of weight wopt
t+1[z2] in H(t+1)

is given by

Podd[z2] =
1− (

1− 2p[z2]

)wopt
t+1[z2]

2
.

Hence one expects to have created 1/Podd[z2] vectors of weight wopt
t+1[z2] created

before a vector catches an odd number of errors (which has to be split). On average,
the number of bits consumed by the 1/Podd[z2] vectors is about wopt

t+1[z2]/Podd[z2],
so

U ← U + wopt
t+1[z2]/Podd[z2].

Next, a process of correcting a pair of errors begins. The vector with an odd number
of errors is split about log

(
wopt

t+1[z2]
)

times to locate and correct an error. Another
error is corrected by splitting some vector of Pass t about log (wt) times. The
number of bits that have to be discarded in this process is about

D = 1/Podd[z2] + log
(
wopt

t+1[z2]
)

+ log (wt),

and
L(Pass> t)

wt
[z1] ← L(Pass> t)

wt
[z1] + D.

There are usually two other explicit bits showing up during the process that are
known to be correct. More precisely, there are usually 4 explicit bits, two are in
error and the other two are correct, among the D discarded bits. On the other hand,
all the errors among the D − 4 discarded bits (excluding the 4 explicit bits) also
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disappear due to discarding. We estimate this number of errors to be (D− 4) · p[z2].
Update Remerr and z2 by

Remerr ← Remerr − (D − 4) · p[z2] (2.43)

and z2 ← z2 + 2.
Repeat the above procedure until all bits in the working strings are involved in

some vectors. The number of bits contributing the last vector (before splitting) is
less than or equal to the current optimal weight. Pass t + 1 ends with Alice’s and
Bob’s working strings of length n′′ − L

(Pass> t)
wt [z1].

Generally, the number of the remaining errors after Pass t+1 (hence the average
bit error rate p(i) in Pass i, i > t + 1) is so small that the optimal weight wopt

i for

Pass i is half the length of the working string, i.e., wopt
i =

(
n′′ − L

(Pass> t)
wt [z1]

)
/2.

Alice and Bob construct one vector of weight wopt
i for error correction. Therefore,

passes after t + 1 turn out to be BICONF passes. A BICONF pass can detect an
error with probability about 1/2, so we expect an average of two BICONF passes
necessary to detect and remove one error. This error correction will also provoke
other error corrections in the previous passes.

When the vector constructed in Pass i detects and removes an error, in each of
the previous i − 1 passes, there is a vector containing this error and another error
is detected in this vector. There may be more than i errors eradicated since each
of the i errors may lead to additional error corrections. It is also possible that less
than i errors will be corrected but this happens with very small probability (unless
the number of remaining errors is less than i, in which case Pass i may remove all
the remaining errors). Nevertheless, we conservatively estimate that i errors will be
removed during Pass i in this case. The expected number of discarded bits is about

D = 1 + log (wt) +
∑z′

l=0

(
log wopt

t+1[l]/Podd[l]
)

∑z′
l=0 1/Podd[l]

+
i+1∑

l=t+2

log
(
wopt

l

)
,

where z′ denotes the number of errors corrected during Pass t+1. When the vector
constructed in Pass i detects no error, Alice and Bob only have to discard 1 bit.

Combining the above two cases, each case with probability 1/2, we have

D = 1 + 0.5 ·
(

log (wt) +
∑z′

l=0

(
log wopt

t+1[l]/Podd[l]
)

∑z′
l=0 1/Podd[l]

+
i+1∑

l=t+2

log
(
wopt

l

)
)

.

We put
L(Pass> t)

wt
[z1] ← L(Pass> t)

wt
[z1] + D.

Update Remerr and z2 by

Remerr ← Remerr − (D − 2i) · p[z2], (2.44)

and
z2 ← z2 + i.
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Continue with BICONF passes until there is no error left (z2 = Remerr) or all bits
are discarded (L(Pass> t)

wt [z1] = n′′).
If we consider the probabilistic error correction behavior of Pass t, the total

amount of information leaked to Eve, i.e., the expected number of bits discarded,
from Pass t onwards, is given by

g
(
n′, p(t−1), wt

)
=

max{n′p(t−1), n′/wt}∑
z1=0

Pr [Z1 = z1] ·
(
L

(Pass t)
wt [z1] + L

(Pass> t)
wt [z1]

)

∑max{n′p(t−1), n′/wt}
l=0 Pr [Z1 = l]

.

Therefore, the optimal weight wopt
t for Pass t is determined by

wopt
t =

{
w | g

(
n′, p(t−1), w

)
= min

x∈N, 2<x≤n′/2
g

(
n′, p(t−1), x

)}
.

The above analysis for the optimal wt assumes that n′ is divided by wt. This
assumption is not very realistic. Let w′ ≡ n′ (mod wt), then w′ is the weight of the
last vector of Pass t. Since w′ may vary from 0 to wt − 1, it is not wise to neglect
the last vector and take

⌊
n′
wt

⌋
as the number of vectors (some of them might be

split afterwards) created during Pass t, nor is it wise to take it for granted that
the last vector behaves like a vector of weight wt, and take

⌈
n′
wt

⌉
as the number of

vectors created during Pass t. It is better to consider the last vector of weight w′

independently.
The probability that an error may be corrected in the last vector of Pass t is

determined by

Pe =
1− (

1− 2p(t−1)
)w′

2
.

The probability that z1 errors are removed during Pass t is therefore given by

Qr[z1] =





(1− Pe) · Pr [z1] z1 = 0
Pe · Pr [z1 − 1] + (1− Pe) · Pr [z1] z1 = 1, 2, . . . ,

⌊
n′
wt

⌋

Pe · Pr [z1 − 1] z1 =
⌊

n′
wt

⌋
+ 1, if w′ 6= 0

. (2.45)

Here Pr [z1] is determined by (2.39).
Equation (2.42) should also be modified correspondingly to include the effect of

w′. We will show the modification later in Algorithm 2.5.2, which describes how to
determine wopt

t .
Let wl =

⌊
w
2

⌋
and wr = dw

2 e. Some functions are defined first.

• f(x, p) = log(x) + 2
1−(1−2p)x , where x ∈ N and 0 < p < 0.5.

• wopt = min
{
max {2, {w|f(w, p) = minx∈N f(x, p)}} , n

2

}
, the optimal weight

determined by the bit error rate p and the length n of Bob’s working string.
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•
SPLIT(w) = 1 +

wl

w
· SPLIT(wl) +

wr

w
· SPLIT(wr)

with initial value SPLIT(1) = 0. This function is used to evaluate the number
of splittings in a binary search to find an error in a vector of weight w. It is
more precise than log(w) since a splitting always results in 2 integers.

•

NUM(w) =
wl

w
· [(wr − 1) + NUM(wl)] +

wr

w
· [(wl − 1) + NUM(wr)]

with initial value NUM(1) = 0. It counts the number of remaining bits after
a vector of weight w is split to locate an error and the corresponding bits are
discarded.

•
BER (p, w) =

p · 1−(1−2p)w−1

2

p · 1−(1−2p)w−1

2 + (1− p) · 1+(1−2p)w−1

2

.

It estimates the a posteriori error probability for each bit in a vector of weight
w, given that the a priori error probability of each bit is p and the correspond-
ing syndrome for this vector is 0.

•

PROB(w, p) =
wl

w
· [(wr − 1) · BER (p, wr) + PROB(wl, p)]

+
wr

w
· [(wl − 1) · BER (p, wl) + PROB(wr, p)]

with initial value PROB (1, p) = 0. The sum of the bit error probabilities of
the remaining bits, after a vector of weight w is split to locate an error and
the corresponding bits are discarded.

•

DISC (w, p) =
wl

w
· [BER (p, wr) + DISC (wl, p)]

+
wr

w
· [BER (p, wl) + DISC (wr, p)]

with initial value DISC (1, p) = 0. The sum of the error probabilities of the
discarded bits, with explicit bits excluded, after a vector of weight w has been
split. If we include the explicit bits in the sum, it should be 1 + DISC (w, p) .

The notation used in Algorithm 2.5.2 is given below.

• n′: the length of Bob’s working string after Pass t− 1, i.e., the number of bits
to be involved in Pass t.
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• p(t−1): Bob’s average bit error probability after Pass t− 1.

• n′′: the length of Bob’s working string after Pass t, i.e., the number of bits to
be involved in Pass t + 1.

• wt: the weight of vectors used during Pass t.

• z1: the number of errors corrected in Pass t.

• Qr[z1]: the probability that z1 errors are removed during Pass t.

• z2: a counter recording the number of errors corrected from Pass t+1 onwards.

• z′: the number of errors corrected during Pass t + 1.

• p[z2]: Bob’s average bit error probability when z2 errors have been corrected
since Pass t + 1.

• wopt
t+1[z2]: the optimal weight of Pass t + 1 when z2 errors have been removed

since Pass t + 1.

• wopt
i , i > t + 1: the optimal weight of a new vector created during BICONF

Pass i.

• L
(Pass t)
wt [z1]: the number of bits discarded during Pass t given that z1 errors

are eliminated in Pass t.

• L
(Pass>t)
wt [z1]: the number of bits discarded from Pass t + 1 onwards until all

remaining errors are corrected, given that z1 errors are eliminated in Pass t.

• g
(
n′, p(t−1), wt

)
: the number of bits discarded from Pass t onwards until all

remaining errors are corrected, given that the two working strings are of length
n′ and with bit error probability p(t−1), and wt is chosen as the weight of
vectors in Pass t.

The algorithm to determine the optimal weight wopt
t is described as follows.

Algorithm 2.5.2

(1) Determine Qr[z1], z1 = 0, 1, . . . ,
⌈

n′
wt

⌉
.

(a) Podd =
1−(1−2p(t−1))wt

2 ;

Pr [Z1 = z1] =
(j n′

wt

k
z1

)
Podd

z1(1− Podd)
j

n′
wt

k
−z1 , for z1 = 0, 1, . . . ,

⌊
n′
wt

⌋
.

(b) w′ ≡ n′ (mod wt); Pe =
1−(1−2p(t−1))w′

2 .



2.5 Analysis of the Protocol 49

(c) Qr[z1] =





(1− Pe) · Pr [z1] z1 = 0
Pe · Pr [z1 − 1] + (1− Pe) · Pr [z1]) z1 = 1, 2, . . . ,

⌊
n′
wt

⌋

Pe · Pr [z1 − 1] z1 =
⌊

n′
wt

⌋
+ 1, and w′ 6= 0

(2) maxZ1 = min
{

n′p(t−1),
⌈

n′
wt

⌉}
; Qsum =

∑maxZ1
z1=0 Qr[z1].

For (z1 = 0; z1 ≤ maxZ1; z1 ← z1 + 1)
{
(a) If (w′ = 0){

L(Pass t)
wt

[z1] =
n′

wt
+ z1 · SPLIT(wt).

}
else{

L(Pass t)
wt

[z1] =
⌈

n′

wt

⌉
+(z1−1)·SPLIT(wt)+(1−Pe)·SPLIT(wt)+Pe·SPLIT(w′).

}
(b) If (w′ = 0){

p(t) =

(
n′
wt
− z1

)
· (wt − 1) · BER

(
p(t−1), wt

)
+ z1 · PROB

(
wt, p

(t−1)
)

(
n′
wt
− z1

)
· (wt − 1) + z1 ·NUM (wt)

.

}
else{

c1 = (1− Pe) ·
[(⌊

n′

wt

⌋
− z1

)
· (wt − 1) · BER

(
p(t−1), wt

)]

+ (1− Pe) ·
[
(w′ − 1) · BER

(
p(t−1), w′

)]

+ (1− Pe) ·
[
z1 · PROB

(
wt, p

(t−1)
)]

;

c2 = Pe ·
[(⌊

n′

wt

⌋
− z1 + 1

)
· (wt − 1) · BER

(
p(t−1), wt

)]

+ Pe ·
[
(z1 − 1) · PROB

(
wt, p

(t−1)
)

+ PROB
(
w′, p(t−1)

)]
;

d1 = (1− Pe) ·
[(⌊

n′

wt

⌋
− z1

)
· (wt − 1) + z1 ·NUM(wt) + (w′ − 1)

]
;

d2 = Pe ·
(⌊

n′

wt

⌋
− z1 + 1

)
· (wt − 1)

+ Pe · [(z1 − 1) ·NUM(wt) + NUM(w′)] ;

p(t) =
c1 + c2

d1 + d2
.
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}
(c) Determine p[z2].

Remerr = n′ ·p(t−1)−
⌊

n′

wt

⌋
·BER

(
p(t−1), wt

)
−z1 ·

[
1 + DISC

(
wt, p

(t)
)]

;

(2.46)
if (w′ 6= 0){

Remerr ← Remerr − (1− Pe) · BER
(
p(t−1), w′

)
− Pe ·DISC

(
w′, p(t)

)
;

}
n′′ = n′ − L(Pass t)

wt
[z1];

Pr [l] =
(

n′′

l

) (
p(t)

)l (
1− p(t)

)n′′−l

;

Pr [l| ≥ z2] =
Pr [l]∑

j≥z2
Pr [j]

;

p[z2] =
∑

l≥z2

Pr [l| ≥ z2]
l − z2

n′′ − 2z2
, z2 = 0, 1, . . . , Remerr.

(d) Determine L
(Pass>t)
wt [z1].

z2 = 0; U = 0; L
(Pass>t)
wt [z1] = 0; i = t + 2;

While (z2 ≤ Remerr) {
If

(
L

(Pass>t)
wt [z1] ≥ n′′

)
break;

If (U < n′′) {

wopt
t+1[z2] = min

{
max

{
2,

{
w|f(w, p[z2]) = min

x∈N
f(x, p[z2])

}}
,
n′′

2

}
;

Podd[z2] =
1− (

1− 2p[z2]

)wopt
t+1[z2]

2
;

D =
(

1
Podd[z2]

+ SPLIT
(
wopt

t+1[z2]
)

+ SPLIT(wt)
)

;

L(Pass>t)
wt

[z1] ← L(Pass>t)
wt

[z1] + D;

U ← U +
wopt

t+1[z2]
Podd[z2]

;

Remerr ← Remerr − (D − 4) · p[z2];
z2 ← z2 + 2; (2.47)
z′ = z2;

}
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else {

wopt
i =

n′′ − L
(Pass>t)
wt [z1]
2

;

D = 1 +
1
2
SPLIT(wt) +

1
2

∑z′

l=0

(
SPLIT

(
wopt

t+1[l]
)
/Podd[l]

)
∑z′

l=0 1/Podd[l]

+
1
2

i+2∑

l=t+2

SPLIT
(
wopt

l

)
;

L(Pass>t)
wt

[z1] ← L(Pass>t)
wt

[z1] + D;
Remerr ← Remerr − [D − 2i] · p[z2];

z2 ← z2 + i;
i ← i + 1;

} } }

(3) Determine g
(
n′, p(t−1), wt

)
.

g
(
n′, p(t−1), wt

)
=

maxZ1∑
z1=0

Qr[z1]
Qsum

·
(
L(Pass t)

wt
[z1] + L(Pass>t)

wt
[z1]

)
(2.48)

(4) Determine the optimal weight for Pass t

wopt
t =

{
w | g

(
n′, p(t−1), w

)
= min

x∈N, 2<x≤n′/2
g

(
n′, p(t−1), x

)}
. (2.49)

Through the algorithm, we assume that the total number of errors in Bob’s origi-
nal string is n′p(t−1). Hence the computational overload is of order about n′2p(t−1)/2
and memory overload about n′. We may consider the number of errors in Bob’s orig-
inal n′-bit string as a random variable, say Z. The probability that z errors exist in
Bob’s n′-bit string is

Pr [Z = z] =
(

n′

z

)(
p(t−1)

)z (
1− p(t−1)

)n′−z

,

where z = 0, 1, . . . , n′.
All places where n′p(t−1) appears in the above algorithm are replaced by z.

Therefore,

maxZ1 = min
{

z,

⌈
n′

wt

⌉}
,

and

Remerr = z −
⌊

n′

wt

⌋
· BER

(
p(t−1), wt

)
− z1 ·

[
1 + DISC

(
w, p(t)

)]
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should replace (2.46). Equation (2.48) is replaced by

g
(
n′, p(t−1), wt

)
=

n′∑
z=0

Pr [Z = z]
maxZ1∑
z1=0

Qr[z1]
Qsum

·
(
L(Pass t)

wt
[z1] + L(Pass>t)

wt
[z1]

)
.

However, this way will increase the complexity of the algorithm up to n′2.

2.5.4 Simulation Results
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Figure 2.6: Estimated and simulated values of the amount of leaked bits as a function
of the weight of vectors w1

Let n = 1000, p = 0.01, and w1 vary from 3 to 500. Then t = 1 and n = n′ since
p < 0.20. With Algorithm 2.5.2, we can estimate the amount of leaked information
g (n, p, w1) for different values of w1. The value of g (n, p, w1) as a function of w1

is shown by the dotted line in Figure 2.6. The solid line shows the corresponding
simulation results of the amount of bits, denoted by L, leaked to Eve in our protocol.
We stopped our protocol when 10 successive BICONF passes detected no error. It
turns out that no error is left after our protocol stops. Therefore, the gap between
L and g (n, p, w1) should approximately be 10 if g (n, p, w1) is properly estimated.
In Figure 2.6, however, L− g (n, p, w1) ≤ 10. We see the following two explanations.
Errors are corrected by pairs in Pass 2, one in some vector of Pass 2, the other in
some vector of Pass 1. We assume that the number of splittings in a vector of Pass 1
is log(w1). However, the vector might have already been split during Pass 1, so the
number of further splittings is less than log(w1). The other reason is given by our
pessimistic estimation of the bit error rate from Pass 2 onwards and our conservative
estimate of number of errors which disappeared due to discarding them rather than
correcting them (see (2.43) and (2.44)).
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The minimal value 93.871 of L is achieved at w1 = 67 according to the simulation
results. We do observe that L does not change much in value when 50 ≤ w1 ≤ 500.
Our estimated optimal value w1 = 72 comes up with L = 94.08, which is very close
to the minimal value 93.871. The simulated value of the information rate of our
protocol is given by R0(0.01) = 1− L/n = 1− 94.08/1000 = 0.9059 when w1 = 72.

In Table 2.3 we compare values of wopt
1 obtained by (2.49) for p = 0.01, 0.05,

0.10, 0.15 and n = 1000, 10000, with those used in Cascadeopt . The Cascadeopt

protocol also stops after 10 successive BICONF passes detect no error. The rule
for determining optimal weights in Cascadeopt is independent of the length of the
working string. But in our protocol the string length also has some influence on
the optimal weights. Since the optimal block lengths in Pass 2 in our protocol are
varying, we determine the average value wopt

2 [z2] of the simulation results and give
the range for the optimal value of w2, namely

(
wopt

2 [0] ∼ wopt
2 [z′]

)
, where z′ is the

number of errors corrected during Pass 2.

protocol p = 0.01 p = 0.05 p = 0.10 p = 0.15
Cascadeopt for w1 70 14 7 4
Cascadeopt for w2 301 61 31 25

Ours for w1 and n = 1000 72 16 8 6
Ours for w2 and n = 1000 128 ∼ 293 22 ∼ 126 10 ∼ 76 8 ∼ 55
Ours for w1 and n = 10000 64 16 8 5
Ours for w2 and n = 10000 136 ∼ 939 22 ∼ 268 10 ∼ 129 6 ∼ 102

Table 2.3: Optimal weights of the first two passes in Cascadeopt and our protocol

In Table 2.4, we show our simulation results of the information rate R0(p) for
our protocol and the Cascadeopt protocol for n = 1000 and n = 10000 as the length
of the working strings.

protocol R0(0.01) R0(0.05) R0(0.10) R0(0.15)
Cascadeopt n = 1000 0.904614 0.686502 0.486143 0.328317
Cascadeopt n = 10000 0.915799 0.699131 0.499266 0.341535

Ours n = 1000 0.905915 0.693869 0.505117 0.352883
Ours n = 10000 0.916442 0.705208 0.516097 0.364690

Upper bound for R0(p) 0.919200 0.713600 0.531100 0.390200

Table 2.4: Information rates of Cascadeopt and our protocol

It is easy to see that the performance of our protocol is better than Cascadeopt

especially for large n and p.
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2.5.5 Why Discarding Bits from Pass to Pass

We have two choices to execute our protocol. First, we can discard k(i) bits (each is
part of a parity check set) during Pass i. These bits will not play a role in the next
passes and they will not contribute to the final reconciled strings. The other choice
is to keep those bits, let them take part in the next passes and let them contribute to
the final reconciled strings (in fact, this is what Cascade and Cascadeopt did). The
first strategy shrinks strings from pass to pass, while the second keeps the length of
strings unchanged. The problem now is to find out which strategy is better.

To get some idea, we first discuss a simple case. Suppose that a parity check set
with syndrome 1 contains only two bits. Then a binary search will split the two bits
into two individual bits, one in error and the other correct. It is obvious that it is
not wise to let these two bits take part in next passes since they are known exactly
by Alice, Bob, and Eve, and will not play a role in the protocol. The following
theorem considers a general case. It shows that if we discard a bit from each parity
check set in the protocol, we do not change the marginal probability distribution of
the error pattern given the syndrome vector.

Theorem 2.5.3 Let Hk×n, k ≤ n, be a rank k matrix. Let E = (E1, E2, . . . , En)
denote a row vector of n random variables each defined on {0, 1} and let ST = HET .
So, S is a random variable defined on {0, 1}k.

For any e ∈ {0, 1}n and for any k × k non-singular submatrix H ′ of H with
columns indexed by 1 ≤ j1 < j2 < · · · < jk ≤ n

Pr
[
E = e | ST = HeT

]
= Pr

[
Ẽ = ẽ | ST = HeT

]
,

where Ẽ and ẽ are n − k dimensional vectors formed from E resp. e by removing
the coordinates j1, j2, . . . , jk.

Proof: Since H ′ is non-singular, there exist non-singular matrices Pk×k and Qn×n

such that HQ = (H ′||H ′′) and PHQ = (I||A) , where || denotes a concatena-
tion. Let S′T = PST , E′T = Q−1ET =

(
E1

′||E2
′)T

. We know that (I||A)E′T =

(I||A)
(
E1

′||E2
′)T = S′T , i.e., E1

′T + AE2
′T = S′T . Hence

Pr
[
E = e | ST = HeT

]
= Pr

[
Q−1ET = Q−1eT | PST = PHQQ−1eT

]

= Pr
[
E′ = e′ | S′T = (I||A) e′T

]
= Pr

[
(E1

′||E2
′) = (e1

′||e2
′) | S′T = (I||A)

(
e1
′||e2

′)T
]

= Pr
[
E1

′ = e1
′, E2

′ = e2
′ | S′T = e1

′T + Ae2
′T

]

=Pr
[
E2

′ = e2
′ | S′T = e1

′T + Ae2
′T

]
· Pr

[
E1

′ = e1
′ | E2

′ = e2
′, S′T = e1

′T + Ae2
′T

]

=Pr
[
E2

′ = e2
′ | S′T = e1

′T + Ae2
′T

]
= Pr

[
E2

′ = e2
′ | ST = HeT

]

=Pr
[
Ẽ = ẽ | ST = HeT

]
.
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In the last step but two, we use the fact that E1
′T = S′T − AE2

′T , which implies
that

Pr
[
E1

′ = e1
′ | E2

′ = e2
′, S′T = e1

′T + Ae2
′T

]
= 1.

tu
The above theorem shows that if we choose the proper k bits to discard it makes

no difference for Bob’s marginal probability distribution of the error pattern given
the syndrome vector and the parity matrix H. In our protocol, from the index set
of each parity check vector hm, we discard its first bit (hm)lm

, so (hr)lm
= 0 for

r > m. If we collect the k column vectors obtained in this way, we get a k × k
matrix,

H ′
k×k =




1 ∗ . . . ∗
0 1 . . . ∗
...

... . . . ∗
0 0 . . . 1


 ,

which is obviously of full rank. According to Theorem 2.5.3, Bob’s marginal prob-
ability distribution of the error pattern remains unchanged. On the other hand, if
we discard bits from each pass to the next, in the way explained above, the protocol
is more efficient since the strings shrink and the discarding bits may contain errors.

2.5.6 Eve’s Strategy

At the beginning of our protocol, Eve may have more information about Alice’s
string than Bob has. However, with the protocol being executed, Bob gains more
and more advantage over Eve and finally he arrives at a common string with Alice,
while still leaving Eve with some uncertainty about it. The question is what Eve can
do with the parity check information exchanged by Alice and Bob over the public
channel.

Eve’s a priori bit error probability is p′ = pA + pE − 2pApE in the satellite
scenario. Since she knows H, she can construct the belief network just as Bob
can. She also knows her syndrome vector s′T = He′T and Bob’s syndrome vector
sT = HeT . Here e′ and e are the error patterns between Alice’s and Eve’s strings
and between Alice’s and Bob’s.

Since the weight of vectors is 2 up to Pass t − 1, Eve knows that Bob’s error
pattern for a particular vector is (0, 0) or (1, 1) if Bob’s corresponding syndrome is
0. On the other hand, the belief network has no loop. As shown in Subsection 2.5.2,
our protocol in the first t − 1 passes is just the same as a [2, t − 1] iteration pro-
tocol. So Eve can use her syndrome information s′ and Bob’s s to compute her
marginal, a posteriori probabilities on the individual bits according to (2.9). Let
these probabilities be denoted by p′(t−1)

l , l = 1, 2, . . . , n. Eve does the corresponding
error correction which results in the optimal strategy for her.

In Pass t, there is still no loop in the belief network, but the weight wt is larger
than 2. Bob’s error patterns become elusive and it is harder for Eve to include all
possible error patterns of Bob in her error correction.
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After Pass t, say Pass i with i ≥ t + 1, the topology of the belief network
contains loops. The computation of the a posteriori probabilities has been shown to
be intractable in [61] for belief networks that correspond to the problem He′T = s′T

and that contain loops. However, as [40] shows, Eve’s aim is to decode e′ from
He′T = s′T , and the a posteriori probabilities are not required for the correct
decoding. Neglecting Bob’s syndrome information, Eve can indeed run the BPD
(p′(t−1)

,H ′, s′) algorithm for Pass i, i ≥ t, in the following way, where

H ′ =
(
H(t)T

,H(t+1)T
, . . . , H(i)T

)T

is the parity check matrix constructed from Pass t to i, and

p′(t−1) = (p′(t−1)
1 , p′(t−1)

2 , . . . , p′(t−1)
n )

is the a priori error probabilities for Eve’s bits.

Initialization. For every (l,m) such that Hml = 1, let q0
ml = 1 − p′(t−1)

l and
q1
ml = p′(t−1)

l .
Horizontal Step. Compute r0

ml and r1
ml with (2.30) and (2.31).

Vertical Step. Update q0
ml and q1

ml with (2.32) and (2.33).
The algorithm iterates between the horizontal step and the vertical step. For

each iteration, compute the “pseudo-posterior probabilities”

q0
l = αl ·

(
1− p′(t−1)

l

)
·

∏

m∈M(l)

r0
ml,

q1
l = αl · p′(t−1)

l ·
∏

m∈M(l)

r1
ml,

where the scalar αl is chosen such that q0
l + q1

l = 1. If q1
l > 0.5, set e′l = 1 otherwise

e′l = 0. Check if H ′e′T = s′T is satisfied. Stop when it is but also stop when the
number of the iteration reaches a threshold (for example 30).

It should be noted that Eve’s strategy to decoding is not optimal because the
belief network contains loops and Eve does not use Bob’s syndrome information
sT = HeT . However, since H is usually a very sparse matrix, the performance of the
BPD-algorithm is much better (see [40]) than if the parity check matrix of a standard
error correction code such as the BCH code or RM code is used. For example, when
pA = pB = 0.02566, pE = 0.01512, we get p = pA + pB − 2pApB = 0.05, and
p′ = pA + pE − 2pApE = 0.04. We show the simulation results for Eve compared to
Bob in Figure 2.7 for the case that the probability that Bob’s working string is not
error free is approximately 10−5.

Suppose that β is the expected bit error rate of Bob’s reconciled string after
discarding k bits in our protocol. Then the information rate Rβ(p) is given by
Rβ(p) = (n−k)/n. According to Shannon’s limit theorem, nh(p) ≤ k +(n−k)h(β)
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Figure 2.7: Bob’s and Eve’s average output bit error rate versus the information
rate for n = 100, 200, 500, 1000, p = 0.05 and p′ = 0.04.

which implies that Rβ(p) ≤ 1−h(p)
1−h(β) . This is the upper bound on Bob’s information

rate.
We also compute Eve’s information rate Rγ(p′) with γ the value of expected

output bit error rate of Eve. From Figure 2.7, we see that Bob’s information rate
approaches the lower bound for increasing values of n. Eve’s a priori bit error prob-
ability p′ = 0.04 is smaller than Bob’s p = 0.05, but Eve approaches her limit slower
than Bob for increasing n. When n is large enough (n ≥ 500 in our simulation),
Bob’s average a posteriori bit error rate β could be smaller than Eve’s γ.

2.6 Relationship with Other Protocols

In this section, we show the connections between our protocol and other known
protocols. We present the corresponding simulation results.

2.6.1 The Bit Pair Iteration Protocol

When the optimal weight (block length) determined by the bit error probability is
2, our general protocol reduces to the bit pair iteration protocol as described in
Section 2.2.3. Bob can determine the a posteriori probabilities for each of his bits
with the BPD-algorithm, just as we did in the analysis of the bit pair iteration
protocol in Section 2.2.3. On the other hand, when the bit error probability p
between Alice’s and Bob’s strings is smaller than 0.20, the optimal weight is larger
than 2 and the bit pair iteration protocol is not the best choice any more.

For the example of Subsection 2.5.6, our protocol can achieve a much larger
information rate than the bit pair iteration protocol, as illustrated in Table 2.5.
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protocol β Rβ(0.05)
bit pair iteration protocol (1 round) 0.002763 0.500

our protocol n =1000 0.002763 0.699
bit pair iteration protocol (2 round) 0.000008 0.249

our protocol n =1000 0.000008 0.613

Table 2.5: Comparison of our protocol and the bit pair iteration protocol

2.6.2 The BICONF Primitive

In our protocol, after Pass t + 1, the average bit error rate p(t+1) (according to
simulation) is so small that BICONF passes are enough to eliminate the remaining
errors. The difference between BICONF pass and BICONF primitives is that if an
error is found in some BICONF pass, other errors may be located by looking back
to the parity check vectors of previous passes.

2.6.3 The Cascadeopt Protocol

The connection and difference between the Cascadeopt protocol and our protocol
are shown below.

• The Cascadeopt protocol functions efficiently only when p < 0.20. When
p ≥ 0.20, the number of passes needed to remove most errors in such a recon-
ciliation protocol is larger than 2. Our protocol is more general since it applies
to p < 0.5. More precisely, there are t−1 passes in our protocol to make Bob’s
bit error probability less than 0.20.

• The first two passes of the Cascadeopt protocol correspond to Pass t and
Pass t + 1 of our protocol. Our protocol shares with Cascadeopt almost the
same principle for determining the optimal block lengths for the two passes.
The principle is to minimize the amount of information leaked during the two
passes, based on the fact that almost all errors are removed in these two passes.
However, the optimal block length wt+1 for Pass t+1 in our protocol is chosen
dynamically with the current average bit error rate. It increases during Pass
t + 1 rather than staying constant like w2 does in the Cascadeopt protocol.

• Our protocol needs more memory and computational overload to estimate the
optimal weights in Pass t and Pass t + 1. The main cost is Algorithm 2.5.2,
which has a computational overload of order n′2p(t−1)/2 and memory overload
of order n′ to get wopt

t . Recall that the bit error rates before Pass t can be
got from Algorithm 2.5.1, the bit error rate after Pass t can be computed by
Equation (2.36) and (2.37), and that after Pass t by Equation (2.38). Since
all the bit error rates are got with almost no computational and memory
overload, the dynamic optimal weight wopt

t+1 during Pass t + 1 can be got from
Equation (2.28) almost for free.
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• The Cascadeopt protocol does not discard any bit. In our protocol, bits (one
bit from each block) are discarded with passes going on to compensate the
syndrome (parity) information leaked to Eve. So, the working strings are
shrinking from pass to pass. Discarding bits also helps error correction because
errors may also be discarded.

• Simulation results show that our protocol comes up with a better performance
(a higher information rate) than the Cascadeopt protocol.

2.6.4 Van Dijk and Koppelaar’s Protocol
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Figure 2.8: The average output bit error rate β versus the information rate Rβ(0.05)
for n = 100, 200, 500, 1000 with the DK protocol and our protocol

In [19], Van Dijk and Koppelaar suggest that the parity check matrix H should
be constructed row by row. When a new row is created, the average bit error rate is
estimated by the number of errors that have been corrected and the optimal weight
of the vectors is computed according to (2.28). They propose to use the number of
corrected errors to estimate the average bit error rate. However, the information on
the number of corrected errors is not sufficient for accurately estimating bit error
probabilities.

In our protocol, we also construct H row by row. But we use the BPD-algorithm
to calculate the exact a posteriori probabilities of individual bits from the syndrome
information sT = HeT in Pass i, 1 ≤ i ≤ t. Only when the BPD-algorithm does not
work due to the loops in the belief network defined by H, do we use the number
of corrected errors to estimate the bit error rate in Pass t + 1 as they did in their
protocol (which we call the DK protocol). After Pass t, there are only very few
errors left, and BICONF passes are enough to eliminate the remaining errors.
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The simulation results in Figure 2.8 show that our protocol is much better than
the DK protocol. The information rate in the DK protocol even decreases when n
is increasing, which is not logical.

2.7 Conclusion

The problem of advantage distillation and information reconciliation can be de-
scribed as how Alice and Bob can construct an [n, n−k] code with information rate
R = (n−k)/n such that Bob can correct all the errors in his codeword, while leaving
errors in Eve’s string. We presented a protocol to define such a code by constructing
a parity check matrix Hk×n row by row from pass to pass with the help of a public
discussion between Alice and Bob. Our aim was to get a parity check matrix that
leaks as little syndrome information to Eve as possible while correcting as many
errors as possible. This gave rise to (2.28), Algorithm 2.5.1, and Algorithm 2.5.2 to
compute the optimal block length for each pass.

Suppose that t is the first pass in which the optimal weight (block length) wt

exceeds 2. In passes i, i < t, Bob can use the BPD-algorithm introduced in [40]
to determine the individual a posteriori bit error probabilities because of the tree
shape of the belief network and the sparsity of the parity check matrix. Therefore,
the optimal block length for passes i, i ≤ t, can always be determined. But Pass
t is an exception to the optimal weight rule defined by (2.28). Since parity check
vectors of Pass t are also involved in error corrections in Pass t + 1 and almost all
errors are removed during Pass t and Pass t + 1, the optimal weight wt for Pass t
should be chosen such that the amount of information exchanged over the public
channel to correct all the errors is as small as possible. For passes i, i > t, we could
not determine the exact a posteriori bit error probabilities. However, with the help
of the number of errors corrected during Pass t + 1, a rough estimate of the average
bit error rate is determined and used to determine the optimal weight wt+1. It turns
out that wt+1 is increasing during Pass t+1 due to error corrections by parity check
vectors of Pass t. For Pass i, i > t + 1, simulation results show that the bit error
rate is so small that it is enough to set wi to half the length of the working string.
Therefore, BICONF passes are enough to eliminate the remaining few errors.

We also prove that there is no influence on the marginal probability of Bob’s
error pattern if Alice and Bob discard one bit from each parity check set.

Simulation results compared our protocol and other known AD/IR protocols.
They show that our protocol can achieve a much higher information rate. We
also discussed connections between our protocol and other AD/IR protocols. Our
protocol turns out to reduce to the bit pair iteration protocol for Pass i < t. For
Pass t and t+1, it proceeds like Cascadeopt protocol, but more optimized, while for
passes i with i > t + 1 it runs BICONF primitives.

Finally, we conclude that the authenticity of the public channel can be changed
to an advantage between Alice and Bob over Eve, in terms of the mutual information
between them.



Chapter 3

Privacy Amplification

3.1 Introduction

Privacy amplification is necessary when two parties want to distill a secret key
from a large amount of common but partially secret strings. This idea was first
proposed by Bennett et al. [4], further studied in [5, 3]. It serves as an important
building block in information-theoretic secret key agreement protocols and quantum
key agreement protocols.

Suppose that Alice and Bob share an n-bit string S about which the adversary,
Eve, has some information, which will be denoted by Z = z. The standard way
to realize privacy amplification is that Alice randomly chooses a function from a
proper class of hash functions and sends the description of this function to Bob over
a public channel. Alice and Bob take the hash value of S as their secret key, while
Eve’s partial uncertainty about S develops to almost full uncertainty about the final
secret key.

Like information reconciliation, privacy amplification also involves a public dis-
cussion between Alice and Bob. A considerable portion of the methods proposed in
the literature makes use of a perfect authentic public channel (for instance, the per-
fection made possible by error correction code techniques). As a result, everybody,
including Eve, can learn the entire content of the transmissions over this public
channel. On the other hand, the transmissions over the public channel cannot be
modified or suppressed by Eve without detection. With such a channel, Eve can
only carry out a passive attack. The length r of the final distilled secret key is upper
bounded by Eve’s Rényi entropy about S, i.e., r ≤ H2(S|Z = z), as we shall show
later in this chapter.

The authenticity can be ensured by the physical properties of some channels,
for instance newspapers are often proposed in public key cryptosystems and digital
signature systems for disclosing public keys. However, using newspapers for a public
discussion is too inefficient to be practical.

A more reasonable assumption is that the public channel is non-authentic, i.e.,

61
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when Eve can also perform an active attack. Then a problem arises, that is, how
to achieve authenticity over this non-authentic public channel. Two approaches to
realize privacy amplification over a non-authentic channel have been proposed, each
in its own setting.

Approach 1 Alice and Bob share an extra (but shorter) secret key besides the
partially secret string S. Alice and Bob use the secret key for unconditionally
secure authentication during the privacy amplification process.

Approach 2 Only a partially secret string S is available to Alice and Bob. They
use one part of S for unconditionally secure authentication and the other part
for distilling a secret.

The first approach is suggested in [3] and is based on the theory of unconditional
authentication. A shorter secret key between Alice and Bob is used besides the
partially secret string. Like with the one-time pad, the secret key can only be used
once to ensure unconditional authenticity for privacy amplification. This privacy
amplification may result in a longer secret key, part of which can then be used
to replace the used-up short secret during a subsequent authentication. However,
it is possible that a malicious opponent may repeatedly interfere with the public
discussion between Alice and Bob so that Alice and Bob exhaust their entire supply
of authentication keys without obtaining any new secret key. This observation
implies that Approach 1 can not appropriately refill the authentication key when
Eve performs a continuous active attack.

The second approach is proposed by Maurer et al. in [52]. Authentication is
now achieved by sacrificing part of the partially secret string shared by Alice and
Bob. Results show that a one-way transmission protocol for privacy amplification
against active attacks is possible as long as Eve’s min-entropy H∞(S|Z = z) (see
Definition 1.2.7 in Chapter 1 ) about S is larger than 2n/3. Later, Wolf [62] used an
interactive protocol to prove that privacy amplification against active attacks with
strong robustness (see Definition 3.4.1 in Section 3.4) is possible as long as Eve’s
Rényi entropy about S, so H2(S|Z = z), is larger than 2n/3 and n is large enough.

In this chapter, we study the two approaches, and also present a third approach
to the problem of privacy amplification over a non-authentic public channel.

Approach 3 Alice and Bob share two independent partially secret strings, SI and
SII . One is used for authentication and the other is for the distillation of a
secret.

The three different approaches apply to different settings. Approach 3 can be
viewed as a kind of compromise between the two other approaches. Notice that
Approach 3 is not impractical since Alice and Bob can always run information-
theoretic secret key agreement protocols [48], each one independent of the others,
to obtain independent partially secret common strings.

In the next section, we first review the known results about privacy amplification
over an authentic channel. To handle non-authentic channels we need authentica-
tion codes to provide authenticity for the channel. Authentication codes (A-codes)
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constructed by means of the so-called ε-almost strongly universal2 class of hash
functions are given and the relationship between the cardinality of source states,
encoding rules, authenticators, and the probability of Eve’s successful attacks are
shown in Section 3.3. We shall deal with A-codes under the assumption that the en-
coding rules are uniformly distributed to Eve, i.e., Eve knows nothing about them,
and under the further assumption that the encoding rules are partially secret to
Eve. In Section 3.4 we shall show how in different settings of privacy amplifica-
tion protocols one can use different A-codes to achieve authentication. In the final
section, some conclusions will be presented.

This chapter is mainly based on [37].

3.2 Privacy Amplification over an Authentic Channel

After the first two phases in an information-theoretic secret key protocol (see Chap-
ter 1), namely the advantage distillation phase and the information reconciliation
phase, Alice and Bob arrive at a common string. However, Eve has gained some
information about it due to the side information exchanged by Alice and Bob over
the public channel. As an example, consider a quantum key distribution scheme in
which the secret bits are encoded in non-orthogonal states of a quantum system.
Eve is prevented from getting complete information about the secret bits due to the
uncertainty principle of quantum mechanics, but she does gain some partial infor-
mation by specific measurements. She also gets more information when Alice and
Bob reconcile their quantum bits over a public channel.

Eve’s information about Alice’s and Bob’s common string S can be classified
into two types, namely deterministic information and probabilistic information. Let
the random variable Z denote Eve’s information about S.

• In the deterministic case, we shall say that Eve knows t bits determined from
the n-bit string S. So, Z = e(S), where e : {0, 1}n → {0, 1}t is some given
function.

• In the probabilistic case Eve knows H(S|Z) Shannon bits about S.

We can see that deterministic information is a specific kind of probabilistic in-
formation, therefore probabilistic information is more general to characterize Eve’s
information.

In the satellite scenario (see Section 1.4 in Chapter 1), Alice, Bob, and Eve receive
noisy versions of the same binary, satellite output. Eve gets some probabilistic
information about Alice’s (or Bob’s) string.

In the quantum setting, Eve can perform canonical measurements to some inter-
cepted or split light pulses that have been sent by Alice to Bob. She obtains deter-
ministic bits (physical bits in fact) after the public announcement of the canonical
bases since she will definitely get a specific quantum bit if her measurement for it
coincides with the right measurement basis. If Eve uses the Breidbart basis to mea-
sure the light pulses, she will get the bit with error probability 0.15, so she obtains
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probabilistic information in this case. During the advantage distillation or infor-
mation reconciliation phase, Alice and Bob will use the public channel to exchange
some parity check bits about their own strings. These parity check bits are also
available to Eve as deterministic bits.

When we say that Eve knows t deterministic bits of the n-bit string S, it may be
the case that Eve knows t physical bits of S but Alice and Bob do not know which t
positions, or that Eve knows t parity check bits of S, or even that Eve has access to
the output of an arbitrary function e : {0, 1}n → {0, 1}t of her choice, which is not
known to Alice and Bob. In this case, Alice and Bob can distill about r = n−t highly
secret bits from S, as long as they choose randomly a function g from a universal2
class of hash functions from {0, 1}n to {0, 1}r and take the hash value g(S) as the
final secret string (here “highly secret” means that Eve has negligible information
about the finally distilled secret bits) . Such a universal2 class of functions is a set
of hash functions from {0, 1}n to {0, 1}r such that the hash values of two different
elements from {0, 1}n collides with a probability at most 2−r (see Definition 3.3.3
in Subsection 3.3.1 for more details). The above is summarized in the following
theorem by Bennett, Brassard, and Robert [5].

Theorem 3.2.1 Let S be a random n-bit string with uniform distribution over
{0, 1}n and let Z = e(S) for an arbitrary eavesdropping function e : {0, 1}n → {0, 1}t

for some t < n. Further, let s < n − t be a positive security parameter and put
r = n − t − s. Suppose that Alice and Bob choose S′ = G(S) as their secret key,
where G denotes a random choice from a universal class of hash functions from
{0, 1}n to {0, 1}r. Then Eve’s expected information about the secret string S′, given
G and Z, satisfies

I(S′; G,Z) ≤ 2−s/ ln 2.

In the more general case that Eve gets probabilistic information Z about S, Eve
obtains t = H(S|Z) Shannon bits. However, unlike in Theorem 3.2.1, Alice and
Bob can not generate n − t − s secret bits. The length of secret string that Alice
and Bob can distill from S is measured by Eve’s Rényi entropy of order 2, as shown
in the following theorem from [3].

Theorem 3.2.2 Let PSZ be the joint probability distribution of S and Z and let z
be the particular value of Z observed by Eve. If Eve’s Rényi entropy H2(S|Z = z)
about S is known to be at least c and Alice and Bob choose S′ = G(S) as their secret
key, where G is chosen at random from a universal class of hash functions from S
to {0, 1}r, then

H(S|G, Z = z) ≥ r − log
(
1 + 2r−c

) ≥ r − 2r−c

ln 2
.

It should be pointed out that Theorem 3.2.2 holds only for H2(S|Z = z) ≥ c,
but can not be generalized to Rényi entropy conditioned on a random variable, i.e.,

H(S|G,Z) ≥ r − 2r−H2(S|Z)

ln 2
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is not true in general when H2(S|Z) ≥ c.
We shall now describe how to achieve privacy amplification over an authentic

public channel (see also Figure 3.1). The notation g ∈R G denotes a random choice
of an element g from a set G, and LSBr(x) stands for the r least significant bits of
a string x. Alice’s and Bob’s initial states are called reject.

Let · denote the multiplication of two elements in the finite field GF (2n).

Alice Bob

S ∈ GF (2n) S ∈ GF (2n)
g ∈R GF (2n) g−−−−−−→

S′A = LSBr(g · S) S′B = LSBr(g · S)
accept accept

Figure 3.1: Protocol for privacy amplification over an authentic channel

The class of hash functions fg : {0, 1}n → {0, 1}r with fg(s) = LSBr(g · s) is a
universal2 hash function (see Example 3.3.5 in Subsection 3.3.1).

Another way to implement privacy amplification is to use extractors. The idea
of extractors is to use a small number of truly random bits to distill randomness
from some partially secret string. The advantage of an extractor is that the number
of truly random bits used for distillation is only an asymptotically small fraction of
the total number of partially secret bits. However, the number of final secret bits is
measured by the min-entropy and extractors exist only theoretically.

Below is a formal definition of an extractor.

Definition 3.2.3 A function E : {0, 1}n × {0, 1}d → {0, 1}r is called a (δ′, ε′)-
extractor if for any distribution P on {0, 1}n with min-entropy H∞(P ) ≥ δ′n, the
variational distance of the distribution of [V,E(X, V )] to the uniform distribution
over {0, 1}d+r is at most ε′ when choosing X according to P and V independently
according to the uniform distribution over {0, 1}d.

It was shown in [78] that for every choice of n, 0 < δ′ < 1, and ε′ > 0, there
exists a (δ′, ε′)-extractor

E : {0, 1}n × {0, 1}O((log(n/ε′))2 log(δ′n)) → {0, 1}δ′n−2 log(1/ε′)−O(1).

The following theorem was proved in [64] as a consequence.

Theorem 3.2.4 Let δ′,41, and 42 > 0 be constants. Then for all sufficiently large
n, a function

E : {0, 1}n × {0, 1}d → {0, 1}r,

exists with d ≤ 41n and r ≥ (δ′−42)n, such that for all random variables T ∈R T
with T ⊆ {0, 1}n and with

H∞(T ) > δ′n
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we have
H(E(T, V )|V ) ≥ r − 2−n1/2−o(1)

.

3.3 Authentication Codes

Before we can discuss privacy amplification over a non-authentic public channel,
authentication codes need to be studied, since these codes can provide unconditional
authenticity for a public channel.

First we introduce the terminology of authentication codes. A general authenti-
cation code is a triple (G,S,M) of finite sets and a map e : G × S →M. Here G is
called the set of source states, which are pieces of information to be transmitted. For
any specific s, s ∈ S, which is called an encoding rule, the map e maps G to a subset
of M, the set of messages, of size |G|. An encoding rule is also called an authenti-
cation key, and it is the common information shared by Alice and Bob beforehand,
but Eve has no access to it. There are two kinds of attacks. In an impersonation
attack, Eve inserts a message on the channel and impersonates the sender. In a
substitution attack, Eve replaces a correct message over the channel by a false one.
The success probabilities for Eve when trying these attacks are denoted by PI and
PS , respectively. The probability of deception is defined by PD = max(PI , PS). For
any authentication codes, we have the trivial inequalities PI ≥ |G|

|M| and PS ≥ |G|−1
|M|−1 .

In the context of privacy amplification, Alice randomly chooses a hash function,
denoted by the random variable G, from a class of hash functions, and transfers
it to Bob. As shown in Figure 3.1, the random variable G has the same length
as S, the partially secret string used to generate the final secret. Since G does
not necessarily need to be secret, authentication codes without secrecy are enough
for privacy amplification against Eve’s active attacks. Therefore, we take interest
in authentication codes where the messages carry all information about the source
states. These kinds of authentication codes are called Cartesian codes, or systematic
authentication codes, in analogy to systematic codes in coding theory. A Cartesian
code is a triple (G,S,X ) of finite sets and a map f : G × S → X , where for any
s ∈ S and g ∈ G, any message is of the form m = (g, x) with x = f(g, s). The value
x ∈ X is called the tag or authenticator of g. According to Theorem 1 in [29], one
has

PS ≥ PI

for Cartesian codes. Authentication codes with PI = |G|
|M| are optimal against the

impersonation attack, and also called I-equitable authentication codes. It is easy to
see that any Cartesian I-equitable authentication code satisfies PD = PS ≥ 1/|X |.

3.3.1 Authentication Codes with Totally Secret Keys

Results on authentication codes, A-codes for short, are usually based on the as-
sumption that the authentication key is totally secret to Eve (or the distribution
of the authentication key is a uniform one to Eve). The first to consider the prob-
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lem of authentication are Gilbert, MacWilliams and Sloane in [28]. Wegman and
Carter proposed in [74] to use ε-almost strongly universal2 hash functions for au-
thentication. Stinson obtained new bounds and gave general constructions for these
kinds of hash functions in [72]. From these, he got the corresponding A-codes with-
out secrecy. Multi-round protocols were suggested in [27]. These may reduce the
amount of secret information needed for authentication keys, when compared with
one-round protocols. Relationships between A-codes and error-correcting codes are
suggested by Johanson, Kabatianskii and Smeets in [32] and [29].

We shall first properly define several notions of universal hashing and then show
constructions for A-codes based on some of these classes of universal hash functions.

LetA and B be finite sets. For a hash function h : A → B, for a1, a2 ∈ A, a1 6= a2,
define

δh(a1, a2) =
{

1, if h(a1) = h(a2),
0, otherwise.

For a finite set H of hash functions, all from A to B, define

δH(a1, a2) =
∑

h∈H
δh(a1, a2).

So, δH(a1, a2) counts the number of hash functions, for which a1 and a2 collide.

Definition 3.3.1 Let ε > 0, H is ε-almost universal2 (or ε-AU2) if δH(a1, a2) ≤
ε|H| for all a1, a2 ∈ A, a1 6= a2.

It was shown in [68] that for any ε-AU2 class from A to B,

ε ≥ |A| − |B|
|B|(|A| − 1)

.

Definition 3.3.2 Let ε > 0, H is ε-almost strongly-universal2 (or ε-ASU2) if

(a) for every a ∈ A and for every b ∈ B, |{h ∈ H : h(a) = b}| = |H|/|B|;
(b) for every a1, a2 ∈ A (a1 6= a2) and for every b1, b2 ∈ B, |{h ∈ H : h(a1) =

b1, h(a2) = b2}| ≤ ε|H|/|B|.
The lower bound on ε in any ε-ASU2 class from A to B is 1/|B|.

Definition 3.3.3 H is called universal2 (or just universal) if it is (1/|B|)-AU2.

Example 3.3.4 Let A = {0, 1}n and B = {0, 1}r. The set of all linear functions
from A to B is universal.

A linear function from A = {0, 1}n to B = {0, 1}r can be described by an n × r
matrix M. The element a in A is mapped to b = a ·M, b ∈ B. Hence the number of
such functions is 2n·r and the description of such a function involves n · r bits.

The following example also gives a universal2 class of hash functions, but it needs
only n bits to describe a hash function from this class.
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Example 3.3.5 The set of functions fh : {0, 1}n → {0, 1}r, defined by fh(a) =
LSBr(h·a) where (·) denotes the field multiplication in GF (2n) and LSBr(x) stands

for the r least significant bits of a string x, is a universal class with cardinality 2n.

Definition 3.3.6 If H is ε-ASU2 with ε = 1/|B|, then H is called strongly universal2
(or strongly universal, SU2 for short).

We denote strongly universal2 by SU2 and universal2 by U2 for convenience. The
value 1/|B| is the minimal value of ε for any ε-AU2 and ε-ASU2.

Example 3.3.7 The set of functions H = {hs1s2 : s1, s2 ∈ GF (2n)} with hs1s2(g) =
s1 · g + s2 is an SU2 class of hash functions from {0, 1}n → {0, 1}n of cardinality
22n.

For any ε-ASU2 class of hash functions from A to B, a corresponding A-code
can be constructed as follows. Take the elements of A as source states, those of B
as authenticators and each hash function from ε-ASU2 as an encoding rule (choose
according to a uniform distribution). This idea is summarized in the following
theorem.

Theorem 3.3.8 (Stinson, [72]) If there exists an ε-ASU2 class of hash functions
H from A to B, then there exists an authentication code for |A| source states, having
|B| authenticators and |H| encoding rules, such that PI = 1/|B| and PS ≤ ε.

The A-codes we constructed from ε-ASU2 are Cartesian A-codes, which means
that the transmitted message is the source state concatenated with the correspond-
ing authenticator. Since A-codes made from ε-ASU2 classes of hash functions have
PI = 1

|B| = |A|
|M| , we know that such A-codes are also I-equitable A-codes. Therefore

PD = PS ≤ ε with ε ≥ 1/|B|.
Here is an example of a construction from SU2.

Construction 3.3.9 For some positive integer k, let A = {a = (a1, a2, . . . , ak); ai ∈
GF (q), i = 1, 2, . . . , k} be the set of source states. Let H = {h = (h1, h2, . . . , hk+1);
hj ∈ GF (q), j = 1, 2, . . . , k + 1} be the set of encoding rules and let B = GF (q) be
the set of authenticators. Then a message m is given by a pair m = (a, b) with

b = h1 · a1 + h2 · a2 + · · ·+ hk · ak + hk+1.

Construction 3.3.9 gives parameters |A| = qk, |B| = q, and |H| = qk+1.
Since encoding rules are secret information between Alice and Bob, we would

like to use a small number of encoding rules to authenticate as many source states
as possible. However, there is a conflict between minimizing the number of encoding
rules, maximizing the number of source states, and minimizing PD. Based on SU2,
both PI and PS achieve minimal values, 1/|B|, but in [72] it was shown that

(|B| − 1)|A| ≤ |H| − 1,
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which means that the number of source states is at best linearly bounded by the
number of possible encoding rules. On the other hand, with ε-ASU2, the number of
encoding rules can be reduced significantly for a fixed number of source states by
increasing PS . More precisely, if we don’t require PS to be minimal, then for a fixed
probability of substitution PS ≤ ε, ε > 1/|B|, the number of source states in the best
A-code(s) increases exponentially with the number of encoding rules. Below are two
constructions. Construction 3.3.10 was proposed in [6] (see also [29], [32]). It was
also applied in different settings in [60] and [16]. Construction 3.3.11 was presented
by Stinson in [72].

Construction 3.3.10 Let A = (GF (q))k be the set of source states and write
a = (a1, a2, . . . , ak) for a ∈ A. Define the source state polynomial to be a(x) =
a1x + a2x

2 + · · · + akxk. It is a mapping from GF (q) to itself. The set H =
{(h1, h2); h1, h2 ∈ GF (q)} describes the set of the encoding rules as follows: a mes-
sage m is given by the pair

m = (a, h1 + a(h2)).

Construction 3.3.11 Let A = {a = (a1, a2, . . . , a2k); ai ∈ GF (q), i = 1, 2, . . . , 2k}
be the set of source states. Let H = {h = (h1, h2, . . . , hk+2); hj ∈ GF (q), j =
1, 2, . . . , k + 2} be the set of encoding rules and let B = GF (q) be the set of authen-
ticators. Then a message m is given by a pair m = (a, b) with

b = hk+1 + a
(k)
1 · hk+2,

where a
(k)
1 follows recursively from a(l) = (a(l)

1 , a
(l)
2 , . . . , a

(l)

2k−l), a
(l)
j = a

(l−1)
2j−1 +a

(l−1)
2j ·

hl, for j = 1, 2, . . . , 2k−l and l = 1, 2, . . . , k with initial value a(0) = a.

We summarize the parameters of the A-codes from the above three constructions
in Table 3.1.

A-codes log |H| log |A| log |A|
log |H| log |B| PD

Construction 3.3.9 (k + 1) log q k log q k
k+1 log q ≤ 1

q

Construction 3.3.10 2 log q k log q k
2 log q ≤ k

q

Construction 3.3.11 (k + 2) log q 2k log q 2k

(k+2) log q ≤ k+1
q

Table 3.1: Parameters for A-codes with a totally secret authentication key

In Table 3.1 we have listed log |H|, the number of bits needed to describe an
encoding rule (i.e., the length of the authentication key), and log |A|, the length
of a source state which can be authenticated with the authentication key. We also
listed log |A|/log |H| because this rate indicates how many bits of source state can
be authenticated by one bit of the authentication key given an upper bound on PD.
On the other hand, one can always choose q sufficiently large to ensure that PD is
less than a given upper bound.



70 Privacy Amplification

3.3.2 Authentication Codes with Partially Secret Keys

In the previous subsection, we assume that encoding rules are chosen according to a
uniform distribution, in other words, the authentication key is completely unknown
to Eve. This subsection will mainly focus on the study of A-codes with only a
partially secret authentication key. This partial secrecy is characterized by the fact
that Eve’s information about S, denoted by her Rényi entropy H2(S|Z = z), is less
than the length of S. Here we use S to denote the partially secret string between
Alice and Bob (as opposed to H in Subsection 3.3.1 which represents a totally secret
authentication key).

For the constructions presented in Subsection 3.3.1, we shall derive upper bounds
for PI and PS under the condition that H2(S|Z = z) ≥ t log |S|, 0 < t < 1. First,
we quote a lemma that gives a probabilistic upper bound on the reduction of Rényi
entropy of a random variable S by obtaining additional side information A and B,
where it is assumed that the mutual information between S and A is zero.

Lemma 3.3.12 (Wolf, [62]) Let S, A and B be random variables with I(S; A) =
0. Then

Pr [H2(S|A = a,B = b) ≥ H2(S)− log |B| − s] ≥ 1− 2−(s/2−1)

for all s > 2, and

Pr [H∞(S|A = a,B = b) ≥ H∞(S)− log |B| − s] ≥ 1− 2−s

for s > 0.

This lemma shows that with high probability the Rényi entropy decreases at
most by log |B|. In the following theorem, we will derive the upper bounds on PI

and PS , given an lower bound on Eve’s information about the authentication key.

Theorem 3.3.13 Suppose that the authentication key S in an ε-ASU2 class of hash
functions from A to B is only partially secret and let Eve’s information about S
be characterized by H2(S|Z = z) ≥ t log |S|. Then the construction described in
Theorem 3.3.8 results in an A-code with parameters PI and PS, satisfying

PI ≤ 2−( t−1
2 log |S|+ 1

2 log |B|) = |S|− t−1
2 · |B|− 1

2 ,

PS ≤
(√

ε · |B|+ 2
)
· 2−( t−1

4 log |S|+ 1
4 log |B|)

=
(√

ε · |B|+ 2
)
· |S|− t−1

4 · |B|− 1
4 .

Proof: Let S : A → B be the set of hash functions from ε-ASU2. First, we
want to estimate the probability of a successful impersonation attack by Eve, i.e, to
determine the probability that Eve, who has partial knowledge about the encoding
rule, can successfully guess a pair (a, b) such that b = s(a) for some s shared between
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Alice and Bob. From the properties of ε-ASU2, we note that for a given pair (a, b),
the number of encoding rules satisfying b = s(a) is |S|/|B|, in formula,

|{s ∈ S : s(a) = b}| = |S|
|B| . (3.1)

Let Z = z denote all knowledge Eve knows about S before she sees any valid
pair. Let pi, 1 ≤ i ≤ |S|, denote the probabilities that Eve has assigned to all
encoding rules and let the first |S|/|B| of these coincide with the encoding rules that
give a valid pair (a, b). Then

|S|/|B|∑

i=1

p2
i ≤

|S|∑

i=1

p2
i = Pc(S|Z = z) = 2−H2(S|Z=z) ≤ 2−t log |S|, (3.2)

and

PI =
|S|/|B|∑

i=1

pi.

Since
∑|S|/|B|

i=1 pi achieves its maximal value when p1 = p2 = . . . = p|S|/|B|, it follows
that

PI ≤
( |S|
|B|

)1/2

· 2− t
2 log |S| = 2−( t−1

2 log |S|+ 1
2 log |B|).

A successful substitution attack means that Eve has guessed a correct pair (a′, b′)
after having seen a valid pair (a, b), where a′ 6= a. The number of encoding rules
that give rise to both pairs is upper bounded by ε · |S|/|B|, i.e.,

{s : b = s(a), b′ = s(a′)} ≤ ε · |S|/|B|. (3.3)

Eve’s Rényi entropy about S decreases after observing (a, b) from H2(S|Z = z)
to H2(S|Z = z,A = a,B = b). According to Lemma 3.3.12, we know that

H2(S|Z = z,A = a,B = b) ≥
(

t

2
+

1
2
− 3

2
log |B|
log |S|

)
log |S| (3.4)

holds with probability 1 − 2−((t−1) log |S|+log |B|)/4+1. Here Pr [S|Z = z] is used in
Lemma 3.3.12 instead of Pr [S]. Just like in the impersonation attack, Eve gets the
best result if there are exactly ε · |S|/|B| encoding rules matching (a′, b′) and (a, b)
and these ε·|S|/|B| encoding rules all have the same probability, say p. If (3.4) holds,
it follows that

(
ε · |S||B|

)
· p2 ≤ Pc(S|Z = z, A = a,B = b) ≤ 2−( t

2+ 1
2− 3

2
log |B|
log |S| ) log |S|, (3.5)

and we get

PS ≤
(

ε · |S||B|
)
· p ≤

√
ε · |B| · 2−( t−1

4 log |S|+ 1
4 log |B|).
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When (3.4) does not hold, which occurs with probability at most

2−( t−1
4 log |S|+ 1

4 log |B|)+1,

we conservatively assume PS = 1. Taking the two cases into account, we get

PS ≤ 2−( t−1
4 log |S|+ 1

4 log |B|)+1 +
√

ε · |B| · 2−( t−1
4 log |S|+ 1

4 log |B|)

≤
(√

ε · |B|+ 2
)
· 2−( t−1

4 log |S|+ 1
4 log |B|).

tu
Remark. We claim that the upper bounds for PI and PS are generally not tight.
For example, when t = 1, we know that PI = 1/|B|, and PS ≤ ε, but the above
theorem gives PI ≤ (|B|)− 1

2 and PS ≤
(√

ε · |B|+ 2
)
· (|B|)− 1

4 . The loose upper
bounds for PI and PS are due to (3.1), (3.3), and (3.4). For instance, when we
estimate the upper bound for PI , we use the fact that

∑|S|/|B|
i=1 p2

i ≤
∑|S|

i=1 p2
i =

Pc(S|Z = z), and equality holds only when p1 = p2 = · · · = p|S|/|B| = |B|/|S|, in
which case PI = 1. In other words, we neglect the nonnegative part,

∑|S|
i=|S|/|B|+1 p2

i ,

in the left part of (3.1) while its contribution can be as high as (1− 1/|B|) . However,
when t < 1, it is hard to say anything about the exact value of

∑|S|
i=|S|/|B|+1 p2

i , given

only that
∑|S|

i=1 p2
i ≤ 2−t log |S|. That the upper bound for PS is loose is for the same

reason, see (3.3) and also due to the probabilistic upper bound of the reduction of
Rényi entropy, see (3.4).

When Eve’s partial knowledge about the authentication key S is characterized
by the min-entropy, instead of Rényi entropy, we get the following corollary. We
omit the proof because it is very similar to the proof of Theorem 3.3.13.

Corollary 3.3.14 If one replaces the assumption in Theorem 3.3.13 on Eve’s knowl-
edge about S by H∞(S|Z = z) ≥ t log |S|, an A-code results with parameters

PI ≤ 2−[(t−1) log |S|+log |B|], PS ≤ (ε · |B|+ 1) 2−( t−1
2 log |S|+ 1

2 log |B|).

The above results suggest that a substitution attack is more powerful than an
impersonation attack, in which case PD = PS . To make sure that the upper bounds
for PI and PS are less than 1, one needs t > 1− log |B|/ log |S|.

Applying Theorem 3.3.13 and Corollary 3.3.14 to the constructions in the pre-
vious subsection for A-codes from ε-ASU2, we get the following corollary.

Corollary 3.3.15 Suppose that Eve’s information Z = z about the authentication
key S satisfies Hα(S|Z = z) ≥ t log |S|, where α = {2,∞}. Then the authentication
codes of Construction 3.3.9, 3.3.10, and 3.3.11 have parameters given in Table 3.2.

Table 3.1 shows the trade-off between the number of encoding rules, the number
of source states, and PD. Now that the encoding rules are partially known to Eve,
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A-codes log |S| log |A|
log |S| log |B|

Construction 3.3.9 (k + 1) log q k/(k + 1) log q
Construction 3.3.10 2 log q k/2 log q
Construction 3.3.11 (k + 2) log q 2k/(k + 2) log q

A-codes
(H2 ≥ t log |S|) PI PS t

Construction 3.3.9 ≤ q−( k+1
2 t− k

2 ) ≤ 3 · q−( k+1
4 t− k

4 ) > k
k+1

Construction 3.3.10 ≤ q−(t−1/2) ≤ (
√

k + 2)q−(t/2−1/4) > 1/2
Construction 3.3.11 ≤ q−( k+2

2 t− k+1
2 ) ≤ (

√
k + 1 + 2)q−( k+2

4 t− k+1
4 ) > k+1

k+2

A-codes
(H∞ ≥ t log |S|) PI PS t

Construction 3.3.9 ≤ q−(k+1)t+k ≤ 2 · q−( k+1
2 t− k

2 ) > k
k+1

Construction 3.3.10 ≤ q−(2t−1) ≤ (k + 1)q−(t−1/2) > 1/2
Construction 3.3.11 ≤ q−(k+2)t+k+1 ≤ (k + 2)q−( k+2

2 t− k+1
2 ) > k+1

k+2

Table 3.2: Parameters for A-codes with a partially secret authentication key of
Hα(S|Z = z) ≥ t log |S|
Eve’s knowledge about the encoding rules also plays a role in the comparison. This
can be seen in Table 3.2. To make the upper bounds for PS less than 1, different
constructions lead to different requirements for t.

A-codes based on Construction 3.3.9 authenticate a source state with a longer
authentication key. For example, when k = 1, the length of the source states log |A|
is only half of log |S|, the length of authentication key. For increasing k, log |A|
approaches log |S|, but t = k/(k + 1) approaches to 1. That means a stronger
requirement about Eve’s knowledge about S: she should know almost nothing about
S, since Hα(S|Z = z) ≥ k

k+1 log |S| is required.
Construction 3.3.10 only requires t > 1/2 and can authenticate a source state

which is k/2 times as long as the partially secret authentication key S.
To authenticate a longer source state, one may consider the A-codes based on

Construction 3.3.11. When k increases, log |A| increases exponentially faster than
log |S| with as price a larger PS than that in Construction 3.3.9. However, the
same problem arises as in Construction 3.3.9. When k is large, S should be highly
secret to Eve, namely, Hα(S|Z = z) ≥ k+1

k+2 log |S|. This assumption may not be
very realistic in the context of privacy amplification.

3.4 Application of A-codes to Privacy Amplification

First we give a formal definition of privacy amplification over a non-authentic chan-
nel and then we discuss three approaches in detail for three different settings.
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Definition 3.4.1 ([62]) Suppose that Alice and Bob share a mutual n-bit random
variable S, and let the random variable Z denote Eve’s knowledge about S. Let D be
a subset of all probability distributions on the set of n-bit strings, let r be an integer,
and let 0 < ε, δ < 1. Alice and Bob communicate over an insecure and non-authentic
channel.

A weak (n,D, r, ε, δ)-protocol for privacy amplification or a weak (n,D, r, ε, δ)
PA protocol for short, satisfies properties (i) and (ii) listed below, while a strong PA
protocol satisfies (i) and (iii).

(i) Correctness and privacy: If Eve is a passive wire-tapper, Alice and Bob com-
pute and accept S′A, respectively S′B , at the end of the protocol with S′ = S′A = S′B .
Further H(S′|C,Z = z) ≥ r − ε, where C stands for the entire communication held
over the public channel.

(ii) Weak robustness: For every possible strategy of Eve, the probability that at
least one party, Alice or Bob, rejects the outcome of the protocol or that both Alice
and Bob accept the outcome (in which case the privacy amplification protocol has
been successful), must be at least 1− δ.

(iii) Strong robustness: For every possible strategy of Eve, the probability that
both Alice and Bob reject the outcome of the protocol or that privacy amplification
has been successful must be at least 1− δ.

Remark. Here, we assume that Alice and Bob are honest players, always following
the rules of the protocol.

In this chapter, Dn,α,tn denotes the set of probability distributions Pr [S|Z = z]
such that Hα(S|Z = z) > tn.

By saying that privacy amplification has been successful we mean that both
Alice and Bob in fact have obtained S′ = S′A = S′B . This covers two cases: one
is that both Alice and Bob accept, the other is that one accepts and the other
rejects the outcome, although it was obtained correctly. The latter can occur if
Eve deletes the last message in the PA-protocol. To enable privacy amplification
against active attacks over a non-authentic channel, the only thing Alice and Bob
need to do is to authenticate the description of g, the hash function, over the
non-authentic channel. An alternative is to use some random bits for the input of
privacy amplification extractors, see Section 3.2. Below we shall use the traditional
universal hash technique. To authenticate g, Alice and Bob need two strings, SI for
authentication and SII from which they will distill the final secret.

It is easy to see that the one-way transmission protocol depicted in Figure 3.2
can accomplish weak robustness by using an A-code with SI as authentication key.
This ensures that PD ≤ δ.

For strong robustness, an extra thing needs to be done. Alice adds a random
challenge to Bob, Bob then computes and returns the corresponding authenticator
to Alice, and Alice won’t accept the result unless she gets the correct authenticator
for her challenge. We call this the interactive protocol.

The interactive protocol (Figure 3.3) can avoid the case that one party accepts
while privacy amplification is not successful. This may occur in the one-way trans-
mission protocol. Therefore, the interactive protocol can accomplish strong robust-
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Alice Bob

SI ∈ GF (2n1), SI ∈ GF (2n1),
SII ∈ GF (2n2) SII ∈ GF (2n2)

g ∈R GF (2n2), x = SI(g)
S′A = LSBr(g · SII)

accept (g, x)−−−−−−→
accept if x = SI(g) stop otherwise

S′B = LSBr(g · SII)

Figure 3.2: One-way transmission protocol

ness (Property (iii) in Definition 3.4.1). It still ensures PD ≤ δ, as did the one-way
transmission protocol. The reason is the following. Eve can not replace (g, x) by
(g′, x′) without Bob finding out with probability more than δ. This is due to the
properties of the A-code. She cannot either, with probability more than δ, guess a
correct response v to the challenge u from Alice in order to convince Alice that Bob
had accepted the result. The remaining thing Eve can do is to replace u in (g, x, u)
with another u′, u′ 6= u, or replace Bob’s response v with v′, v′ 6= v, or block v
altogether to prevent Alice from receiving it. But this does not make any sense any
more because privacy amplification is already successful as soon as Bob has received
the correct pair (g, x). We will consider different settings for the authentication

Alice Bob

SI ∈ GF (2n1), SI ∈ GF (2n1),
SII ∈ GF (2n2) SII ∈ GF (2n2)

g ∈R GF (2n2), x = SI(g), u ∈R GF (2n2)
S′A = LSBr(g · SII)

(g, x, u)−−−−−−→
accept if x = SI(g)

stop otherwise
S′B = LSBr(g · SII)

v = SI(u)
v←−−−−−−

accept if v = SI(u)

Figure 3.3: Interactive protocol
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problem in the context of privacy amplification in the following subsections. Alice
and Bob will have access to different resources in the different settings, as will be
illustrated below.

• Alice and Bob share two strings: SI is a secret string of length n1 and SII is
a partially secret string of length n2 . Eve’s knowledge about these strings is
characterized by H2(SI |Z1 = z1) = n1 (which means that for her the Rényi
entropy of SI is equal to its Shannon entropy, which is n1) and H2(SII |Z2 =
z2) ≥ t2n2. This setting will be discussed in Subsection 3.4.1;

• Both SI and SII are partially secret and their concatenation forms a string S of
length n with H2(S|Z = z) > tn. We will study this case in Subsection 3.4.2;

• Both SI and SII are partially secret but SI and SII are independent strings,
with H2(SI |Z1 = z1) ≥ t1n1 and H2(SII |Z2 = z2) ≥ t1n2. This case will be
analyzed in Subsection 3.4.3.

3.4.1 Application of Authentication Codes to Privacy Amplification When
a Totally Secret Key Is Available

Suppose that Eve has no knowledge at all about SI (except its length). Alice and
Bob can use A-codes based on ε-ASU2 with δ = ε to convert the non-authentic
channel to a channel that can authenticate messages with probability at least 1− δ.
Suppose that the A-code maps {0, 1}n2 to {0, 1}m. Then Alice and Bob can always,
in case of a passive attack by Eve, distill a secret key S′ of length r = H2(SII |Z2 =
z2)− s from an n2-bit partially secret string SII such that Eve’s information about
S′ is at most 2−s/ ln 2, where s > 0 is a security parameter (see Theorem 3.2.2).
This is exactly Approach 1 described in Section 3.1.

We would like to use only a small number of secret bits (SI) for authentica-
tion purposes during the privacy amplification process, because this results in a
longer SII and thus in more secret bits (S′) obtained through privacy amplifica-
tion. The longer string the secret string SI can authenticate, the more bits privacy
amplification may generate. Hence, the problem becomes the classical question in
unconditional authentication: given PD < δ, how many secret bits do Alice and Bob
need to share to authenticate a source state of given length n?

Wegman and Carter [74] describe a protocol for ε-almost strongly universal2
which needs approximately O(log(n) log(1/δ)) (ε = δ) secret bits, while Stinson
[72] improves this result to (2 log(n) + 3 − 2 log log(1/δ))(log(1/δ)) (according to
Construction 3.3.11) secret bits. All the results hold for the single-round protocols.
Gemmell et al. [27] prove that a tighter lower bound on the number of shared
secret bits is between log(n)+ log(1/δ) and log(n)+2 log(1/δ). They also propose a
multi-round protocol that requires 2 log(1/δ) + O(1) bits. Note that this number is
independent of the length of source states. When log(1/δ) < log(n), a multi-round
protocol helps to decrease the number of secret bits. However, no protocol with a
fixed number of rounds can achieve 2 log(1/δ) + O(1) bits. In fact, any multi-round
protocol needs O(log∗(n)) rounds. See [27] for more details.
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The above discussion can be summarized by the following theorem.

Theorem 3.4.2 Let t > 0, s > 0. Suppose that there exists a δ-ASU2 from {0, 1}n2

to {0, 1}m, δ ≥ 2−m, with cardinality |S|, and Alice and Bob share a secret of
length n1, n1 ≥ log |S|. Then there exists a strong (n2,Dn2,2,tn2 , tn2, 2−s/ ln 2, δ)
PA-protocol.

SI SII

s- ¾

2−s/ ln 2

@
@

@@

©©©©©
Eve’s information

Authentication Distillation

¾ H2(SII |Z2 = z2) -
A
A
A
A
A
AU ?

Figure 3.4: Privacy amplification with a totally secret authentication key

Another technique to implement privacy amplification, other than the traditional
method with universal2 functions, is to use extractors, as shown in Theorem 3.2.4.
Similar to the traditional privacy amplification technique, some random bits are also
needed to be transmitted from Alice to Bob if using extractors. As we pointed out
earlier, the advantage of extractors is that the length of the random bits is only an
asymptotically arbitrarily small fraction of SII , but the final distilled secret key is
measured by H∞(S|Z = z). When considering the non-authentic case, we need a
secret SI for authentication that is again an asymptotically small fraction of SII .
We get the following theorem when extractors are used for privacy amplification.

Theorem 3.4.3 Let s > 0, 1 > t > 0, 4, δ > 0. Suppose that Alice and Bob
share a secret of length n1. Then for sufficiently large n1 there exists a strong
(n2,Dn2,∞,tn2 , tn2, 2−n

1/2−o(1)
2 , δ) PA-protocol with n2 = n1/4.

We note that the traditional technique is practical while the extractor technique
is non-constructive. On the other hand, the extractor technique can provide proof
of the existence of protocols.

3.4.2 Application of Authentication Codes to Privacy Amplification when
One Partially Secret String Is Available

We shall now consider the case that Alice and Bob have only a partially secret
string S available to privacy amplification. As was suggested in Section 3.1, privacy
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amplification can be realized by means of Approach 2. Suppose that S has length
n. Alice and Bob split S into two parts, using one substring SI for authentication
and the remaining part SII for distillation. Eve’s information Z = z about S is
assumed to satisfy H2(S|Z = z) ≥ tn. Eve’s information about S’s substrings can
be estimated by the following lemma.

Lemma 3.4.4 (Wolf, [64]) Let S = (S1, S2, . . . , Sn) be a sequence of n binary,
random variables. For any k-tuple i = (i1, i2, . . . , ik), where 1 ≤ i1 < i2 < · · · <
ik ≤ n, let Si be the substring (Si1 , Si2 , . . . , Sik

). Then Hα(Si) ≥ Hα(S) − (n − k)
for α = 2 and α = ∞.

Theorem 3.4.5 Suppose that in the setting of one partially secret string and Ap-
proach 2 an (n,Dn,α,tn, r, ε, δ) PA-protocol (see Definition 3.4.1) exists with α ∈
{2,∞}, 0 < r < tn, ε, δ > 0. Then t > 1/2.

Proof: Let SI be of length n1 and SII of length n2, where S = SI ||SII and
n = n1 + n2. From Lemma 3.4.4, we know that

Hα(SI |Z = z) ≥ tn− n2 = tn1 − (1− t)n2 (3.6)

Hα(SII |Z = z) ≥ tn− n1 = tn2 − (1− t)n1 (3.7)

To accomplish authentication and distillation, the right hand sides in Equations
(3.6) and (3.7) need to be positive, which results in t > 1/2. tu

Theorem 3.4.5 states that 1/2 is a lower bound for parameter t when Eve’s
information satisfies Hα(S|Z = z) ≥ tn. Wolf proved the existence of a PA-protocol
when t = 2/3 for α = {2,∞}. In [34], Liu et al. [34] claim that t = 1/2 is also
achievable for α = 2, while Maurer et al. in [52] claim this for α = ∞. Both proofs
use the same partially secret string S for authentication of a random string W, and
as input of an extractor function (denoted by E(W,S)) as well. The idea of the
extractor is to distill a secret key from the partially secret string S with the help of
a small number of truly random bits W. It assumes that W and S are independent
of each other. If part of S is used to authenticate W , however, the authenticator for
W is public, so W and S are not independent of each other any more. Therefore, we
claim that the problem whether privacy amplification against an active attack (with
strong or weak robustness) is possible when Hα(S|Z = z) > n/2 remains open. The
best bound up to now is still Hα(S|Z = z) > 2n/3.

Here, we summarize the best known results for the case that Alice and Bob share
only a partially secret string S (See [52, 62]).

Theorem 3.4.6 Let 2/3 < t < 1 and 4 > 0 be constants, α = {2,∞}. Then for
sufficiently large n, strong (n,Dn,α,tn, (t − 2/3 −4)n, 2−Ω(n), 2−Ω(n)) PA-protocols
exist.

Since a strong protocol is also a weak one, the above theorem also implies the
existence of weak protocols.
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If t > 2/3, Alice and Bob have to separate S into SI of length 2n/3 and SII

of length n/3. They use SI for authentication purposes, employing an A-code from
Construction 3.3.9 with k = 2. They use SII for the distillation of the secret key.
The length of the final secret key is at most (t − 2/3)n bits. Compared with the
length of a secret key distilled by a privacy amplification protocol designed only
against passive attacks, which is almost tn, we see that Alice and Bob pay the price
of 2n/3 bits of S to detect active attacks, so the final secret key also shrinks by
2n/3. This price is really too high.

S
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Figure 3.5: Privacy amplification with one partially secret authentication string

3.4.3 Application of Authentication Codes with Independent Partially
Secret Strings to Privacy Amplification

We now consider the setting that Alice and Bob have two independent partially
secret strings, say SI and SII , and assume that Eve’s information about these are
Z1 = z1 resp. Z2 = z2. Alice and Bob use SI to authenticate the hash function
G (in a one-way transmission protocol or in an interactive protocol), and take the
hash value G(SII) as the final secret. The problem is to find a lower bound on
H2(SI |Z = z), given that the probability that Eve can perform a successful active
attack is upper bounded by a security parameter δ, 0 < δ < 1. What is the maximal
length of SII (that will be used to distill a secret key) for a fixed length of SI and
fixed value of δ.

We shall use Theorem 3.3.13 to give answers to these questions. As Table 3.2
suggests, Construction 3.3.10 is more suitable for privacy amplification against active
attacks in this setting since it only requires t > 1/2. Suppose that Alice and Bob
share two independent partially secret strings, say SI of length n1 and SII of length
n2 = kn1/2. Without loss of generality, we assume that n1 is even. We show
in Figure 3.6 how Alice and Bob can construct a strong PA-protocol by using an
interactive transmission. Then Theorem 3.4.7 follows.

Theorem 3.4.7 Let 0 < δ < 1, 1
2 < t1 < 1, 0 < t2 < 1, 41,42 > 0, n1, n2 ∈ N and

consider the setting of two independent, partially secret strings, say SI of length n1
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and SII of length n2. Then, both strong and weak (n2,Dn2,2,n2t2 , n2t2 − s, 2−s/ ln 2, δ)
PA-protocols exist if the following two conditions are met:

(i) Eve’s Rényi entropy about SI given her knowledge Z1 = z1 is lower bounded by
n1t1, i.e., H2(SI |Z1 = z1) ≥ n1t1,

(ii) n2 ≤ n1
2

(
δ2(t1/2−1/4)n1 − 2

)2
.

Strong and weak
(
n2,Dn2,∞,n2t2 , n2(t2 −41), 2−n

1/2−o(1)
2 , δ

)
PA-protocols exist, for

sufficiently large n1, if

(1) Eve’s min-entropy given her knowledge Z1 = z1 is lower bounded by n1t1, i.e.,
H∞(SI |Z1 = z1) ≥ n1t1,

(2) n2 ≤ n1
242

(
δ2(t1−1/2)n1 − 1

)
.

Proof: We only need to show that the interactive protocol depicted in Figure 3.6
is a strong privacy amplification protocol. It is trivial to check that the one-way
transmission protocol depicted in Figure 3.2 is weak.

Alice Bob

SI = (S1||S2), SI = (S1||S2),
S1, S2 ∈ {0, 1}n1/2 S1, S2 ∈ {0, 1}n1/2

SII ∈ {0, 1}kn1/2 SII ∈ {0, 1}kn1/2

g ∈R GF (2kn1/2), x = S1 + g(S2)
u ∈R GF (2kn1/2)

S′A = LSBr(g · SII)
(g, x, u)−−−−−−→

accept if x = S1 + g(S2)
stop otherwise

S′B = LSBr(g · SII)
v = S1 + u(S2)

v←−−−−−−
accept if v = S1 + u(S2)

Figure 3.6: Interactive protocol using A-codes from Construction 3.3.10, where g(·)
and u(·) denote two source state polynomials

For the case of a passive attack by Eve, if H2(SII |Z2 = z2) ≥ n2t2, according to
Theorem 3.2.2, Alice and Bob will get a final string S′ = S′A = S′B of length n2t2−s

while H(S′|G,Z = z) ≥ n2t2− s− 2−s

ln 2 . This implies that Eve’s knowledge about S′

is not more than 2−s/ln 2.
If H∞(SII |Z2 = z2) ≥ n2t2, then for constants t2,41,42 > 0, there exists,

according to Corollary 3.2.4, for sufficiently large n2, an extractor E : {0, 1}n2 ×
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{0, 1}d → {0, 1}r, where d ≈ 41n2, and r ≥ (δ′−42)n2, such that H(E(SII , W )|W ) ≤
r − 2n

1/2−o(1)
2 .

The aim of an active attack by Eve is to make Alice (or Bob) accept S′A (or
S′B) although the protocol does not run successfully. There are two possible active
attacks for Eve. One possibility for Eve is to try to impersonate Alice to get Bob to
accept while Alice rejects. Eve can forge a pair (g′, x′) to get Bob to accept it. She
can do it with or without the help of Alice’s valid pair (g, x), which corresponds to
an impersonation attack resp. substitution attack. The other possibility is that Eve
prevents Alice’s valid pair (g, x) from reaching Bob after which she tries to give a
correct response v′ to Alice’s challenge u hoping to convince Alice that she is Bob
(this is just a substitution attack).

It follows from Corollary 3.3.15 that when H2(SI |Z1 = z1) ≥ n1t1, t1 > 1/2, one
can authenticate a source state of length k/2 times longer than SI and the probabil-
ity of a successful active attack by Eve for the interactive protocol is upper bounded
by δ, as long as k ≤ (

δ2(t1/2−1/4)n1 − 2
)2

, which means n2 ≤ n1
2

(
δ2(t1/2−1/4)n1 − 2

)2
.

In the case that an extractor is used, one needs to authenticate a d-bit random
variable W with d ≤ 41n2. If H∞(SI |Z1 = z1) ≥ n1t1, then, according to
Corollary 3.3.14, SI can authenticate the string W of length d = kn1/2 such
that the probability of a successful active attack can be upper bounded by δ if
k ≤ (

δ2(t1−1/2)n1 − 1
)
. On the other hand, W can serve as input to the extractor,

together with SII , to distill a secret. W has length d with d ≈ 41n2. Hence
n2 ≤ n1

241

(
δ2(t1−1/2)n1 − 1

)
. tu

We notice that when n1 is large enough, for any n2 and δ, a strong (and weak)
PA-protocol exists.
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Figure 3.7: Privacy amplification with independent partially secret strings

3.5 Conclusion

Authentication codes have been developed to provide protection against a malicious
adversary who has access to the communication channel and can insert fraudulent
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messages or modify the messages over the channel. In this chapter, we reviewed
some results of A-codes and showed how authentication codes provide unconditional
authentication. Earlier results were usually obtained under the assumption that the
sender and receiver have a common authentication key about which Eve knows
nothing. In the context of privacy amplification, it is more reasonable to assume
that Alice and Bob share a partially secret string instead of a totally secret one.

We studied the performance of A-codes from the ε-ASU2 class with partially
secret authentication key. Here, we characterized the partial secrecy by the fact
that the Rényi entropy of order 2 about the secret string is less than its length.
The application of authentication codes to privacy amplification is explored in three
different settings, for which different approaches are presented. Approach 1 employs
A-codes with a totally secret authentication key and is suitable for the case that
Alice and Bob share an additional, totally secret string. Approaches 2 and 3 use
A-codes with a partially secret authentication key. Approach 2 is for when Alice
and Bob share only one partially secret string, while Approach 3 can be used when
Alice and Bob share two independent, partially secret strings.

We claim that Approach 3 is more practical and more reasonable because

• In each approach, one has to solve the problem of how to renew the authen-
tication key when Eve performs frequent active attacks. This is so because
the authentication key can only be used once. Approach 1 requires that Alice
and Bob share a shorter but totally secret string for unconditional authenti-
cation, but the disadvantage is that getting a fresh secret string is expensive.
Especially when Eve performs continuous active attacks, Alice and Bob may
sacrifice more secret bits than what they can get from privacy amplification.
Then an unconditional secure secret key agreement can never be accomplished.
On the other hand, getting partially secret strings is much cheaper: Alice and
Bob can always run independent, unconditionally secure secret key agreement
protocols [48] over an insecure and non-authentic channel to get partially se-
cret strings to compensate for previously used partially secret strings. That is
the advantage of Approach 2 and 3 over Approach 1.

• Approach 2 assumes that Alice and Bob only share one partially secret string
S. However, this is very unattractive since it implies the stronger requirement
that H2(S|Z = z) ≥ tn with t > 2/3. When t ≤ 2/3, Approach 2 will not
work. Meanwhile, the length of the final secret key is only at most (t− 2/3)n.
Further, in case of an active attack by Eve, Approach 3 only needs a short,
independent, partially secret string SI , satisfying H2(SI |Z1 = z1) ≥ t1n1 and
t1 > 1/2, for authentication of hash function g. This hash function will be
applied to the other string, SII , of length k/2 times longer than the length of
SI , during the privacy amplification phase to distill a final secret key of length
about H2(SII |Z2 = z2).



Chapter 4

Secret Key Agreement over a
Non-Authentic Public
Channel

4.1 Introduction

A secret key agreement protocol starts with an initialization phase, which enables
Alice, Bob, and Eve to receive random variables X, Y, and Z, respectively. The three
variables are jointly distributed according to some probability distribution PXY Z .
Next, in the communication phase Alice and Bob alternately send each other mes-
sages over a public channel. This process is known as public discussion. Through
public discussion, Alice and Bob implement advantage distillation, information rec-
onciliation, and privacy amplification. Finally, in the decision phase each of Alice
and Bob either accepts or rejects the protocol execution, depending on whether they
believe to be able to generate a secret key.

When the public channel between Alice and Bob is non-authentic, Eve may
introduce fraudulent messages or modify messages over the public channel without
detection, thus thwarting the secret key agreement. A problem arises: how do
Alice and Bob authenticate the messages exchanged over the public channel during
the communication phase? If Alice and Bob share an authentication key, they
can employ authentication codes to detect Eve’s active attacks. However, the aim
of a secret key agreement by Alice and Bob is to get a secret string. So, it is
not reasonable to assume some secret information between Alice and Bob in this
context. On the other hand, even if a short authentication key is assumed to be
shared between Alice and Bob, Eve’s continuous active attacks may use up the
common authentication key.

In Chapter 3, we studied how Alice and Bob achieve authenticity with a partially
secret string as the authentication key. A necessary condition for Alice and Bob to

83
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accomplish authenticity, namely, the upper bound for Eve’s Rényi entropy of the
authentication key, was derived. This result can be applied to privacy amplification
since common strings are usually assumed between Alice and Bob in the context
of privacy amplification. Privacy amplification can be seen as a special case of the
general secret key agreement protocol where Alice and Bob share a common string
X = Y, about which Eve has some knowledge.

In the general case of secret key agreement, there is no common string between
Alice and Bob like there is in the privacy amplification stage. They have to use their
correlated strings that were obtained during the initialization phase to accomplish
authenticity for their communication over the public channel. However, not all
probability distributions PXY Z imply that authenticity can be achieved. In fact,
only for those distributions where Alice and Bob have some advantage over Eve,
authenticity can be accomplished (between Alice and Bob).

In [48], a so-called simulatability condition characterizes those distributions for
which no authenticity can be achieved. The simulatability condition will be in-
troduced in Section 4.2. In the subsequent sections, the satellite scenario is again
considered in the initialization phase, where we assume that both Alice and Bob
have better (in terms of lower bit error probabilities) binary symmetric channels
than Eve. Then we study how Alice and Bob use their correlated strings obtained
in the initialization phase of the secret key agreement protocol to authenticate the
messages over the public channel based on error correction techniques. The messages
exchanged during the communication phase do not serve advantage distillation since
we already assume an advantage (in terms of mutual information) between Alice and
Bob over Eve. For the satellite scenario, the assumption of more mutual information
between Alice and Bob is equivalent to the non-simulatability condition. Since we
have already solved the authentication problem for privacy amplification, this chap-
ter actually deals with the problem how to authenticate messages for information
reconciliation.

This chapter is mainly based on [35].

4.2 A Necessary Condition for Secret Key Agreement against
Active Adversaries

In this section, we define a class of probability distributions PXY Z , for which secret
key agreement against active adversaries is impossible. This class of distributions
is characterized by the simulatability condition. This concept was first proposed
in [48].

Definition 4.2.1 Let X, Y, and Z be random variables with joint probability dis-
tribution PXY Z . If there exists a conditional probability distribution PX|Z such that
PXY (=

∑
X

∑
Z PXY ZPX|Z)= PXY , then X is simulatable by Z with respect to Y,

denoted by simY (Z → X).
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In words, simY (Z → X) means that it is possible for Eve to change her random
variable Z to another variable X such that Bob cannot tell the difference between
Eve’s forged variable X and Alice’s variable X. Hence Alice cannot send any au-
thenticated message to Bob.

In fact, simY (Z → X) implies that XY → Z → X is a Markov chain and
PXY = PXY . Another way to explain simY (Z → X) is the following. There exists
a channel, characterized by PX|Z , to which Eve can input Z and that outputs X,

such that PXY = PXY . Eve can successfully implement active attacks with X.
Similarly, we can define Y is simulatable by Z with respect to X, which is denoted

by simX(Z → Y ).
It was proved that if either simY (Z → X) or simX(Z → Y ), secret key agreement

against active adversaries is not possible (see Theorem 6.3 in [64]).
The following theorem, which was proved in [64], shows that simY (Z → X) and

simX(Z → Y ) hold if secret key agreement against passive adversaries is impossible.

Theorem 4.2.2 Let PXY Z be a probability distribution such that I(X; Y ↓ Z) = 0.
Then simY (Z → X) and simX(Z → Y ) hold.

The question how to determine whether simY (Z → X) or simX(Z → Y ) holds
and how to find a channel PX|Z (or PY |Z) for a given distribution PXY Z such that
PXY = PXY (or PXY = PXY ) was studied in [64].

4.3 Authentication with Correlated Strings between Alice
and Bob

Let us deal with the problem of authentication for the satellite scenario introduced
in Chapter 1. We still use the terminology of authentication codes in this con-
text, for example, source states, encoding rules, messages, impersonation attack,
substitution attack, etc. Suppose that Alice, Bob, and Eve get random variables
X = (X1, X2, . . . , XN ), Y = (Y1, Y2, . . . , YN ), and Z = (Z1, Z2, . . . , ZN ) respec-
tively, through three independent binary symmetric channels with bit error proba-
bilities pA, pB , and pE . Since Xi, Yi, and Zi have the same joint probability distri-
bution for i = 1, 2, . . . , N, we use X,Y, and Z to denote the binary random variables
that Alice Bob and Eve get from the BSC channels. Then

PXY Z [x1, x2, . . . , xN , y1, y2, . . . , yN , z1, z2, . . . , zN ] =
N∏

i=1

PXY Z [xi, yi, zi].

The simulatability condition is related to pA, pB , and pE .

Lemma 4.3.1 In the satellite scenario, pA ≥ pE is equivalent to simY (Z → X).

Proof: The bit error rate between Alice’s string X and Bob’s string Y is given by
εAB = pA +pB−2pApB . The bit error rate between Eve’s string Z and Bob’s string
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Y is given by εBE = pB + pE − 2pBpE . We get εAB ≥ εBE from pA ≥ pE . Then
Eve can always input Z to a binary symmetric channel with bit error probability
PX|Z = (εAB − εBE)/(1− 2εBE), and get X such that

PX|Y = PX|Y =
{

εAB if X 6= Y
1− εAB if X = Y

.

It follows that PXY = PXY .

Reversing the order in the above proof, we can derive pA ≥ pE from simY (Z →
X). tu

Meanwhile pA ≥ pE is equivalent to I(X; Y ) ≤ I(Y ;Z), hence we have the
following theorem.

Theorem 4.3.2 In the satellite scenario, simY (Z → X) is equivalent to I(X;Y ) ≤
I(Y ; Z).

The above theorem was also proved in [64]. It means that the simulatability
condition is equivalent to Eve having an advantage, in terms of mutual information,
between her and Bob over Alice and Bob (or between her and Alice over Bob and
Alice).

Secret key agreement against passive adversaries is possible even if X and Y are
both simulatable. This has been verified by the protocol proposed in Chapter 2 that
combines advantage distillation and information reconciliation. In the case of active
adversaries, however, it is necessary to assume that pA < pE and pB < pE .

As we pointed out earlier, traditional authentication techniques cannot be em-
ployed to prevent Eve’s active attacks, because there is usually no authentication
key shared between Alice and Bob (generally not even a partially secret string be-
tween them). What Alice and Bob try to generate is a secret string from their
correlated strings X and Y that have bit error rate εAB = pA + pB − 2pApB . The
assumption that pA < pE and pB < pE implies that the bit error rate between Eve’s
and Alice’s strings, εAE = pA + pE − 2pApE , is larger than εAB , and so is the bit
error rate εBE = pB + pE − 2pBpE between Bob and Eve. Then, pA < pE implies
that Alice shares more common bits with Bob than with Eve. Similarly, pB < pE

implies that Bob shares more common bits with Alice than with Eve. The idea of
authentication is that Alice attaches part of her string X as an authenticator when
she transmits a source state s to Bob over the public channel. After Bob gets the
message, he creates from Y his own authenticator of s, and compares it with the
received authenticator. If the message is from Alice, then Bob expects a fraction
about εAB of inconsistent bits between the two authenticators. If the message is
forged by Eve, either by an impersonation attack or a substitution attack, there will
be more inconsistent bits.

In case of an impersonation attack, Eve introduces a fraudulent message to Bob
with her string Z. Then a fraction about εBE of inconsistent bits is expected between
Bob’s calculated and received authenticators. As long as the authenticator is long
enough, there will be a great gap between the number of inconsistent bits introduced
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by Alice and that by Eve. Bob will detect this and thwart Eve’s impersonation
attack.

In case of a substitution attack, Eve intercepts a message, i.e., a source state
together with its authenticator. She wants to create a new authenticator for a
different source state, hoping that it will be accepted by Bob. Her best strategy is
to copy those bits from the intercepted authenticator that are also contained in the
new authenticator, introducing errors with probability εAB , and to take as guesses
for the remaining bits her copies of the bits (from Z), introducing errors in those
bits with probability εBE . To thwart Eve’s substitution attack, the encoding rule
should be chosen such that a different source state leads to as many bits as possible
for Eve to guess with her own string Z.

The principles for the encoding rules are as follows. With the same encoding
rule,

• a source state uniquely determines the bit positions of Alice’s (Bob’s) initial
string that contribute to the authenticator;

• different source states result in as many different bit positions in Alice’s (Bob’s)
initial string as possible.

Traditional authentication codes assume that the encoding rules are secret in-
formation (called the authentication key) between Alice and Bob. If the message is
from the legitimate sender, the receiver never rejects it. In the context of secret key
agreement, however, Alice and Bob have no common string at all. Authenticity is
implemented in a different way.

• The encoding rule is public.

• The receiver may reject the sender’s messages with nonzero probability.

The aim of authenticity is to enable the receiver both to accept legitimate mes-
sages and to reject fraudulent messages with high probabilities. The following ques-
tions arise.

(1) What is a good encoding rule to encode the source states into messages?

(2) How to determine the threshold of the number of inconsistent bits so that Bob
accepts Alice’s messages and rejects Eve’s messages with given probabilities?

Given an encoding rule, suppose that a source state leads to a binary codeword,
and that the binary codeword uniquely determines an authenticator such that the
indices of the 1-entries of the binary codeword determine the positions of bits from
Alice’s (Bob’s) string that make up the authenticator. Then the number of differ-
ent bit positions between two authenticators can be measured by the so-called 0-1
distance.

Definition 4.3.3 The 0-1 distance from a codeword c1 to another codeword c2,
denoted by d(c1 → c2), is defined as the number of transitions from 0 to 1 when
going from c1 to c2, not counting the transitions from 1 to 0.
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The 0-1 distance of two codewords is different from the Hamming distance and it is
not symmetric, i.e., d(c1 → c2) = d(c2 → c1) does not hold in general.

Definition 4.3.4 The minimum 0-1 distance of a code C, denoted by d0→1(C), is
defined as the smallest value among the 0-1 distances between any two different
codewords in C, i.e.,

d0→1(C) = min
i,j,i6=j

d(ci → cj),

where ci, cj ∈ C.
The minimum 0-1 distance of any conventional linear code is 0 since the zero code-
word always lies in the code. The following theorem shows how to change a conven-
tional linear code of Hamming distance d into a code with 0-1 distance d.

Theorem 4.3.5 Every conventional linear code of length n with minimum Ham-
ming distance d can be converted to a code of length 2n with minimum 0-1 distance d
by replacing every bit in the original codewords by a pair of bits, namely by replacing
0 by 01 and 1 by 10.

We omit the proof since it is obvious. The code obtained from the linear code
with the method of Theorem 4.3.5 is called a 0-1 code, and its codewords are called
0-1 codewords. Note that the number of 1’s is equal to that of 0’s in any 0-1
codeword.

Alice and Bob can agree on a linear code. For any source state, a corresponding
codeword is obtained according to the encoding rule of the linear code. Subsequently,
the codeword can be changed into a 0-1 codeword. Then both Alice and Bob are
able to construct the authenticator for the source state by taking together some bits
from her or his initial string, where the positions of the bits are determined by the
indices of 1-entries of the 0-1 codeword.

More precisely, the authentication scheme can be described as follows. Let Alice
be the sender and Bob the receiver.

Scheme 4.3.6 Prerequisite:

(1) Alice, Bob, and Eve obtain initial strings x = (x1, x2, . . . ), y = (y1, y2, . . . )
and z = (z1, z2, . . . ) from the satellite’s binary, random broadcast, over in-
dependent binary symmetric channels with bit error probabilities pA, pB , and
pE , respectively, where pA < pE and pB < pE . Let εAB = pA + pB − 2pApB ,
εBE = pE + pB − 2pEpB , and εAE = pA + pE − 2pApE .

(2) Alice and Bob agree on an [n, k, d] linear code and r, a threshold value. This
can be accomplished over an authentic channel, for instance a voice channel
(but it is not practical to use such an authentic channel to authenticate a large
amount of data, which is why this authentication scheme is developed).

Authentication scheme:

(1) Let s = (s1, s2, . . . , sk) be the k-bit source state. Suppose that Gk×n is the
generation matrix of the [n, k, d] linear code.
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(a) Alice determines the linear codeword c = s ·Gk×n. She converts the linear
codeword to the corresponding 0-1 codeword c′ = (c1

′, c2
′, . . . , c2n

′).

(b) Suppose ci1
′, ci2

′, . . . , and cin
′ equal to 1 in c′. Alice constructs the au-

thenticator (xi1 , xi2 , . . . , xin
) for s.

(c) Alice sends the message (s1, s2, . . . , sk)||(xi1 , xi2 , . . . , xin) to Bob.

(2) After Bob gets the message, he determines c′ from the source state in the same
way and gets his own authenticator (yi1 , yi2 , . . . , yin).

(a) Bob determines the number of inconsistent bits between the received and
created authenticators. Let

v =
n∑

j=1

|xij − yij |.

(b) Bob only accepts the received message when v is less than the threshold
value r, otherwise he rejects it.

(3) Alice and Bob discard (x1, x2, . . . , x2n) and (y1, y2, . . . , y2n) respectively from
their strings.

The following parameters are defined to evaluate the performance of Scheme 4.3.6.

Definition 4.3.7 The code rate of an authentication scheme, denoted by R, is de-
fined as the number of bits that can be authenticated by Alice and Bob with one bit
of their initial, correlated strings.

For traditional authentication codes, the code rate R is determined by the length
of the source states divided by that of the encoding rules (authentication keys).

Definition 4.3.8 The failure probability of an authentication scheme, denoted by
PF , is defined as the probability that the receiver rejects a legitimate message from
the sender.

The failure probability of any traditional authentication code is 0.

Definition 4.3.9 The deception probability of an authentication scheme, denoted
by PD, is defined as the probability that the adversary successfully carries out an
active attack, i.e., the receiver accepts a fraudulent message sent by the adversary.

The deception probability is generally determined by the impersonation probability
and the substitution probability, i.e., PD = max {PI , PS}.

The performance of the above authentication scheme is summarized in the fol-
lowing theorem.
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Theorem 4.3.10 For s, s′ > 1, let r = n · εAB + s ·
√

n · εAB · (1− εAB). Suppose
that the [n, k, d] code satisfies

s′ · 1− εAB − εBE

2
≤

√
n · εAB · (1− εAB) (4.1)

and

s′ ·
√

(n− d) · εAB · (1− εAB) + d · εBE · (1− εBE) + s ·
√

n · εAB · (1− εAB)
≤ d · (εBE − εAB).

(4.2)

Then Scheme 4.3.6 has code rate

R =
k

2n
,

failure probability
PF ≤ 1/s2,

and deception probability
PD ≤ 1/s′2.

Proof: In Scheme 4.3.6, when the message comes from Alice, the subscripts of 1-
entries, (i1, i2, . . . , in), of the 0-1 codeword determined by Bob should be consistent
with those determined by Alice. Let the random variable V denote the number of
different bits between (xi1 , xi2 , . . . , xin) and (yi1 , yi2 , . . . , yin). Then the expected
value and the standard deviation of V are

µ = n · εAB

and
σ =

√
n · εAB · (1− εAB).

In the authentication scheme, Bob accepts a message only when

V < r = n · εAB + s ·
√

n · εAB · (1− εAB).

From Chebyshev’s inequality, we have

Pr [|V − µ| < s · σ] > 1− σ2

(s · σ)2
.

It follows that

Pr
[
|V − n · εAB | < s ·

√
n · εAB · (1− εAB)

]
> 1− 1

s2
,

hence
Pr

[
V < n · εAB + s ·

√
n · εAB · (1− εAB)

]
> 1− 1

s2
.
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It indicates that Bob accepts Alice’s messages with probability at least 1− 1/s2.
When Eve has intercepted a message from Alice, as we pointed out earlier, her

best strategy for creating a new authenticator for a different message (hoping that it
will be accepted by Bob), is to copy those bits from the received authenticator that
are also contained in the new authenticator. This introduces an inconsistent bit in
one of those bits with probability εAB . She also takes as guesses for the remaining
bits her copies of the bits (from Z), introducing an error in one of those bits with
probability εBE . The probability of successful deception is hence determined by the
number l of bits that Eve must guess and the length n of the authenticator. Let V ′

denote the number of different bits between the two authenticators, one is forged
by Eve and the other generated by Bob. The expected value and the standard
deviation of V ′ are

µ′ = (n− l) · εAB + l · εBE

and
σ′ =

√
(n− l) · εAB · (1− εAB) + l · εBE · (1− εBE).

In fact, the 0-1 distance from a codeword c′1 to another codeword c′2 is the number of
bits that Eve must guess when trying to convert the authenticator corresponding to
c′1 into another authenticator corresponding to c′2. Since the minimum 0-1 distance
of the 0-1 code generated from the [n, k, d] code is d, it is obvious that l ≥ d holds.
Therefore Eve must guess at least d bits to forge the authenticator. Let

f(x) =(εBE − εAB)x− s ·
√

n · εAB · (1− εAB)

−s′ ·
√

(n− x) · εAB · (1− εAB) + x · εBE · (1− εBE).

It is easy to test that when

s′ · 1− εAB − εBE

2
≤

√
n · εAB · (1− εAB)

holds, the derivative function f ′(x) ≥ 0 for x > 0. If (4.2) holds, it follows that

s′ ·
√

(n− l) · εAB · (1− εAB) + l · εBE · (1− εBE) + s ·
√

n · εAB · (1− εAB)
≤ l · (εBE − εAB),

which implies that µ′ − µ ≥ s · σ + s′ · σ′.
From Chebyshev’s inequality we know

Pr [|V ′ − µ′| < s′ · σ′] > 1− σ′2

(s′σ′)2
,

hence
Pr [V ′ > µ′ − s′ · σ′] > 1− 1

s′2
.

Since µ′ − s′ · σ′ ≥ µ + s · σ, we have

Pr [V ′ > µ + s · σ] = Pr [V ′ > r] > 1− 1
s′2

,
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which means that Bob rejects fraudulent messages with a probability at least
1− 1/s′2. tu
Remark. When Bob is the sender and Alice the receiver, εBE is replaced by εAE

in Theorem 4.3.10 and the corresponding proof.

4.4 Authentication with the Extended Reed-Solomon Codes

In this section, we show with an example that as long as pA < pE and pB < pE , it
is possible to find a proper linear code to implement Scheme 4.3.6 with the required
authentication performance.

We take as an example the [N, K, d] extended Reed-Solomon code over a finite
field GF (2m). The code has a length of N = 2m. As a binary code, it has a length of
n = m ·2m, and the source state consists of k = m ·K bits. The minimum Hamming
distance of the [N, K, d] extended Reed-Solomon code satisfies d = N − K + 1.
Consequently, the corresponding 0-1 code has also a 0-1 distance of d. Substituting
d = 2m −K + 1 in (4.1) and (4.2) yields

s′ · 1− εAB − εBE

2
≤

√
m · 2m · εAB · (1− εAB) (4.3)

and

s′ ·
√

((m− 1) · 2m + K − 1) · εAB · (1− εAB) + (2m −K + 1) · εBE · (1− εBE)

+ s ·
√

m · 2m · εAB · (1− εAB) ≤ (2m −K + 1) · (εBE − εAB).
(4.4)

For any k ∈ N, s, s′ > 1, there exists an integer m0 such that for any m ≥ m0,
the above two inequalities with K = dk/me hold. In other words, as long as the
code length n = m · 2m is large enough, Alice can always send a k-bit source state
to Bob with PF ≤ 1/s2 and PD ≤ 1/s′2. Further Alice and Bob have to sacrifice
2n bits to authenticate the k bits of the source state. So, R = k/(2n) = K/(2N)
is the code rate of the authentication scheme. Alice and Bob would like to use an
authentication scheme with high code rate R and low values of PF and PD. But for
a fixed k, there is a trade-off between n, PF and PD. To ensure PF and PD to be
small, n has to be large enough, which implies a low code rate R.

Let pA = 0.01, pB = 0.02, and pE = 0.3. When the code rate of the authenti-
cation scheme is fixed, an upper bound on the minimal length of the authenticator,
say n0, is determined for PD = PF ≤ 1/s2, where s = 2, 3, 4, 5. The dotted lines
in Figure 4.1 illustrate how PD and PF behave as a function of n0 for code rate
R=1/4, 1/16. The solid lines show the bounds for pA = 0.1 instead of 0.01.

Scheme 4.3.6 with the extended RS codes is able to achieve any given code rate
R, 0 < R < 1, and failure and deception probabilities PD and PF (0 < PD, PF < 1)
as long as n (k as well) is long enough.



4.5 Further Analysis of the Authentication Scheme 93

00.050.10.150.20.25
0

0.5

1

1.5

2

2.5
x 10

4

The failure and deception probabilities  P
D

 ,    P
F
  ( P

D
 =  P

F
 )

T
he

 u
pp

er
 b

ou
nd

 o
n 

th
e 

m
in

im
al

 le
ng

th
 o

f t
he

 a
ut

he
nt

ic
at

or
  n

0

 n
0
 for  R=1/4,  ε

A
=0.1, ε

B
=0.02,  ε

E
=0.3  

 n
0
 for  R=1/16,  ε

A
=0.1, ε

B
=0.02,  ε

E
=0.3 

 n
0
 for  R=1/4,  ε

A
=0.01, ε

B
=0.02,  ε

E
=0.3 

 n
0
 for  R=1/16,  ε

A
=0.01, ε

B
=0.02,  ε

E
=0.3

Figure 4.1: The upper bound on the minimal length of the authenticator as a
function of the probability PF (=PD) when code rate R = k/(2n0) = 1/4 and 1/16
for the case when pA = 0.01, pB = 0.02, and pE = 0.3 and the case when pA = 0.1,
pB = 0.02, and pE = 0.3

4.5 Further Analysis of the Authentication Scheme

In Section 4.3, we analyzed the performance of Scheme 4.3.6 by means of the Cheby-
shev’s inequality. Using other inequalities, the performance of the authentication
scheme may be proved to be better than what Theorem 4.3.10 claims. In this sec-
tion, we will analyze Scheme 4.3.6 with the inequality introduced in Lemma 1.2.2.
The corresponding result is shown in the following theorem.

Theorem 4.5.1 Suppose that an [n, k, d] linear code is employed in Scheme 4.3.6
by Alice and Bob, and Bob chooses r, r ∈ N, as the threshold (he accepts when
the number of inconsistent bits between the received and calculated authenticators
is less than r and rejects otherwise). Let α = ((1 − εAB)r)/(εAB(n − r)), a =
(n − r)εABεBE , b = nεAB(1 − εBE) − r(εAB + εBE − 2εABεBE) + d(εBE − εAB),
c = −r(1 − εAB)(1 − εBE), and β = (−b +

√
b2 − 4ac)/(2a). If n, k, d, and r are

chosen such that
nεAB + d(εBE − εAB) ≥ r ≥ nεAB ,

then the authentication scheme has a code rate of

R =
k

2n
,

Bob’s failure probability satisfies

PF ≤ (εAB · α + 1− εAB)n

αr
, (4.5)
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and Eve’s deception probability satisfies

PD ≤ (εAB · β + 1− εAB)n−d (εBE · β + 1− εBE)d

βr
. (4.6)

Proof: Let the random variable V denote the number of different bits between the
authenticator Alice sent and the one Bob calculated for some source state. It is
binomially distributed with n and εAB as parameters. Let α = ((1− εAB) · r)/(εAB ·
(n− r)). According to Theorem 1.2.3,

Pr [V ≥ r] ≤ (εAB · α + 1− εAB)n

αr

holds when
r ≥ n · εAB . (4.7)

For Eve’s active attack, we only have to analyze her best strategy for the sub-
stitution attack. Let the random variable V ′ denote the number of different bits
between the authenticator Eve forged and the one Bob calculated for some source
state. Suppose that Eve has to guess l bits with her own string, and can copy n− l
bits from the intercepted authenticator. We know that l ≥ d. The number of dif-
ferent bits in the l bits is binomially distributed with parameters l and εBE , while
the number of different bits in the other n − l bits is binomially distributed with
parameters n− l and εAB . From Lemma 1.2.2, it follows that

Pr [V ′ ≤ r] ≤ E[e(r−V ′)t]

for any t ≥ 0.

E[e(r−V ′)t] =
n−l∑

i=0

(
n− l

i

)
εAB

i(1− εAB)n−l−i
l∑

j=0

(
l

j

)
εBE

j(1− εBE)l−j · e(r−(i+j))t

=ert(εAB · e−t + 1− εAB)n−l(εBE · e−t + 1− εBE)l.

(4.8)

Let β = e−t, then

Pr [V ′ ≤ r] ≤ (εAB · β + 1− εAB)n−l (εBE · β + 1− εBE)l

βr

≤ (εAB · β + 1− εAB)n−d (εBE · β + 1− εBE)d

βr
.

(4.9)

The last inequality comes from the fact that εAB < εBE and β ≤ 1.
Define

g(β) =
(εAB · β + 1− εAB)n−d (εBE · β + 1− εBE)d

βr
.
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The corresponding derivative is given by

g′(β) = (a · β2 + b · β + c) (εAB · β + 1− εAB)n−d−1 (εBE · β + 1− εBE)d−1 · β−r−1,

where a = (n− r) · εAB · εBE , b = n · εAB · (1− εBE)− r · (εAB + εBE − 2εABεBE) +
d · (εBE − εAB), and c = −r · (1 − εAB) · (1 − εBE). Since a > 0 and b2 − 4ac > 0,
we have

g′(β) < 0, if (−b−
√

b2 − 4ac)/(2a) < β < (−b +
√

b2 − 4ac)/(2a),

g′(β) > 0, if β > (−b +
√

b2 − 4ac)/(2a).

Consequently, g(β) achieves its minimum for β = (−b +
√

b2 − 4ac)/(2a) since
g′(β) = 0. To guarantee that t ≥ 0 (i.e., β = e−t ≤ 1),

−b +
√

b2 − 4ac

2a
≤ 1 (4.10)

is required.
We shall now show that Alice and Bob can always find an integer r, r ≥ n ·

εAB , which satisfies (4.10), to achieve (4.5) and (4.6). The reason is the following.
Statement (4.10) is equivalent to −c ≤ a + b, i.e.,

r · (1− εAB) · (1− εBE) ≤
(n− r) · εAB · εBE +n · εAB · (1− εBE)− r · (εAB + εBE − 2εABεBE)+d · (εBE − εAB).

Simplify the above formula, we get r ≤ n · εAB + d · (εBE − εAB).
tu

From (4.5) and (4.6), we see that the upper bound for PF decreases with in-
creasing n, and the upper bound for PD decreases with increasing n and d. The
parameter r also plays a role on PF and PD. For fixed n and d, an increase of r
decreases PF but increases PD, while a decrease of r decreases PD but increases
PF . On the other hand, when n and d are large enough, Alice and Bob can always
choose a threshold r such that PF and PD are less than any given small value.

As for the example in Section 4.4, Table 4.1 tabulates PF and PD determined
by Theorem 4.3.10 with those determined by Theorem 4.5.1 for different n0 when
R = k/(2n0) = 1/4 and pA = 0.1, pB = 0.02, and pE = 0.3. We can see that
the failure and deception probabilities determined by Theorem 4.5.1 are generally
smaller than those determined by Theorem 4.3.10, especially when n is large.

4.6 Conclusion

In this chapter, a so-called simulatability condition was introduced. The simulata-
bility condition characterizes a class of probability distributions PXY Z , where X, Y,
and Z are correlated random variables obtained by Alice, Bob, and Eve in the ini-
tialization phase respectively. If X is simulatable by Z with respect to Y (or Y is
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n0bits PF = PD (Theorem 4.3.10) PF (Theorem 4.5.1) PD (Theorem 4.5.1)
2048 0.2500 0.1605 0.0617
4608 0.1111 0.0166 0.0066
10240 0.0625 6.64 · 10−4 1.76 · 10−5

22528 0.0400 9.72 · 10−6 6.47 · 10−12

Table 4.1: Upper bounds on PF and PD determined by Theorem 4.3.10 and Theo-
rem 4.5.1 for the given lengths of the authenticator with the code rate R = k/(2n0) =
1/4 and pA = 0.1, pB = 0.02, and pE = 0.3

simulatable by Z with respect to X), Bob (Alice) cannot tell the difference between
Alice’s (Bob’s) messages and Eve’s. Thus secret key agreement is vulnerable to
Eve’s active attacks since Alice and Bob need some public discussion over a public
channel during the communication phase.

We considered the special scenario, when Alice, Bob, and Eve obtain correlated
information through independent binary symmetric channels from a random, binary
output of a satellite. In such a scenario, the statement that X is simulatable by
Z with respect to Y is equivalent to the scenario that Eve’s channel is better than
Alice’s. To consider secret key agreement against active adversaries, it is necessary
to assume that Eve’s channel is noisier than both Alice’s and Bob’s. We showed
that an authentication scheme based on coding theory can always be implemented
to accomplish the required authentication performance, using Alice’s and Bob’s
correlated strings.

The authentication scheme based on the extended RS codes was given as an
example. It showed that the receiver’s failure probability, and the adversary’s de-
ception probability, are related to the length of the authenticator, the code rate of
the authentication scheme, and the bit error rates of the binary symmetric chan-
nels. Although a linear code satisfying the required performance can always be
found for the authentication scheme, the authentication scheme might not be very
practical since the authenticator may be too long and the code rate too low. So
how to design a practical authentication scheme with high code rate and moderate
authenticator length deserves further research. However, the existence of the au-
thentication scheme described in this chapter implies that the advantage between
Alice and Bob can be exploited to provide authenticity for the messages exchanged
over the public channel. Recall that in Chapter 2 the authenticity of the public
channel leads to the advantage between Alice and Bob over Eve. Therefore, the
authenticity of the public channel and the advantage between Alice and Bob over
Eve are convertible.



Chapter 5

Evaluating Eve’s Information
in a Quantum Transmission

5.1 Introduction

In this chapter, we consider the quantum key agreement method described by Ben-
nett et al. in [2], and derive a probabilistic upper bound on the information obtained
by Eve during the raw quantum transmission.

Bennett et al. considered quantum key agreement between two legal users Alice
and Bob. The physical carriers of information are quantum mechanical (e.g. pho-
tons) and therefore called quantum bits, or simply qubits. It is well known that
measurements on a quantum mechanical system destroy all information about the
state of the system. We will explain in Section 5.2 how this can be used to detect
eavesdropping.

More precisely, the quantum transmission protocol works as follows: Alice sends
a sequence of polarized photons to Bob. Each photon is randomly selected to be in
one of the following four canonically polarized states: horizontal, vertical (rectilin-
ear), left-circular, or right-circular. For each received photon Bob chooses randomly
whether to measure the photon’s rectilinear or circular polarization. Then Bob an-
nounces publicly the sequence of measurements he has made. Alice replies publicly
the used sequence of polarizations (rectilinear or circular). Alice and Bob then dis-
card all bit positions for which Bob’s measurements did not match Alice’s reply
and all bit positions for which Bob did not detect any photon at all. Heisenberg’s
uncertainty principle implies that measuring a photon’s rectilinear polarization will
randomize its circular polarization, and vice versa. When Bob detects all photons
and there is no eavesdropping, his bit error rate will typically be 1/4 before dis-
carding the unmatched qubits. The reason is the following. With probability 1/2,
Bob chooses a correct basis to measure a photon, hence getting the qubit sent by
Alice; with probability 1/2, he chooses a wrong basis and gets a randomly valued
qubit. After discarding the unmatched qubits, his bit error rate should be 0. The

97
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polarizations of the remaining photons are interpreted as bit 0 for horizontal or left-
circular, and bit 1 for vertical and right-circular. These steps together are called a
raw quantum transmission session.

In the practical implementation of a quantum transmission, it is very hard for
the current quantum facility to produce a sequence of pure single photons. What
is used is a sequence of light pulses instead. The expected number of photons per
light pulse is µ, which is sufficiently smaller than 1.

Alice and Bob want to distill a secret key of a certain minimal length from each
raw quantum transmission session despite eavesdropping by Eve. They remove all
raw quantum transmission sessions for which it is not possible to distill a secret key
of sufficient length. It is Eve’s intention that Alice and Bob generate a secret key
about which Eve gets some information. Hence, Eve’s activities should not prevent
Alice and Bob from generating a common key. Alice and Bob have to solve the
following problems:

(1) Find with high probability the location of all, say e, errors after agreement
of the bases. This can be done by means of information reconciliation, see
[2, 7, 76, 73, 77, 38] and Chapter 2. During the information reconciliation,
Alice and Bob reveal bits to Eve. The exact number b of bits revealed to Eve
can be computed by Alice and Bob. For the reconciliation protocol proposed
in Chapter 2, b is just the number of the rows of the parity check matrix
constructed during the protocol.

(2) Given the number of qubits n that Alice and Bob get after a raw quantum
transmission, the number of errors e between Alice’s and Bob’s qubits, and
the density of the light pulses µ used in the quantum transmission, compute
an upper bound l(e, n, µ), which holds with high probability, on the number
of bits of information obtained by Eve during the raw quantum transmission
session. This problem has been studied in [20, 21], and will be further discussed
in this chapter (see Section 5.3).

(3) Generate a secret key given that Eve obtained at most l(e, n, µ) + b bits of
information, and compute the secret information leaking to Eve. This prob-
lem can be solved by means of privacy amplification, see [9, 3, 4, 5, 10] and
Chapter 3.

This chapter is mainly based on [22].

5.2 Eve’s Strategies

Eve’s possible strategies presented in [2] are introduced in this section. We will only
consider the qubits which Bob measures in the right bases, since they are discarded
otherwise.



5.2 Eve’s Strategies 99

5.2.1 The Intercept/Resend Strategy

When Alice transmits a message to Bob over a channel, it is quite possible that Eve
sits in the middle, intercept and read the message, then resend it to Bob. This is
known as the Intercept/Resend strategy. With a classical channel, Eve knows the
exact information about the intercepted message. After Eve resends the message,
Bob also gets the exact information about the message, but Alice and Bob are not
able to detect whether the message has been known to Eve.

However, things are different with a quantum channel. More precisely, with
the Intercept/Resend strategy during the raw quantum transmission session, Eve
intercepts selected pulses and measures them in bases of her choice. Then Eve
fabricates a pulse of the same polarization as she detected (the correct information
on the state that Alice had prepared may have disappeared!), which she sends to
Bob in the interception basis.

When Eve uses canonical bases to intercept/resend pulses, she will get deter-
ministic information about the qubits. For each qubit that Eve intercepts, with
probability 1/2 she will have chosen the right basis to measure (which agrees with
the basis in which Alice polarized the pulse) and gets exact information about the
qubit. She also has probability 1/2 to measure the pulse in the wrong basis. In that
case, she gets random information. Therefore, her bit error probability is 1/4. As for
Bob, he will also get the exact information about the qubit in the first case. In the
second case, Bob interprets intercepted photons measured by Eve in the wrong basis
correctly with probability 1/2. That means for each of these intercepted qubits, Bob
also gets an error with probability 1/4. Eve can also use a basis, which is different
from the interception basis, to fabricate a light pulse and send to Bob. But this will
result in an error in Bob’s qubit with a probability larger than 1/4, see [2] for details.
Therefore, we assume that Eve uses the interception basis to resend the light pulse
to Bob. After Alice publishes the correct bases, both Bob and Eve expect to know
the polarization information on a fraction 3/4 of the pulses Eve intercepted. There is
a significant difference between the channel from Alice to Bob and the channel from
Alice to Eve; Eve knows which intercepted photons were measured by her in correct
bases, where Bob does not know which intercepted photons were measured by Eve
in correct bases. This extra knowledge of Eve gives Eve information about whether
her interpretation of an intercepted photon is correct or completely arbitrary (that
is independent of Alice’s interpretation). We conclude that Eve’s channel is superior
to Bob’s channel (which is not surprising since Eve is an active eavesdropper).

If Eve uses the Breidbart basis, which can be loosely described as a basis midway
between the rectilinear and circular bases, her bit error probability will be minimized
to (2−√2)/4 ≈ 0.15 (see [2] for details). But after the correct bases are announced,
Eve’s information will not change from a probabilistic one into a deterministic one,
as is the case with a canonical measurement. In the case of Eve using a Breidbart
basis, however, the final secret key generated in the subsequent privacy amplification
phase is measured by Rényi entropy according to Theorem 3.2.2. More precisely,
about − log(0.852 +0.152) ≈ 0.415 bits can be distilled from each intercepted qubit.
Correspondingly, we can conclude that Eve gets no more than 0.585 deterministic
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bits from each intercepted pulse. On the other hand, Bob’s bit error probability
achieves its minimum of 1/4 as long as Eve resends the intercepted pulses in the
Breidbart basis.

In the above analysis, we assume a perfect quantum setting. However, practical
quantum facilities inevitably introduce noise. Therefore, errors in Bob’s qubits may
also come from imperfection of the quantum facilities, such as photon detector’s mal-
function or system misalignment. Nevertheless, Alice and Bob may conservatively
suppose that all errors are caused by Eve’s intercept/resend attack.

5.2.2 The Beamsplitting Strategy

In practical implementations of quantum transmissions, the light pulses Alice trans-
mits over the quantum channel are not pure single-photon states. This fact enables
Eve to implement a so-called Beamsplitting attack. She can set a partly-silvered
mirror in the quantum channel. With the mirror, a fraction f of the original beam’s
intensity is diverted to herself, and the remaining fraction 1− f of the intensity of
Alice’s original light pulse goes to Bob without any disturbance. If Bob can detect
this fraction of the light pulse, then no new error is introduced in this specific qubit
(recall we only consider those pulses that Bob has measured with the right bases).
Eve’s successful splitting of a light pulse means that both Bob and Eve detect at
least one photon. If every light pulse sent by Alice consists of several photons, it
is very likely that Eve is able to split it successfully. Then the quantum channel
becomes a classical channel, i.e., Eve may read the message over the channel without
detection, since no errors are introduced by Beamsplitting. However, if the intensity
of the light pulses is very low, the probability of a successful splitting by Eve will
be very small, as we will show below.

Generally, the distribution of the number of photons per light pulse is given by
a Poisson distribution with mean µ (µ < 1). The probability that the number of
photons in a light pulse is x is

Pr [x] =
e−µµx

x!
.

The probability of a successful splitting by Eve is determined in the following com-
putation.

The probability that both Bob and Eve detect at least 1 photon per light pulse
is given by

∞∑
x=2

Pr [x]
x−1∑

i=1

(
x

i

)
f i(1− f)x−i =

∞∑
x=2

Pr [x] · [1− fx − (1− f)x], (5.1)

and the probability that Bob detects at least 1 photon is determined by

∞∑
x=1

Pr [x]
x∑

i=1

(
x

i

)
fx−i(1− f)i =

∞∑
x=1

Pr [x] · [1− fx]. (5.2)
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The probability that Eve successfully splits a light pulse that contributes the
qubits, on which Alice and Bob will agree after a raw quantum transmission session,
can be determined by dividing (5.1) by (5.2), which is

Pr [A successful Beamsplitting] =
∑∞

x=2 Pr [x] · [1− fx − (1− f)x]∑∞
x=1 Pr [x] · [1− fx]

=
∑∞

x=2
µx

x! −
∑∞

x=2
(fµ)x

x! −∑∞
x=2

[(1−f)µ]x

x!∑∞
x=1

µx

x! −
∑∞

x=1
(fµ)x

x!

≈
µ2

2 − (fµ)2

2 − (1−f)2µ2

2

µ− fµ
= fµ.

(5.3)

Unless we assume that Eve can store photons, Eve will still have probability of
1/2 of guessing the right basis for a successfully split pulse.

5.2.3 Combination of Intercept/Resend and Beamsplitting

Eve can carry out both the Intercept/Resend and Beamsplitting attacks during the
raw quantum transmission session. We call this strategy the Combination strategy.
If Eve selects some pulses for an Intercept/Resend attack and tries to split every light
pulse, she will learn some qubits twice through intercept/resending a successfully
split pulse. In order to count these qubits only once, we make different assumptions
depending on the kind of bases Eve uses with the Combination strategy.

Suppose that Eve intercepts/resends K pulses among the n pulses. When Eve
uses canonical bases, let l denote the number of pulses measured by her with correct
bases (then she will learn the l qubits through intercept/resending). In this case, we
shall assume that Eve splits all the n−K pulses that she does not intercept/resend,
and that she also splits the K − l pulses that she does intercept/resend but about
which she gets random information (because of the wrong bases). In other words,
Eve tries to split the n−l pulses. In case of Eve using the Breidbart measurement, we
shall assume that Eve only splits the n−K pulses that she does not intercept/resend.

5.3 Probabilistic Analysis

The analysis given here corresponds to the situation after a raw quantum trans-
mission and a public reconciliation procedure. This refers to the situation where
Alice has sent her qubits to Bob, and Alice and Bob publicly agree to the qubits
that Bob received and measured with the correct bases. Some qubits may have
been intercepted/resent or split by Eve. The number of errors in Bob’s qubits, due
to Eve’s intercept/resending, is also known after a reconciliation procedure. In the
ideal quantum setting, there will be no discrepancy between Alice’s and Bob’s qubits
when Eve’s interception is absent. Let n represent the number of qubits Alice and
Bob get after a transmission session. Let the random variable K be the number of
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qubits that have been intercepted and resent to Bob by Eve. The number of errors
in Bob’s qubits is denoted by E. Hence the number of correct qubits of Bob from
those that were intercepted by Eve is given by C = K − E. Let M denote the
number of light pulses that Eve successfully splits among the n light pulses sent by
Alice. Let L(·) be the number of bits of deterministic information that have leaked
to Eve for some specific strategy and measurement. For instance,

• L(IC) for the Intercept/Resend strategy with canonical measurement;

• L(IB) for the Intercept/Resend strategy with the Breidbart measurement;

• L(BC) for the Beamsplitting strategy with canonical measurement;

• L(BB) for the Beamsplitting strategy with the Breidbart measurement;

• L(CC) for the Combination strategy with canonical measurement;

• L(CB) for the Combination strategy with the Breidbart measurement.

5.3.1 Analysis for the Intercept/Resend Strategy

We first talk about Eve’s canonical measurement in the Intercept/Resend strategy.
The number of correct qubits of Bob from those that were intercepted by Eve is
given by C = K − E (if there is no noise and no eavesdropping then after the raw
quantum transmission, E = 0). A straightforward deterministic upper bound on
the number of qubits that Eve obtained when the number of errors is known is given
by

L(IC) ≤ C = K − E ≤ n− E. (5.4)

To obtain a probabilistic upper bound we make a statistical analysis of the related
random variables.

Analysis for the random variable L(IC)

The following statements can be proved easily.

Lemma 5.3.1 For 0 ≤ l ≤ c ≤ k,
i)

Pr
[
C = c|L(IC) = l, K = k

]
=

(
k − l

c− l

)(
1
2

)k−l

,

ii)

Pr
[
L(IC) = l|K = k

]
=

(
k

l

) (
1
2

)k

,

iii)

Pr [C = c|K = k] =
(

k

c

)(
3
4

)c (
1
4

)k−c

,
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iv)

Pr
[
L(IC) = l|C = c,K = k

]
=

(
c

l

)(
1
3

)c−l (2
3

)l

.

v)

Pr
[
L(IC) = l|C = c

]
=

1
3

c

c− l
Pr

[
L(IC) = l|C = c− 1

]
.

Moreover K → C → L(IC) form a Markov chain since Pr
[
L(IC) = l|C = c,K = k

]
=

Pr
[
L(IC) = l|C = c

]
.

Proof: Statements i), ii) and iii) follow immediately from some combinatorial con-
siderations. Statement iv) follows from the following computation:

Pr
[
L(IC) = l|C = c,K = k

]
=

Pr
[
L(IC) = l|K = k

]
Pr

[
C = c|L(IC) = l, K = k

]

Pr [C = c|K = k]

=

(
k
l

) (
1
2

)k
(

k − l
c− l

) (
1
2

)k−l

(
k
c

) (
3
4

)c (
1
4

)k−c

=
(

c
l

)(
1
3

)c−l (2
3

)l

. (5.5)

From iv), it follows that Pr
[
L(IC) = l|C = c,K = k

]
is independent of the numbers

of qubits that were intercepted by Eve. Hence,

Pr
[
L(IC) = l|C = c,K = k

]
= Pr

[
L(IC) = l|C = c

]
, (5.6)

which shows that this process generates a Markov chain.

Combining (5.5) and (5.6), Statement v) follows. tu
The above lemma implies that C and L(IC) are binomially distributed, more

precisely, C ∼ Binomial(k, 3/4) and L(IC) ∼ Binomial(c, 2/3). From Statement v)
of the lemma, it follows that:

Pr
[
L(IC) = l|C = c

]
≥ Pr

[
L(IC) = l|C = c− 1

]
if l ≥ 2

3
c. (5.7)

We define the following notion:

Definition 5.3.2 For ε ≥ 0,

l′ε(c) = min
{

l ∈ N | 2
3
c ≤ l ≤ c, Pr

[
L(IC) ≥ l|C = c

]
≤ ε

}
. (5.8)

If the value of c, i.e., the number of correct qubits in Bob’s n qubits, is known,
then with probability at least 1− ε, the information leaked to Eve is not more than
l′ε(c) bits.
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Lemma 5.3.3 The function l′ε(c) is non-decreasing in c.

Proof: Put l′ε(c) = l for some l satisfying 2c/3 ≤ l ≤ c and Pr
[
L(IC) ≥ l|C = c

] ≤ ε.
From Relation (5.7) it follows that:

ε ≥ Pr
[
L(IC) ≥ l|C = c

]
≥ Pr

[
L(IC) ≥ l|C = c− 1

]
.

This implies that l′ε(c− 1) ≤ l.
tu

Analysis of the random variable E

Similar to what we did above for the random variable L(IC), we can also analyze
the number of errors E. By using C = K − E we obtain

Pr [E = e|K = k] = Pr [C = k − e|K = k] =
(

k
e

)(
1
4

)e (
3
4

)k−e

from Lemma 5.3.1 iii). This leads to the next lemma.

Lemma 5.3.4

Pr [E = e|K = k + 1] =
3
4

k + 1
k + 1− e

Pr [E = e|K = k] .

From lemma 5.3.4, it follows immediately that:

Pr [E = e|K = k + 1] ≤ Pr [E = e|K = k] if e ≤ k + 1
4

. (5.9)

Similar to l′ε(c), we now define the notion e′ε(k).

Definition 5.3.5 For ε ≥ 0,

e′ε(k) = max
{

e ∈ N
∣∣∣∣ 0 ≤ e ≤ k

4
,Pr [E < e|K = k] ≤ ε

}
.

Again, we remark that e′ε(k), is well-defined since Pr [E < 0|K = k] = 0, which
ensures that a maximum exists.

When the number of light pulses that Eve intercepts and resends is known, with
probability at least 1− ε, there are at most e′ε(k) errors in Bob’s n qubits.

Lemma 5.3.6 The function e′ε(k) is non-decreasing in k.

Proof: Put e′ε(k) = e for some e satisfying 0 ≤ e ≤ k
4 and Pr [E < e|K = k] ≤ ε.

From relation (5.9) it follows that

Pr [E < e|K = k + 1] ≤ Pr [E < e|K = k] ≤ ε.

Therefore, e′ε(k + 1) ≥ e. tu
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Analysis of the random variables K and C

Finally, we analyze the quantities K and C.

Definition 5.3.7 For ε > 0, we define:

k′ε(e) = min {k ∈ N | k ≥ 4e,Pr [E < e|K = k] ≤ ε} .

This is well-defined since Pr [E < e|K = k] → 0 (when k tends to ∞) as follows from
Lemma 5.3.4.

If the number of errors in Bob’s n qubits is known, Eve intercepts and resends
at least k′ε(e) light pulses with probability at least 1− ε.

Lemma 5.3.8 When e ∈ N satisfies k′ε(e) ≤ k, then

e ≤ e′ε(k).

Proof: Write k̂ = k′ε(e). It follows from the definition of k′ε(e) that e ≤ k̂
4 and

Pr
[
E < e|K = k̂

]
≤ ε. Therefore one has that e′ε(k̂) ≥ e by the definition of e′ε(k̂).

Applying k̂ ≤ k and Lemma 5.3.6, it follows that:

e ≤ e′ε(k̂) ≤ e′ε(k).

tu
The relationship C = K − E suggests the next definition.

Definition 5.3.9 For ε > 0, we define c′ε(e) = k′ε(e)− e.

Probabilistic upper bound for the Intercept/Resend strategy

The following theorem gives a probabilistic upper bound on the number of bits leaked
to Eve when the number of errors is given by E in Eve’s canonical measurement
with the Intercept/Resend strategy.

Theorem 5.3.10 Define γ′(e) = Pr [E < e|K = n] . Then

Pr
[
L(IC) < min

α,0≤α≤ε
l′ε−α(c′α(E))

]
≥ 1− ε (5.10)

for ε ≥ γ′(E) and

Pr
[
L(IC) < l′ε(n− E)

]
≥ 1− ε (5.11)

for 0 < ε < γ′(E).

Proof: The proof follows from the following computations.
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For β ≥ 0,

Pr
[
L(IC) ≥ l′β(c′α(E))

]

=
∑

k,c

Pr
[
L(IC) ≥ l′β(c′α(k − c))|K = k, C = c

]
Pr [K = k, C = c]

=
∑

k,c

Pr
[
L(IC) ≥ l′β(c′α(k − c))|C = c

]
Pr [K = k, C = c] , (5.12)

where (5.12) follows from the Markov property of Lemma 5.3.1. It is easy to see
that

Pr
[
L(IC) ≥ l′β(c′α(E))

]
≤

∑

k,c,c′α(k−c)≥c

Pr
[
L(IC) ≥ l′β(c)|C = c

]
Pr [K = k, C = c]

+
∑

k,c,c′α(k−c)<c

Pr [K = k, C = c] . (5.13)

Further,

Pr
[
L(IC) ≥ l′β(c′α(E))

]
≤ β +

∑

k,c,c′α(k−c)<c

Pr [K = k,C = c] (5.14)

is a direct consequence of Definition 5.3.2. And

Pr
[
L(IC) ≥ l′β(c′α(E))

]
≤ β + Pr [c′α(E) < C] = β + Pr [k′α(E) < K] (5.15)

follows from the relation C = K − E and Definition 5.3.9.
For α > 0,

Pr [k′α(E) < K] ≤ Pr [E ≤ e′α(K)]) (5.16)

=
∑

k

Pr [E < e′α(k)|K = k] Pr [K = k]

≤ α, (5.17)

where (5.16) follows from Lemma 5.3.8 and (5.17) follows from Definition 5.3.5. By
substituting β = ε− α, we obtain (5.10).

Relation (5.9) implies that k′α(e) is a decreasing function of α for fixed e. It follows
that k′α(e) ≥ n for α ≤ γ′(e) = Pr [E < e|K = n] . For such α, Pr [K > k′α(E)] ≤
Pr [K > n] = 0. This observation together with (5.12)-(5.15) proves (5.11) with
β = ε and c′α(E) replaced by n− E.

When ε ≥ γ′(E), it is easy to see that

min
α,0≤α≤ε

l′ε−α(c′α(E)) ≤ l′ε(c
′
0(E)) = l′ε(n− E).
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On the other hand, if 0 < ε < γ′(E), we have α < γ′(e). Then l′β(c′α(E)) =
l′β(c′0(E)) = l′β(n− E) ≥ l′ε(n− E) holds. The last inequality follows from the fact
that l′ε(c) is a decreasing function of ε. We conclude that minα,0≤α≤ε l′ε−α(c′α(E)) ≥
l′ε(n− E).

Notice that l′ε(n − E) ≤ n − E. In combination with (5.11) we deduce that
Pr

[
L(IC) ≤ n− E

] ≥ 1 − ε which is in accordance with (5.4) which states that
L(IC) ≤ n− E for all instances of random variables L and E. tu

Efficient evaluation of the probabilistic upper bound

When c and l are large, the evaluation of Pr
[
L(IC) ≥ l|C = c

]
becomes ineffi-

cient and loses precision due to the limited register length in computers. The
same problem happens to Pr [E ≤ e|K = k] . Since L(IC) ∼ Binomial(C, 2/3) and
E ∼ Binomial(K, 1/4), we can use Theorem 1.2.3 to efficiently estimate an upper
bound for Pr

[
L(IC) ≥ l|C = c

]
and Pr [E ≤ e|K = k] . More precisely, if l ≥ 2

3c,

Pr
[
L(IC) ≥ l | C = c

]
≤

(
2
3x + 1

3

)c

xl

for x = l
2(c−l) . If e ≤ k

4

Pr [E ≤ e | K = k] ≤
(

1
4x + 3

4

)k

xe

for x = 3e
k−e .

Now we can redefine l′ε(c), e′ε(k), k′ε(e), c′ε(e) and γ′(e) by

lε(c) = min

{
l ∈ N | 2

3
c ≤ l < c,

(
2
3x + 1

3

)c

xl
≤ ε, x =

l

2(c− l)

}
; (5.18)

eε(k) = max

{
e ∈ N | 0 < e ≤ k

4
,

(
1
4x + 3

4

)k

xe
≤ ε, x =

3e

k − e

}
; (5.19)

kε(e) = min

{
k ∈ N | k ≥ 4e,

(
1
4x + 3

4

)k

xe
≤ ε, x =

3e

k − e

}
; (5.20)

cε(e) = kε(e)− e; (5.21)

γ(e) = (y/4 + 3/4)n
/ye, (5.22)

where y = 3e/(n− e).
Lemma 5.3.3 and Lemma 5.3.6 still hold for the new definitions of l′ε(c) and e′ε(k).

Lemma 5.3.11 The function lε(c) is non-decreasing in c.
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Proof: Let f(c, l) = ln
(
(2x/3 + 1/3)c

/xl
)

for x = l/(2(c− l)), i.e.,

f(c, l) = c ln
c

3(c− l)
− l ln

l

2(c− l)
.

Then
∂f(c, l)

∂c
= ln

c

3(c− l)
≥ 0, (5.23)

and
∂f(c, l)

∂l
= − ln

l

2(c− l)
≤ 0 (5.24)

for 2c/3 ≤ l < c. Let ln ε = f(c, l) and ln ε′ = f(c + 1, l). Then lε(c) = lε′(c + 1) = l
according to (5.18), and ε′ ≥ ε according to (5.23). Let l′ = lε(c + 1). We get

f(c + 1, l′) ≤ ln ε = f(c, l) ≤ f(c + 1, l).

Then l′ ≥ l, i.e., lε(c + 1) ≥ lε(c), follows from (5.24). tu

Lemma 5.3.12 The function eε(k) is non-decreasing in k.

Proof: Let f(k, e) = ln
(
(x/4 + 3/4)k

/xe
)

for x = 3e/(k − e), i.e.,

f(k, e) = k ln
3k

4(k − e)
− e ln

3e

k − e
.

Then
∂f(k, e)

∂k
= ln

3k

4(k − e)
≤ 0, (5.25)

and
∂f(k, e)

∂e
= − ln

3e

k − e
≥ 0 (5.26)

for 0 < e ≤ k
4 .

Let ln ε = f(k, e) and ln ε′ = f(k − 1, e). Then eε(k) = eε′(k − 1) = e according
to (5.19), and ε′ ≥ ε according to (5.25). Let e′ = eε(k − 1). We get

f(k − 1, e′) ≤ ln ε = f(k, e) ≤ f(k − 1, e).

Then e′ ≤ e, i.e., eε(k − 1) ≤ eε(k), follows from (5.26). tu
With Lemma 5.3.11 and Lemma 5.3.12, we may conclude that Lemma 5.3.8 and
Theorem 5.3.10 also hold for the new definitions of l′ε(c), e′ε(k), k′ε(e), c′ε(e) and
γ′(e).

Let us consider two examples from [2] and compare their analysis with ours.
Recall from the introduction that b denotes the number of (parity check) bits ex-
changed publicly and revealed to Eve during the reconciliation phase to locate the
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e errors between Alice’s and Bob’s n qubits. In our proposal for an AD/IR protocol
as described in Chapter 2, all e errors are located with very high probability. Fur-
thermore b bits are indicated (including all the bits which were found to be in error)
which if discarded from the n original qubits give n− b remaining bits about which
Eve can not obtain additional knowledge by using the b bits revealed to her. Alice
and Bob will discard these b bits and they will compute a statistical upper bound on
l, the number of bits revealed to Eve during the raw quantum transmission. In the
privacy amplification phase they compress the n− b remaining bits to n− b− l− s
bits, were s is a security parameter. According to Theorem 3.2.1, which was proved
in [5], with probability at most 2−s/ ln 2 Eve knows one deterministic bit of the final
secret key after the privacy amplification phase. For example, by taking s = 21 this
probability is 3.121 · 10−7.

In [2] the exact number of errors e is not known after the reconciliation phase
because during the reconciliation phase bits may already get discarded. Alice and
Bob know that with very high probability all errors are among the b discarded bits.
However, they have only been able to compute the locations of some of the bits in
error. The locations only gives a lower bound on e. This is because they do not
require reconciliation of the bits which were discarded during their protocol. Such
bits have a non-neglectable probability to be in error. Continuing the reconciliation
phase, Alice and Bob are incapable of finding out the exact number of errors. How-
ever, with simple interpolation techniques they obtain a very precise estimate of the
number of errors e (in the examples e + 1 and e + 2 resp.). Therefore we assume in
the examples of [2] that e is known exactly. This modifies their examples slightly.

In [2] the following method is used to obtain a statistical upper bound on l.
Let p = e/n be the bit error probability between Alice’s and Bob’s qubits. The
amount of information leaked to Eve during a raw quantum transmission session
exceeds l = ρ + 5σ bits with very low probability, where ρ = (4/

√
2)pn represents

the expected value and σ =
√

(4 + 2
√

2)pn represents the standard deviation. An
upper bound on the probability of exceeding l = ρ + 5σ is unknown. Note that in a
Gaussian distribution the probability of exceeding a 5σ statistical deviation equals
2.866 · 10−7. For this reason we assume in the examples that the upper bound
l = ρ + 5σ is exceeded with probability 2.866 · 10−7.

Example 5.3.13 Suppose that after a raw quantum transmission session without
Eve’s eavesdropping, Alice and Bob got n = 2000 qubits, and removed all e = 79
errors by publicly exchanging b = 621 parity bits during an information reconciliation
protocol. With e = 79, Alice and Bob estimated that p = 0.039. Let s = 21.

By using the method of [2] at most l = 340 bits of information are leaked to Eve
with probability at least approximately 1− 2.866 · 10−7. The length of the secret key
constructed during the privacy amplification phase equals 2000−621−340−21 = 1018
bits. With probability at most approximately 2.866·10−7+3.121·10−7 = 5.987·10−7

Eve obtains one or more bits of deterministic information about the final key.
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By applying Theorem 5.3.10 and taking ε = 2.866 · 10−7 we obtain γ(79) =
8.34 · 10−144. We have γ(79) < ε, so the upper bound is given by

min
α,0<α≤ε

lε−α(cα(79)) = 352.

The minimum is achieved for α = 1.92 · 10−7. Compared to the method in [2], our
result proves that if we construct a final secret key of length 2000−621−352−21 =
1006 bits, then with probability at most 5.987 · 10−7 Eve obtains one or more bits of
deterministic information. Note that this is not an approximation. We notice that by
taking ε = 1.309·10−6 and applying Theorem 5.3.10, a final secret key of length 1018
bits can be generated such that the probability that Eve obtains one or more bits of
deterministic information is guaranteed to be at most 1.621·10−6 ≈ 2.7·5.987·10−7.

Example 5.3.14 Suppose that after a raw quantum transmission session with Eve’s
substantial eavesdropping, Alice and Bob got n = 2000 qubits, and removed all
e = 160 errors by publicly exchanging b = 993 parity bits during an information
reconciliation protocol. With e = 160, Alice and Bob estimated that p = 0.080. Let
s = 21.

By using the method of [2] at most l = 618 bits of information are leaked to
Eve with probability at least approximately 1− 2.866 · 10−7. The length of the final
secret key equals 2000 − 993 − 618 − 21 = 368 bits. Eve obtains one or more bits
of deterministic information on the final secret with probability approximately at
most 5.987 · 10−7.

By applying Theorem 5.3.10 and taking ε = 2.866 · 10−7 we obtain γ(160) =
8.301 · 10−85. We have γ(160) < ε, so the upper bound is determined by

min
α,0<α≤ε

lε−α(cα(160)) = 579.

The minimum is achieved for α = 2.12 · 10−7. The length of the final secret key
equals 2000−993−579−21 = 407 bits. With probability guaranteed to be at most
5.987 · 10−7 Eve has obtained one or more bits of deterministic information.

When using the Breidbart measurement in the Intercept/Resend strategy, the
amount of information Eve obtains is only related to K, the number of pulses she
intercepts and resends. More precisely, 0.585K bits of deterministic information is
supposed to leak to Eve. The probabilistic upper bound is given in the following
theorem.

Theorem 5.3.15 Let γ(e) be defined as in (5.22). Define l′ε(E) = 0.585 · kε(E).
Eve’s Breidbart measurement in the Intercept/Resend strategy gives

Pr
[
L(IB) < l′ε(E)

]
≥ 1− ε, (5.27)

for ε > γ(E), otherwise a deterministic upper bound is given by

L(IB) ≤ 0.585n.
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Proof: When ε > γ(E), we have kε(E) < n. Statement (5.27) follows from E ∼
Binomial(K, 1/4), Definition 5.3.9 and Theorem 1.2.3.

If ε ≤ γ(E), then kε(E) ≥ n follows. So L(IB) has as deterministic upper bound
0.585n. tu

In subsequent examples, we will always take the settings of Examples 5.3.13 or
5.3.14, i.e., n = 2000, b = 621, e = 79 for no eavesdropping or n = 2000, b = 993, e =
160 with significant eavesdropping.

Example 5.3.16 n = 2000, b = 621, e = 79. Then γ(79) = 8.34 · 10−144, and

l′ε(79) = 305

with ε = 2.866 ·10−7. The length of the final secret key equals 2000−621−305−21 =
1053 bits. With probability at most 5.987 · 10−7 Eve obtains one or more bits of
deterministic information, using the Breidbart measurement in the Intercept/Resend
strategy.

Example 5.3.17 n = 2000, b = 993, e = 160. Then γ(160) = 8.301 · 10−85, and

l′ε(160) = 536

with ε = 2.866 ·10−7. The length of the final secret key equals 2000−993−536−21 =
450 bits. With probability at most 5.987 · 10−7 Eve obtains one or more bits of
deterministic information, using the Breidbart measurement in the Intercept/Resend
strategy.

For ε = 2.866 · 10−7, Figure 5.1 shows the upper bounds for L(IC) and L(IB) as
a function of e.

5.3.2 Analysis for the Beamsplitting Strategy

Suppose that µ (µ < 1) is the expected number of photons per light pulse. It is also
approximately the probability that a pulse would be detected by a perfectly efficient
detector. If Eve diverts a fraction f of the original beam’s intensity to herself, letting
the remainder pass undisturbed to Bob, Eve will succeed in splitting with probability
approximately fµ, as shown in Section 5.2. Since Beamsplitting introduces no new
errors, we will assume that Eve tries to split every light pulse sent by Alice. Eve’s
splitting reduces the intensity reaching Bob by a factor 1 − f . However, Eve may
supplement the fraction f she splits by a trick proposed in [2], resulting in an
effective splitting ratio of about (f + 1)/2. Nevertheless, we conservatively assume
that Eve with probability approximately µ splits a light pulse. Let M denote the
number of light pulses that Eve successfully splits among the n qubits, then M ∼
Binomial(n, µ). Let L(BC) and L(BB) be the amount of deterministic information
Eve gets from the canonical resp. Breidbard measurement with Beamsplitting. It
is easy to see that L(BC) ∼ Binomial(n, µ/2) for the canonical measurement and
L(BB) = 0.585M for the Breidbart measurement.
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Figure 5.1: Probabilistic upper bounds for L(IC) and L(IB) as a function of e for
ε = 2.866 · 10−7 with Eve’s Intercept/Resend strategy.

Definition 5.3.18 For ε > 0 we define:

lε(n, µ) = min
{

l ∈ N | nµ

2
≤ l < n,

(µx/2 + 1− µ/2)n

xl
≤ ε, x =

l(2− µ)
(n− l)µ

}
,

(5.28)
and

l′ε(n, µ) = 0.585 ·min
{

m ∈ N | nµ ≤ m < n,
(µx + 1− µ)n

xl
≤ ε, x =

m(1− µ)
(n−m)µ

}
.

(5.29)

Theorem 5.3.19 For ε > 0,

Pr
[
L(BC) < lε(n, µ)

]
≥ 1− ε,

for the canonical measurement, and

Pr
[
L(BB) < l′ε(n, µ)

]
≥ 1− ε.

for the Breidbard measurement in the Beamsplitting strategy.

Proof: The statements follow from the fact that

M ∼ Binomial(n, µ), L(BC) ∼ Binomial(n, µ/2), L(BB) = 0.585M,

Definition 5.3.18 and Theorem 1.2.3. tu
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Example 5.3.20 In the experiments in [2], µ = 0.12. Suppose that Alice and Bob
get n = 2000 qubits. Let ε = 2.886 · 10−7. If Eve splits every light pulse, with
probability larger than 1− 2.886 · 10−7, she gets no more than

lε(2000, 0.12) = 183

bits with the canonical measurement, and no more than

l′ε(2000, 0.12) = 189

bits with the Breidbart measurement.

5.3.3 Analysis for the Combination Strategy

The analysis for the Intercept/Resend strategy and Beamsplitting strategy in the
two previous sections are based on the following facts:

E ∼Binomial(k, 1/4);
C ∼Binomial(k, 3/4);

L(IC) ∼Binomial(c, 2/3);

L(IB) =0.585K;
M ∼Binomial(n, µ);

L(BC) ∼Binomial(n, µ/2);

L(BB) =0.585M.

(5.30)

For the Combination strategy, as pointed out in Subsection 5.2.3, assump-
tions are made to avoid counting twice the qubits that Eve gets through inter-
cept/resending a successfully split pulse. For Eve’s canonical measurement, we
assume that Eve tries to split all pulses that she does not intercept/resend and
that she also tries to split those pulses that she intercepts and resends but with the
wrong bases (hence gets random information). Then the number of successfully split
pulses satisfies M (BC) ∼ Binomial(n− L(IC), µ). For the Breidbard measurement,
we assume that Eve only splits those pulses that she does not intercept/resend, so
the number of successfully split pulses satisfies M (BB) ∼ Binomial(n− k, µ). That
means equation (5.30) is replaced by the following one in case of Eve’s Combination



114 Evaluating Eve’s Information in a Quantum Transmission

strategy.

E ∼Binomial(k, 1/4);
C ∼Binomial(k, 3/4);

L(IC) ∼Binomial(c, 2/3);

L(IB) =0.585K;

M (BC) ∼Binomial(n− L(IC), µ);

M (BB) ∼Binomial(n− k, µ);

L(BC) ∼Binomial(n− L(IC), µ/2);

L(BB) =0.585M (BB).

(5.31)

Let L(CC) and L(CB) denote the amount of information Eve gets by a canonical
resp. the Breidbart measurement with the Combination strategy. Then L(CC) =
L(IC) + L(BC) and L(CB) = L(IB) + L(BB).

From Lemma 1.2.2, it follows that

Pr
[
L(CC) ≥ l|C = c

]
≤ E[e(L(CC)−l)u]. (5.32)

Moreover,

E[e(L(CC)−l)u]

=
n∑

j=0

min{j,c}∑

i=0

(
c
i

)(
2
3

)i (
1
3

)c−i (
n− i
j − i

) (µ

2

)l−i (
1− µ

2

)n−l

e(j−l)u

=

(
2eu/3

µeu/2+1−µ/2 + 1
3

)c (
µeu

2 + 1− µ
2

)n

eul

Let eu = x and f(x) =
(

2x/3
µx/2+1−µ/2 + 1

3

)c (
µ
2 x + 1− µ

2

)n
/xl. Then we get the

derivative

f ′(x) =
[
µ

2

(µ

2
+ 2

)
(n− l)x2 +

(µ

2
− 1

)(
2(l − c)− µ

2
(n− 2l)

)
x−

(
1− µ

2

)2

l

]

·1
3

[(µ

2
+ 2

)
x/3 +

(
1− µ

2

)
/3

]c−1 (µ

2
x + 1− µ

2

)n−c−1

x−l−1.

Let a, b be the coefficients of x2 and x, and o be the constant in the first brackets of
the above expression. It is easy to see that when x =

(−b +
√

b2 − 4ao
)
/(2a), f(x)

achieves its minimum. Since −b/2a is increasing if l increases, it is possible to find
an l satisfying x ≥ 1 such that

Pr
[
L(CC) ≥ l|C = c

]
≤

(
2x/3

µx/2+1−µ/2 + 1
3

)c (
µ
2 x + 1− µ

2

)n

xl
. (5.33)
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Definition 5.3.21 For ε > 0 we define:

lε(c, n, µ) = min



l ∈ N |

(
2x/3

µx/2+1−µ/2 + 1
3

)c (
µ
2 x + 1− µ

2

)n

xl
≤ ε, x > 1



 ,

where x =
(−b +

√
b2 − 4ao

)
/2a, a = µ(µ/2 + 2)(n− l)/2, b = (µ/2− 1)(2(l − c)−

µ(n− 2l)/2), and o = −(1− µ/2)2l.

When Eve uses a Breidbart measurement,

L(CB) = L(IB) + L(BB) = 0.585
(
K + M (BB)

)
.

From M (BB) ∼ Binomial(n− k, µ) and Theorem 1.2.3, the inequality

Pr
[
M (BB) ≥ m | K = k

]
≤ (µx + 1− µ)n−k

xm
. (5.34)

follows for m ≥ (n− k)µ and x = m
n−k−m · 1−µ

µ .

Definition 5.3.22 For ε > 0, define l′ε(k, n, µ) as

0.585 ·
{

k + min
{

m ∈ N | (n− k)µ ≤ m < (n− k),
(µx + 1− µ)n−k

xm
≤ ε

}}
,

where x = m
n−k−m · 1−µ

µ .

Theorem 5.3.23 Let γ(e) be defined as in (5.22). For the Combination strategy,
one has the following estimates.

(1) If ε ≥ γ(E), then

Pr
[
L(CC) < min

α,0≤α≤ε
lε−α (cα(E), n, µ)

]
≥ 1− ε, (5.35)

for the canonical measurement and

Pr
[
L(CB) < min

α,0≤α≤ε
l′ε−α (kα(E), n, µ)

]
≥ 1− ε, (5.36)

for the Breidbart measurement;

(2) If 0 < ε < γ(E), then

Pr
[
L(CC) < lε (n− E,n, µ)

]
≥ 1− ε, (5.37)

for the canonical measurement and

Pr
[
L(CB) < l′ε (n, n, µ)

]
≥ 1− ε, (5.38)

for the Breidbart measurement.
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We omit the proof of the above theorem since it follows the same idea of the
proof for Theorem 5.3.10.

Example 5.3.24 Let ε = 2.886 · 10−7. When n = 2000, b = 621, µ = 0.12, and
e = 79, we have γ(79) = 8.34 · 10−144 < ε, and the canonical measurement in the
Combination strategy gives

min
α, 0≤α≤ε

lε−α(cα(79), 2000, 0.12) = 478,

where the minimum is attained for α = 1.92 · 10−7. Hence 880 bits can be distilled.
When n = 2000, b = 993, µ = 0.12, and e = 160, it follows that γ(160) = 8.301 ·
10−85 < ε, and

min
α, 0≤α≤ε

lε−α(cα(160), 2000, 0.12) = 684

where the minimum is attained for α = 1.92 · 10−7. Hence 302 bits can be distilled
as the final secret key. With probability guaranteed to be at most 5.987 · 10−7 Eve
obtains one or more bits of deterministic information about the keys.

Example 5.3.25 Let ε = 2.886 · 10−7. The Breidbart measurement in the Combi-
nation strategy gives

min
α, 0≤α≤ε

l′ε−α(kα(79), 2000, 0.12) = 454

where the minimum is attained for α = 1.92 · 10−7, hence 904 secret bits can be
distilled. It also gives

min
α, 0≤α≤ε

l′ε−α(kα(160), 2000, 0.12) = 652

where the minimum is attained for α = 1.75 · 10−7, hence 334 secret bits can be
generated from the privacy amplification phase. With probability at most 5.987 ·10−7

Eve obtains one or more bits of deterministic information.

For ε = 2.886 · 10−7, the upper bounds on L(CC) and L(CB) as a function of e
are illustrated in Figure 5.2.

Up to now, we based our analysis on the assumption that Eve has no power
to store the light pulses until the announcement of the correct bases. That means
that whenever Eve detects any light pulse, by interception or splitting, she has to
measure it immediately to get the polarization information.

Another case was also considered in [2]. In this setting, Eve is able to store the
light pulses until the correct bases are publicly announced (it should be noted that
Alice and Bob may thwart this attack by delaying their announcement until Eve’s
stored pulses fade and lose the polarization information). For Eve’s Combination
strategy with storing power, the amount of information leaked to Eve during a raw
quantum transmission session is estimated in [2] to be at most l = ρ + 5σ bits,

where ρ = (µ + (4/
√

2)p)n is the expected value, σ =
√

nµ(1− µ)(4 + 2
√

2)p is the
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standard deviation, of the number of bits of deterministic information obtained by
Eve, and p is bit error rate between Alice’s and Bob’s qubits (this is determined by
e). Let us consider the two examples from [2].

Example 5.3.26 n = 2000, e = 79, b = 621. Then p = 0.039, and l = 604. The
length of the final secret key determined by privacy amplification is 2000−621−604−
21 = 754 bits (s = 21). With probability at most 2.866 · 10−7 +3.121 · 10−7 = 5.987 ·
10−7 approximately Eve obtains one or more bits of deterministic information
about the final key.

Example 5.3.27 n = 2000, e = 160, b = 993. Then p = 0.080, and l = 881. So
the final length of the secret key is 2000− 993− 881− 21 = 105. With probability at
most 2.866 · 10−7 + 3.121 · 10−7 = 5.987 · 10−7 approximately Eve obtains one or
more bits of deterministic information about the final key.

To analyze the probabilistic upper bound on the amount of leaked information
for the case that Eve has the power to store photons until the correct bases are
announced, we notice that

L(BC) = M (BC) ∼ Binomial
(
n− L(IC), µ

)

in the Combination strategy. Therefore, (5.35) should be replaced by

Pr
[
L(CC) < min

α, 0≤α≤ε
l′′ε−α (cα(E), n, µ)

]
≥ 1− ε, (5.39)

where

l′′ε (c, n, µ) = min



l ∈ N |

(
2x/3

µx+1−µ + 1
3

)c

(µx + 1− µ)n

xl
≤ ε, x > 1



 ,

a = µ(µ + 2)(n − l), b = (µ − 1)(2(l − c) − µ(n − 2l)), o = −(1 − µ)2l, and
x = −b +

√
b2 − 4ao/(2a). The results of the Breidbart measurement are not affected

by Eve having power to store photons or not.
By applying our probabilistic upper bound to Example 5.3.26 and Example 5.3.27,

we get the following results.

Example 5.3.28 When Eve has power to store photons, with ε = 2.886 · 10−7, her
Combination strategy gives

min
α, 0≤α≤ε

l′′ε−α(cα(79), 2000, 0.12) = 595

where the minimum is attained for α = 1.92 ·10−7, so 763 secret bits can be distilled.
Further

min
α, 0≤α≤ε

l′′ε−α(cα(160), 2000, 0.12) = 784

where the minimum is attained for α = 1.75 ·10−7, so 202 secret bits can be distilled,
about which Eve’s information is less than 10−6.
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For this case, the upper bounds on L(CC) as a function of e are also depicted in
Figure 5.2.
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Figure 5.2: Probabilistic upper bounds for L(CC) and L(CB) as a function of e with
µ = 0.12 for ε = 3.121 · 10−7 in case of Eve’s Combination strategy.

5.4 Concluding Remarks

While generating a secret key it is better for Alice and Bob to take a probabilistic
worst case scenario on the amount of eavesdropping of Eve into account. Given the
number of qubits that Alice and Bob obtain after a quantum transmission session,
the number of errors in Bob’s qubits, and the average number of photons per light
pulse, we considered upper bounds on the amount of information Eve gets from
a quantum transmission session assuming different strategies for Eve, namely the
Intercept/Resend strategy, the Beamplitting strategy, the combination of the two,
measuring light pulses in the canonical bases or the Breidbart bases. In the situation
of significant eavesdropping by Eve we improved the existing probabilistic upper
bound on the number of bits revealed to Eve during the raw quantum transmission
with a non-neglectable percentage (see Examples 5.3.14, 5.3.26, 5.3.27 and 5.3.28).
Contrary to the existing probabilistic upper bound which gives an estimate of the
probability with which the upper bound holds, we give an explicit bound on the
probability with which our upper bound holds. We guarantee a specific amount
of security. This is needed in practice. With an estimate one can only give an
approximation of the level of security of the final key.
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[67] Alfréd Rényi, Probability theory, North-Holland, Amsterdam, 1970.

[68] D.V. Sarwate, A note on universal classes of hash functions, Information Pro-
cessing Letters, Vol. 10, No. 1, pp. 41-45, 1980.

[69] C.E. Shannon, A mathematical theory of communication, Bell System Technical
Joural, Vol. 27, pp. 379-423, 623-656, 1948.

[70] C.E. Shannon, Communication theory of secrecy systems, Bell System Technical
Joural, Vol. 28, pp. 656-715, 1949.

[71] Peter W. Shor, Algorithms for quantum computation: discret log and factoring,
Proc. 35th IEEE Symposium on Foundations of Computer Science (FOCS),
1994, pp. 124-134.

[72] D.R. Stinson, Universal hashing and auhtentication codes, Advances in
Cryptology-CRYPTO’91, Lecture notes in Computer Science, Vol. 576, pp. 74-
85, Springer-Verlag, 1992.

[73] T. Sugimoto and K. Yamazaki, A study on secret key reconciliation protocol
“Cascade”, Trans. of the IEICE, Vol. E83-A, No. 10, pp. 1987-1991, 2000.

[74] M.N. Wegman and J.L. Carter, New hash functions and their use in authen-
tication and set equality, J. Computer and System Sci. Vol. 22, pp. 265-279,
1981.

[75] A.D. Wyner, The wire-tap channel, Bell System Technical Journal, Vol. 54,
No. 8, pp. 1355-1387.

[76] K. Yamazaki, M. Osaki, and O. Hirota, On reconciliation of discrepant se-
quences shared through quantum mechanical channels, Lecture Notes in Com-
puter Science, Vol.1396, (Eds. E.Okamoto, G.Davida and M.Mambo), pp. 345-
356, Springer-Verlag, 1998.

[77] K. Yamazaki and T. Sugimoto, On secret reconciliation protocol– modification
of “Cascade” protocol International Symposium on Information Theory and Its
applications, Honolulu, Hawaii, Nov 5-8, pp. 223-226, 2000.

[78] S.P. Vadhan, Extracting all the randomness from a weakly random source,
manuscript, MIT, 1998.



Index

Binomial(n, p) (binomially distribu-
tion), 4

C(PY |X) (capacity), 6
E : {0, 1}n × {0, 1}d → {0, 1}r (ex-

tractor), 65, 77, 78, 81
E[X] (expected value), 3
H(X) (Shannon entropy), 5
H(X|Y ) (conditional entropy), 5
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Summary

Secret key agreement solves one of the basic problems in Cryptography, i.e., how
two legitimate users can share a secret key. With the secret key, the two users may
carry out secret communications with each other later on. There are two types
of security models on which secret key agreement is based. One is computational
security. Computational security assumes that the adversary has limited computing
resources. If the amount of work to break a cryptosystem significantly exceeds the
computational resources available to an adversary, the system is called computation-
ally secure. With the model of computational security, a user can use a public key
cryptosystem to transfer a secret key to the other user. However, the security level
of current public key systems is decreasing since new attack methods are showing
up and computers are getting faster and faster.

The other security model is information-theoretic security. It is based on in-
formation theory and is a stronger security model, since there is no limit on the
adversary’s computing resources. Usually, the approaches to information-theoretic
security make use of the fact that no one has exact knowledge about the physical
world because of its probabilistic behavior. Examples are the noise during communi-
cation, or the uncertainty principle of quantum mechanics. Therefore, information-
theoretic secret key agreement protocols can be developed by taking advantage of
the noise during communication, while quantum key agreement protocols can be
developed by making use of the uncertainty principle of quantum mechanics.

The model of information-theoretic secret key agreement assumes that the two
legitimate users and the adversary receive noisy versions of a random binary output.
There is also a public channel connecting the two users. The process of generating a
secret key can be divided into three phases, namely, the advantage distillation phase,
the information reconciliation phase, and the privacy amplification phase. The idea
of advantage distillation is that the two users exploit the authenticity of the public
channel to gain an advantage with respect to the information about each other’s
random variable over the adversary. Information reconciliation is the process in
which the two users exchange information over the public channel, with which they
reconcile their strings to arrive at a common but partially secret string. Finally
privacy amplification enables the two users to distill from the common and partially
secret string a shorter but highly secret string of which the adversary knows only a
negligible amount of information.
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Quantum key agreement protocols assume that a quantum channel and a pub-
lic channel connect the two users. With the quantum channel, they implement a
quantum transmission protocol and some quantum bits are transmitted from one
user to the other. The possible eavesdropping of the adversary and the noise of
the quantum channel may introduce discrepancies between the two users’ qubits.
Hence, information reconciliation and privacy amplification should be implemented
over the public channel, so that the two users can reconcile the discrepancies to get
a common string and distill some secret bits from the common string.

In Chapter 1 we introduce some basic concepts of probability theory and in-
formation theory. We review the history of the research on information-theoretic
security and introduce information-theoretic key agreement protocols.

In Chapter 2, we propose a practical protocol to implement both advantage
distillation and information reconciliation with as goal that the two users leak as
little information as possible. The performance of the protocol is compared with
the known protocols.

Privacy amplification is studied in Chapter 3. We focus on the problem of how
to use authentication codes to detect active attacks by the adversary. There are
three possible settings. First of all, the two users have a partially secret string and
a (shorter) secret string. Secondly, they have only one partially secret string. The
last setting is that they have two independent, partially secret strings. We show
how to use authentication codes in privacy amplification to detect the adversary’s
active attacks in the three settings.

In Chapter 4, authentication schemes are proposed and analyzed for implemen-
tation of information reconciliation over a non-authentic public channel under the
assumption that the bit error rate between the random strings of the two users is
less than that between theirs and the adversary’s.

In Chapter 5, probabilistic upper bounds on the adversary’s information are
given for different strategies of the adversary in traditional quantum key transmis-
sion protocols. The amount of information is related to the final length of the secret
key distilled in privacy amplification.



Samenvatting

Hoe twee legitieme gebruikers onderling een geheime sleutel kunnen afspreken, is een
van de fundamentele problemen in de cryptografie. Met behulp van die geheime sleu-
tel kunnen de gebruikers hun verdere communicatie afschermen van een eventuele
tegenpartij. Er zijn twee soorten modellen van veiligheid waarbinnen sleutelafspraak-
methoden worden beoordeeld. De eerste is computationele veiligheid. Hierbij gaat
men ervan uit dat de tegenpartij slechts over beperkte rekenkracht beschikt. Als de
hoeveelheid rekenwerk die nodig is om een cryptosysteem te kraken de rekenkracht
van de tegenpartij ver te boven gaat, heet het systeem computationeel veilig. In
dit model kan de ene gebruiker een asymmetrisch cryptosysteem benutten om een
geheime sleutel naar de andere gebruiker te versturen. Echter, de veiligheid van de
huidige asymmetrische cryptosystemen neemt steeds verder af door de opkomst van
nieuwe kraakmethoden en snellere computers.

Het tweede model van veiligheid is informatietheoretische veiligheid. Dit model
is gebaseerd op informatietheorie en is sterker, omdat er geen aanname betreffende
de rekenkracht van de tegenpartij aan ten grondslag ligt. Meestal maken methoden
die informatietheoretische veiligheid bieden gebruik van het feit dat niemand de ex-
acte toestand van de fysieke wereld kan weten, als gevolg van het probabilistische
gedrag van die wereld. De ruis op een communicatiekanaal en het onzekerheids-
beginsel van de quantummechanica zijn voorbeelden van zulke probabilistische ver-
schijnselen. Daarom kunnen informatietheoretische sleutelafspraak-protocollen wor-
den ontwikkeld door de ruis op een communicatiekanaal te benutten, en quantum-
sleutelafspraak-protocollen door het onzekerheidsbeginsel te gebruiken.

Bij informatietheoretische sleutelafspraak-protocollen wordt aangenomen dat de
twee legitieme gebruikers en de tegenpartij een door ruis aangetaste willekeurige rij
binaire bits ontvangen. Ook worden de twee gebruikers verbonden door een publiek
leesbaar kanaal. Het afspreken van een geheime sleutel kan nu worden verdeeld in
drie fasen: voordeeldistillatie, informatie-overeenstemming en privacyvergroting. Bij
voordeeldistillatie benutten de gebruikers de authenticiteit van het publieke kanaal
om een voorsprong te krijgen op de tegenpartij in informatie betreffende elkaars
bitrijen. Bij informatie-overeenstemming wisselen de gebruikers informatie uit over
het publieke kanaal, teneinde hun beider bitrijen om te vormen tot één en dezelfde,
gedeeltelijk geheime rij. Tenslotte stelt privacyvergroting de gebruikers in staat
om uit hun gemeenschappelijke en gedeeltelijk geheime bitrij een weliswaar kortere,
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maar in veel hogere mate geheime rij te distilleren, waarover de tegenpartij slechts
een verwaarloosbare hoeveelheid informatie bezit.

Bij quantum-sleutelafspraak wordt aangenomen dat de twee gebruikers wor-
den verbonden door zowel een quantumkanaal als een publiek kanaal. Met be-
hulp van het quantumkanaal implementeren zij het quantumtransmissie-protocol,
en de ene gebruiker verstuurt een aantal quantumbits naar de andere gebruiker.
Ruis en eventueel afluisteren door de tegenpartij kunnen verschillen introduceren
tussen de quantumbits van de beide gebruikers. Daarom moeten de informatie-
oveereenstemming en de privacyvergroting worden gëımplementeerd over het pu-
blieke kanaal. Zo kunnen de twee gebruikers de discrepanties teniet doen teneinde
een gemeenschappelijke bitrij te verkrijgen, en daaruit een hogelijk geheime sleutel
te distilleren.

In Hoofdstuk 1 introduceren we enkele beginselen van de waarschijnlijkheids-
rekening en de informatietheorie. We bespreken de geschiedenis van het onder-
zoek naar informatietheoretische veiligheid, en introduceren informatietheoretische
sleutelafspraak-protocollen.

In Hoofdstuk 2 stellen we een praktisch protocol voor om zowel voordeeldistillatie
als informatie-overeenstemming te bewerkstelligen, met als doel zo weinig mogelijk
informatie te laten uitlekken naar de tegenpartij. De prestaties van ons protocol
worden vergeleken met die van bestaande protocollen.

In Hoofdstuk 3 bestuderen we privacyvergroting. We leggen daarbij de nadruk
op het gebruik van authenticatiecodes om actieve aanvallen van een tegenpartij
te detecteren. We bestuderen dit probleem onder drie verschillende aannamen.
In het eerste geval beschikken de twee gebruikers bij aanvang al over zowel een
gedeeltelijk geheime bitrij als een kortere, strikt geheime bitrij. In het tweede geval
beginnen ze met alleen een gedeeltelijk geheime bitrij, en in het derde geval hebben
ze twee onafhankelijke, gedeeltelijk geheime, bitrijen. We laten zien hoe in elk van
deze situaties authenticatiecodes kunnen worden gebruikt om privacyvergroting te
bewerkstelligen.

In Hoofdstuk 4 introduceren en analyseren we authenticatieschema’s ter imple-
mentatie van informatie-overeenstemming over een publiek kanaal waarvan authen-
ticiteit niet gegarandeerd kan worden. We gaan daarbij uit van de veronderstelling
dat het percentage verschillen tussen de bitrijen van de twee gebruikers kleiner is
dan het percentage verschillen met de door de tegenpartij afgeluisterde bitrij.

In Hoofdstuk 5 leiden we probabilistische bovengrenzen af op de hoeveelheid
informatie van de tegenpartij bij verschillende strategieën van die tegenpartij in tra-
ditionele quantum-transmissieprotocollen. De hoeveelheid informatie wordt gerela-
teerd aan de lengte van de geheime sleutel die uiteindelijk, na privacyvergroting,
overblijft.
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stellingen

behorende bij het proefschrift

Information-Theoretic Secret Key Agreement

van

Shengli Liu

1. Suppose that Alice and Bob have access to a non-authentic public chan-
nel. If they share information that is unknown to the adversary Eve,
they can change this advantage into creating an authentic public chan-
nel. On the other hand, if the public channel provides authenticity, this
authenticity may also be changed into an advantage between Alice and
Bob.

2. If Eve intercepts/resends every light pulse that Alice sends to Bob, no
advantage can be distilled by them between their qubits.

3. The advantage of Hyperelliptic Curve Cryptosystems (HCC) [1] over El-
liptic Curve Cryptosystems (ECC) is that a smaller ground field can be
used to achieve the same order of magnitude of the Abelian group. That
means that HCC can be implemented with a smaller word length in com-
puters than ECC. But this does not mean that HCC are more efficient
than ECC. The reason is the slower addition in Jacobians.

4. ASN.1 syntax shows the standard bit representation of the domain pa-
rameters of ECC. But ECC parameters can be represented in a more
compressed way [2]. For example, choosing fields with trinomial basis or
of prime order of special form. Compact representation of the domain
parameters of HCC can be found similarly. HCC parameters contain the
field over which the curve is defined, the curve itself, the order of the
Jacobian, and a generating point.

5. The Weil pairing that can be used to attack ECC can also find posi-
tive applications in cryptography: short signatures [4], an identity-based
encryption scheme [3], and a three party one round Diffie-Hellman key
exchange scheme [5]. The short signature scheme from the Weil pairing
can be changed into a zero-knowledge proof of possession of a signature.



6. If today is February 26 2002, Tuesday, everyone knows which day “next
Monday” refers to. The problem is: which day does “next Wednesday”
mean? February 27 or March 6? The problem remained open in the last
two years and will be left to English people. The suggestion is to use
“coming Wednesday” instead when Chinese and Dutch want to make an
appointment on February 27, and use “Wednesday next week” to refer to
March 6.

7. Chinese has a higher information rate than Dutch. Therefore it is harder
to perform error corrections. For example, there is only one word to refer
to a third party in the singular, but Dutch has at least three, namely “zij,
hij, het”.

8. All things that are, are with more spirit chased than enjoy’d.

9. Better a witty fool than a foolish wit.
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