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Abstract. In this paper we analyze the E0 cipher, which is the cipher
used in the Bluetooth specifications. We adapted and optimized the Bi-
nary Decision Diagram attack of Krause, for the specific details of E0.
Our method requires 128 known bits of the keystream in order to re-
cover the initial value of the four LFSR’s in the E0 system. We describe
several variants which we built to lower the complexity of the attack.
We evaluated our attack against the real (non-reduced) E0 cipher. Our
best attack can recover the initial value of the four LFSR’s, for the first
time, with a realistic space complexity of 223 (84MB RAM), and with
a time complexity of 287. This attack can be massively parallelized to
lower the overall time complexity. Beyond the specifics of E0, our work
describes practical experience with BDD-based cryptanalysis, which so
far has mostly been a theoretical concept.
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1 Introduction

1.1 Background

Bluetooth, a technology used for short range fast communications, has quickly
spread worldwide. Bluetooth technology is used in a large set of wired and wire-
less devices: mobile phones, PDA’s, desktop and mobile PC’s, printers, digital
cameras, and dozens of other devices.

Bluetooth employs a stream cipher as the data encryption mechanism. This
stream cipher, E0, is based on 4 LFSR’s (Linear Feedback Shift Registers) of
different lengths, along with a non-linear combiner logic (finite state machine).
The keystream is xor-ed with the plaintext, to create the ciphertext, and de-
cryption is performed in exactly the same way using the same stream used for
encryption.



1.2 Related work

A number of crypt-analytical results regarding E0 ([JW01], [FL01], [LW05],
[Kra02], [Saa00], [HN99], [EJ00], [GBM02], [LV04], [LMV05], [KS06]) have ap-
peared over the last five years. These attacks can be organized into two classes:
Short Keystream attacks - attacks that need at most 3,100 known keystream
bits; and Long Keystream attacks - attacks that require more (usually much
more) known keystream. Long keystream attacks are generally not applicable
within the Bluetooth settings since a maximal Bluetooth continuous frame is
shorter than 3,100 bits (5 slots, 625µsec each, 1Mbit burst rate; see page 59 of
part B of Vol 2 of [Blu03]) after which Bluetooth rekeys the E0 registers. There-
fore, all long keystream attacks, except for the attack suggested in [LMV05], are
applicable only if E0 is used outside the Bluetooth system.

Short Keystream attacks

1. D. Bleichenbacher has shown in [JW01] that an attacker can guess the initial
state of the three smaller LFSR’s and the non-linear combiner; Then the
attacker can compute the contents of the longest LFSR, (whose length is 39
bits) by “reverse engineering” it from the outputs of the other LFSR’s and
the combiner state. This attack requires approximately 132 bits of known
keystream with a computational complexity of O(2100).

2. S. Fluhrer and S. Lucks have shown in [FL01] an optimized backtracking
method of recovering the secret key with a computational complexity of
O(284) if a 132 bits are available.

3. O. Levy and A. Wool have shown in [LW05] a uniform framework for crypt-
analysis, whose its best setting can recover the initial state of the LFSR’s
after solving O(286) systems of boolean linear equations.

4. The best reported short keystream attack against E0 was suggested by
Krause [Kra02] as part of a general framework. The general attack frame-
work uses Free Binary Decision Diagram (FBDD’s), a data structure that is
used to represent a boolean function, for attacking LFSR-based key stream
generators in general, and E0 in particular. In his paper, Krause claims that
for E0 his attack requires O(277) space, and a time complexity of O(281),
based on some quick estimations. Krause’s attack is the starting point of
this paper: we adapted and optimized his attack for the specifics of E0, and
evaluated the attack’s viability.

The work closest to ours was very recent recently suggested, independently,
by Krause and Stegemann [KS06]. They too attempt to make BDD-based crypt-
analysis practical, via a divide-and-conquer strategy. They evaluated their at-
tacks against reduced versions of E0, with random feedback polynomials, and
extrapolated a space complexity of O(242) against the real E0, with roughly the
same time complexity estimate of [Kra02]. In contrast, we evaluated our attacks
against the real E0 cipher, and show a greatly improved and practical space
complexity of 223 BDD nodes (without the O() notation).



Currently, the best long keystream attack against E0 is by Y. Lu, W. Meier
and S. Vaudenay in [LMV05]. The attack is a conditional correlation attack on
the two-level Bluetooth E0, that fully recovers the original encryption key using
the first 24 bits of 223.8 frames with O(238) computations. Since it is against
the two-level cipher, the attack is not limited to a single continuous Bluetooth
frame—so the requirement of 223.8 frames is attainable in principle.

Another BDD-based cryptanalysis attack against a different cryptosystem
was presented by J.F Michon, P. Valarcher and J.B Yunés in [MVY03]. They
used BDD’s to implement a ciphertext only attack against HFE (Hidden Field
Equations - a public key cryptosystem). They report that the attack was not
efficient.

1.3 Contributions

In this paper we describe an implementation of an attack against E0 that is based
on the use of Binary Decision Diagrams (BDD’s). Our attack is based upon the
theoretical BDD-based attack framework of M. Krause ([Kra02]). Krause’s work
covered several keystream generators including the E0; Consequently, we needed
to supply missing details to adjust the attack for the E0 system. Furthermore, we
discovered that Krause’s general attack can be greatly simplified and optimized
when it is used against E0: We discovered that it is possible to use OBDD’s
rather than FBDD’s throughout the algorithm; We re-engineered the algorithm
to adjust to the different LFSR lengths; We developed an efficient composable
BDD for the compressor ; and after discovering that standard BDD algorithms
and libraries are very inefficient for this algorithm we wrote our own BDD code
that is optimized for attacking E0.

In addition, we built several hybrid variants of the basic BDD-based algo-
rithm. These variants include: (i) partially guessing LFSR’s initial data, (ii)
using an intentionally “defective” compressor, and (iii) enumerating the sat-
isfying assignments and testing them. We evaluated our attacks against the
full, non-reduced, E0 cipher. Our best heuristics can recover the initial state
of the LFSR’s, for the first time, with a practical space complexity of 223 (84MB
RAM). Our time complexity is 287: slightly higher complexity than reported by
[Kra02], [KS06]—however, the attack is massively parallelizable. In addition to
the specifics of Bluetooth, our work describes practical experience with BDD-
based cryptanalysis, which so far has mostly been a theoretical concept.
Organization: In Section 2 we give an overview of the E0 cipher, a brief
overview of Binary Decision Diagrams and a description of Krause’s attack.
Section 3 describes adapting the attack to E0 and analyzes the theoretical com-
plexity of the attack. Section 4 describes the implementation of the attack, the
heuristics used to lower attack complexity, and the performance we achieved.
Section 5 concludes our work. Appendix A includes a more detailed description
of the E0 system. Appendix B contains a detailed explanation of the bounds
used in the theoretical complexity analysis of Section 3.4.



2 Preliminaries

2.1 Overview of E0 System

A full specification of Bluetooth security mechanisms can be found in part H of
Vol 2 of [Blu03]. The security layer of Bluetooth, which is a part of the link layer,
includes key management and key generation mechanisms, a challenge-response
authentication scheme, and a data encryption engine. The data encryption en-
gine used within Bluetooth is the E0 keystream generator.

E0 is initialized using a 128 bit session key (denoted K ′
c), the Bluetooth

address of the master device and a clock, which is different for every packet.
Details regarding the generation of K ′

c appear in appendix A. E0 generates a
binary keystream, Kcipher, which is xor-ed with the plaintext. The cipher is
symmetric; decryption is performed in exactly the same way using the same key
as used for encryption.

The E0 system employs four linear shift feedback registers (LFSR’s), of lengths
25, 31, 33, and 39 (total length of 128 bits), a Summation Combiner Logic and a
non-linear Blend machine. We can represent the summation combiner logic and
the blend machine together as a 4 bit finite state-machine. At each clock tick the
LFSR’s are clocked once, and the output of the four LFSR’s is xor-ed with the
output bit of the finite state machine, to create the next output bit of the en-
cryption stream Kcipher. The sum of the four output bits of the LFSR’s is input
into the finite state machine to update the state of the machine. In the remainder
of this paper, the finite state machine will be denoted as the Compressor unit.
The finite state machine transition function (following [LV04], [LW05]) can be
found in Table 3 in Appendix A.

2.2 Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
a Boolean function. Let Xn denote the set of boolean variables (x0, ..., xn−1) of
some boolean function. A BDD P over Xn is a rooted, directed, acyclic graph
where each non-terminating node is labeled by a query (xi?) and has outdegree
two, one edge labeled 0 and one edge labeled 1, connecting to child nodes. There
are two terminating nodes: one 0-sink and one 1-sink. The root node is considered
the source node. Each assignment w(x0 = w0, x1 = w1, ..., xn−1 = wn−1) where
wi ∈ {0, 1} defines a unique path in P, which starts at the source node, answers
wi on queries (xi?) and always leads to a unique sink. The ending sink is the
result of the boolean function under the assignment w. Two BDD’s are considered
equivalent if they compute the same boolean function.

A BDD is a Free Binary Decision Diagram (FBDD) if along each path in
the BDD each variable appears at most once.

A BDD is an Ordered Binary Decision Diagram (OBDD) if on all paths
in the BDD the variables respect a given ordering x0 < x1 < x2 < .... < xn−1

(While FBDD’s allow different orderings along each path).



2.3 BDD-Based Cryptanalysis of E0

Problem model: The general attack framework of Krause ([Kra02]) works as
follows. Given some known keystream bits, we would like to calculate the initial
value of the LFSR’s. Let L(x) denote the internal linear bitstream in the E0

keystream generator. L(x) is actually comprised of the output sequence of the
four parallel LFSR’s in E0. E.g., for an E0 keystream of 128 bits, L(x) comprises
of 512 bits. Let C(z) denote the non-linear component in E0. C(z) is actually
the Compressor unit, including the output xor operation that is used to derive
the keystream. According to these declarations, Kcipher equals C(L(x)), where
x is the secret initial value of the LFSR’s.

Krause’s observation is that finding a secret key x fulfilling Kcipher = C(L(x))
for a given keystream Kcipher, is equivalent to the problem of finding the minimal
FBDD P for the decision whether x fulfills Kcipher = C(L(x)). This idea is the
basis for the BDD attack against the E0 system.

The algorithm: Let L(x), C(z) and Kcipher be as before. Let n be the key
length (=128).

1. For all m ≥ 1 let Qm denote a minimal FBDD which decides for z ∈ {0, 1}m

whether C(z) is a prefix of Kcipher. In other words, Qm is a FBDD which is
built based on the value of the known keystream bits (Kcipher). This FBDD
receives prefixes of the internal bitstreams which are generated by each LFSR
as input. If this internal bitstream generates a prefix of the known keystream
bits (Kcipher) - the FBDD accepts it. Otherwise, the FBDD rejects the input.

2. For all m ≥ n let Sm denote a minimal FBDD which decides for z =
(z0, z1, ..., zm) whether zm = L(z0, z1, ..., zn−1). In other words, Sm is a
FBDD which is build based on the feedback polynomials of the LFSR’s.
This FBDD receives the initial value of the LFSR’s as input. If this initial
value generates the correct value of zm (the m-th internal stream bit) - the
FBDD accepts it. Otherwise, the FBDD rejects the input.

3. Construct a third set of FBDD’s, denoted Pm, which is the minimal FBDD
which decides whether z ∈ {0, 1}m is a linear bitstream generated via L
and if C(z) is a prefix of Kcipher. Note that Pm is actually the result of
the intersection between Qm and Sm: Pm = SY NTH(Qm, Sm) — where
SY NTH denotes the BDD synthesis operation (cf. [Weg00]).

The strategy of Krause’s algorithm is as follows: It incrementally computes
Pm for increasing values of m until only one assignment will be accepted by Pm.
This assignment is the initial value of the LFSR’s generating Kcipher.

3 Adapting the attack to E0

3.1 Reduction of the Algorithm

The algorithm described by Krause is generic, and needs to be adapted for use
on E0. We made the following reductions and changes before implementing the
algorithm:
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1. A key observation is that E0 is regularly clocked. Every clock tick, one bit
from each LFSR is input to the compressor, and each LFSR is stepped
once. This regularity gives us two important advantages: First, E0 induces
a natural order on the internal bit stream Z: In our implementation, the
variable ordering we used is: π = (z0, z1, z2, z3, z4, ..., zj , ..., z511): for j =
4∗m+Li−1 we have that m is the clock tick index (0 ≤ m ≤ 127), and Li is
the index of the LFSR (1 ≤ Li ≤ 4). Figure 1 describes the indexing method
we used in implementation of the algorithm. Second, we can switch from
using FBDD’s to using OBDD’s. This has critical implementation benefits,
since the data structures for supporting OBDD’s are much simpler and more
efficient than those of FBDD’s.

2. We needed to adjust for the fact that the four LFSR’s in E0 have differ-
ent lengths. This changes the implementation details and the complexity
analysis.

3. As Section 2.3 implies, we had to implement a synthesis operation between
two BDD’s. Our implementation was based on the synthesis algorithm sug-
gested by Wegener (See Section 3.3 of [Weg00]). However, we found that (1)
all our BDD’s are OBDD’s; (2) none of them contain a self loop; and (3) all
our BDD’s are already reduced (minimal in size); Therefore, the use of a hash
table in the algorithm is redundant and can be eliminated. This modifica-
tion made our code specific for the E0 attack—but it tremendously improved
the performance of the algorithm in comparison with general purpose BDD
libraries that we tried to use.

3.2 Building the LFSR Consistency OBDD

As described in Section 2.3, Si denotes the BDD that computes whether the
internal bit zi is consistent with the prefix {zj}i−1

j=1. Since each internal bit is
produced by one of the LFSR’s, its consistency depends on 4 earlier bits of the
same LFSR as determined by the LFSR’s taps. For example, for the shortest
LFSR each bit must comply with the LFSR feedback polynomial: t25 + t20 +
t12 + t8 + t0 ; meaning, bit zi equals :

zi = zi−8 ⊕ zi−12 ⊕ zi−20 ⊕ zi−25 (1)
Using our bit ordering (see Figure 1) changes the equation to:

zi = zi−32 ⊕ zi−48 ⊕ zi−80 ⊕ zi−100 (2)
Table 1 summarizes the basic consistency equations and the normalized consis-
tency equations for all four LFSR’s. Note that LFSRi produces bits with index
j such that j ≡ (i− 1) mod 4.



Table 1. LFSR’s consistency equations

LFSR Basic consistency Normalized
# equation consistency equation

1 zi = zi−8 ⊕ zi−12 ⊕ zi−20 ⊕ zi−25 zi = zi−32 ⊕ zi−48 ⊕ zi−80 ⊕ zi−100

2 zi = zi−12 ⊕ zi−16 ⊕ zi−24 ⊕ zi−31 zi = zi−48 ⊕ zi−64 ⊕ zi−96 ⊕ zi−124

3 zi = zi−4 ⊕ zi−24 ⊕ zi−28 ⊕ zi−33 zi = zi−16 ⊕ zi−96 ⊕ zi−112 ⊕ zi−132

4 zi = zi−4 ⊕ zi−28 ⊕ zi−36 ⊕ zi−39 zi = zi−16 ⊕ zi−112 ⊕ zi−144 ⊕ zi−156

Fig. 2. Example of an OBDD representing the LFSR-1 consistency check for bit Z100
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Notation: For register Li of length |Li|, we call the first |Li| bits in its bit
stream (bits {Zk} : k = 4j + Li − 1 for 0 ≤ j ≤ |Li| − 1) its native bits. The
goal of the algorithm is to compute the native bits of all 4 LFSR’s (128 bits in
total).

An OBDD representing an LFSR consistency condition contains 5 variables
and 11 nodes (including the 0 sink and 1 sink). Figure 2 shows the OBDD
which checks the consistency condition for bit number 100. Note that a different
number of OBDD’s is created for each LFSR; this is because each LFSR is of
different length and produces a different number of non-native bits. The number
of non-native bits each LFSR produces equals to the keystream length minus
the size of the LFSR. Therefore, the total number of OBDD’s representing an
LFSR consistency condition is 4n− 128 which is 384 (since n = 128).

3.3 Building the Compressor OBDD

The OBDD representing the non-linear component of E0 (denoted Qm in Sec-
tion 2.3) represents the compressor unit (see Section 2.1). This OBDD is built
according to the known keystream bits, and according to the transition function
of the compressor (see Table 3 in Appendix A).

As stated before, the compressor updates its value according to the sum of
the LFSR’s output bits. Therefore, we need a BDD structure to represent the
sum of 4 bits. We call such a structure a basic chain. For state and each of the 5
possible sums, Table 3 tells us what the output bit should be. If it matches the
bit given in the known keystream, we can advance to the next chain, and test
the next four bits; Otherwise, this path will lead to the 0-sink. Figure 3 shows
the structure of a basic chain. Table 3 shows that for all states, exactly half the
paths advance to the next chain, and the other half are connected directly to
the 0-sink.

The compressor BDD is built from blocks, each consisting of 16 basic chains
(one for each possible state of the compressor). Half the paths from each block



Fig. 3. The structure of a single basic chain in the compressor
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Fig. 4. Two consecutive blocks in an OBDD representing the compressor
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lead to the 0-sink, while the other half advance to appropriate states on the
next block. Figure 4 illustrates the full structure of the OBDD representing the
compressor.

A single compressor block consists of 160 nodes and uses 4 (consecutively
numbered) bits. Note, though, that each of the 4 bits “contributed” a different
number of nodes to a block. Furthermore, attaching a sequence of blocks pro-
duces a non-minimal BDD, which can be reduced. For instance, for 128 blocks,
the reduced compressor BDD consists of ≈ 14,500 nodes, rather than 20,480.



3.4 Theoretical Complexity Analysis

The time complexity of the algorithm is determined by the space complexity of
the synthesized OBDD throughout the entire process of synthesis. At any stage
in the process, the size of the synthesized OBDD is bounded by two bounds (See
Wegener [Weg00]):

1. The number of assignments satisfying the OBDD bounds the size of the
minimal OBDD representing that boolean function:

|P | ≤ m · |One(P )| (3)

where One(P ) denotes the set of satisfying assignments of the BDD P , and
m is the number of variables the BDD contains (m : 4 −→ 512).

2. Each synthesis operation bounds the size of the synthesis result: In general,
the bound is |SY NTH(P, Q)| ≤ |P | · |Q|. However, when P is an LFSR
consistency check OBDD, we can use a tighter bound. This is mainly due
to the structure of the OBDD’s representing the LFSR’s consistency check;
These OBDD’s effectively keep a parity bit to “remember” if the consistency
is held at each point. This is why each variable appears twice in the LFSR
consistency OBDD. When synthesizing another OBDD with an LFSR con-
sistency OBDD, each node within the “window” of the parity between the
lowest and highest numbered variables in the LFSR consistency OBDD is
duplicated, therefore the resulting OBDD must be at most twice the size of
the larger OBDD. This bound can be summed in:

|P | ≤ |Q(m)| · 2m−n (4)

where |Q(m)| is size of the OBDD representing the compressor, m is the
number of variables (m : 4 −→ 512) and n is the amount of given keystream
(n : 1 −→ 128 bits). Note that this bound is still loose because only nodes
within the “window” of the parity are duplicated, while this bound assumes
that all OBDD nodes are duplicated.

The bound on the size of the OBDD throughout the process is the lower envelope
of bounds (3) and (4). Figure 5 shows the two bounds.

Using (3) (number of satisfying assignments), we get that during the first
steps, each clock tick introduces 4 new variables, and one constraint since the
output bit is known. This means the number of satisfying assignment is multi-
plied by 23 in each clock tick. Once we pass 25 clock ticks, all the native bits of
LFSR #1 are fully determined, so the number of satisfying assumptions grows by
a factor of 22 per clock tick. When the native bits of all four LFSR’s are already
set due to the consistency condition of the LFSR’s (i.e., when n ≥ 39), the num-
ber of satisfying assignments starts to decrease by half on each clock tick. The
bound due to the number of satisfying assignment for n ≥ 39 is |P | ≤ m ·2128−n.
See appendix B.1 for a detailed calculation of this bound.

Using (4) (magnitude of the synthesis result), we get that as long as we didn’t
start synthesizing with LFSR consistency OBDD’s (n ≤ 25), the OBDD size is
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Fig. 5. The two bounds

at most the size of the OBDD representing the compressor (C OBDD). When
we begin the synthesis operation, the OBDD starts growing by a factor of 2 for
each synthesis operation. Note that the number of synthesis operations for one
tick depends on n. The bound due to the magnitude of the synthesis result for
n ≥ 39 is |P | ≤ |C OBDD| · 24n−128 (The size of C OBDD is approximately
214). See appendix B.2 for a detailed calculation of this bound.

Calculating the intersection point of the two bounds, we get that the maximal
size of the OBDD synthesized throughout the process is |P | ≈ 286. This maximal
size of the OBDD appears at clock tick n = 50. This gives a total time complexity
of O(290), since we need to run the algorithm with different value of the 4 bits
initializing the state machine. Note that this estimate is significantly larger than
the quick estimation made by Krause. However this is still a relatively loose
bound; The actual size of the OBDD synthesized throughout this process is in
fact lower. To refine this bound, we ran a simulation which builds a histogram
representing the number of nodes in the synthesized OBDD for each bit index.
Using the simulation results we calculated that the maximal size of the OBDD
synthesized during the process is |P | ≈ 282.5. This gives a total time complexity
of O(286.5), i.e., the BDD attack is roughly equivalent to the attack of [FL01] in
terms of time complexity.

4 Advanced Heuristics

Since running the algorithm as-is would take impractically long, and would re-
quire an unreasonable amount of memory, we used several heuristics to lower
the time and space complexity of our attack.



Table 2. Complexity results for different numbers of guessed bits

Total number of Maximal Total
guessed bits in OBDD size time
LFSR’s #3+#4 (# nodes) complexity

12 218.3 290.3

10 218.7 288.7

8 219.9 287.9

6 221.7 287.7

4 223.4 287.4

4.1 Guessing initial LFSR bits

The first idea was to guess the value of some initial LFSR bits and use the
BDD method only in the remaining bits. This gives us two advantages: (a)
Lower space complexity, since the size of the OBDD representing the compressor
is lower, and more importantly the number of OBDD’s one has to synthesize
with is significantly lower. (b) This idea also allows parallelization of the attack,
since one can run the algorithm with different values of guessed bits on different
machines.

On our test computer (a Pentium IV with 1Gb RAM running WinXP) we
were only able to run the BDD attack by guessing all 56 bits of LFSR’s #1
and #2, plus a few bits of LFSR’s #3 or #4 (or both). When we guessed fewer
bits, the program exhausted all the available RAM and failed to complete. The
best results were obtained when guessing the entire content of LFSR’s #1 and #2
plus another four bits, two bits from each of the remaining LFSR’s. The latter
were located at the end of LFSR’s #3 and #4. In this case the maximal size
of the OBDD synthesized was ≈ 223 nodes, which used 84Mb RAM1; Since we
guess a total number of 60 bits (25+31+4), and we have to run the algorithm
for all possible initial states of the compressor (4 bits), the total time complex-
ity is O(287). Table 2 summarizes the results obtained when trying to run the
algorithm with different numbers of guessed bits in LFSR #3 and #4.

4.2 Changing the position of the guessed bits

Another heuristics we tested was to change the position of the 4 guessed bits in
LFSR #3 and LFSR #4. Recall that these guessed bits were originally selected
at the end of the two LFSR’s, so we decided to test how changing their location
would affect the attack’s complexity. The positions we tried include:

1. Guessing 2 native bits at the end of each LFSR (original position).

1 The program needs to maintain two such data structures during the synthesis op-
eration, plus various other data structures. We observed that the program’s peak
RAM usage reached about 400MB.



2. Guessing native bits that are positioned exactly where the LFSR taps are.
3. Guessing the first non-native bits of each LFSR.
4. Guessing bits only from one LFSR (#3 or #4).
5. Guessing bits from parallel positions in LFSR #3 and #4.

The reason for trying to guess bits on the LFSR taps positions (test #2) is that
this can cause a single LFSR consistency OBDD (See Section 3) that is used
during the synthesis procedure, to be totally eliminated.

However, the best results were obtained when the guessed bits were located
at the end of the LFSR’s (i.e., in the original bit positions). All the other al-
ternatives increased the maximal OBDD size by factors of 2–4. Thus, the time
complexity in this case is O(287) and the space complexity is O(223).

4.3 Using an intentionally defective compressor

A close examination of the transition function of the compressor (see Table 3)
shows that from every state there are only 3 possible next states. Furthermore,
the probability of entering each of these states is not uniform; For every state,
there exists one next state that is reached with probability 1/16. For example, if
we look at the reachable states from state #0, we note that state #8 is reachable
with probability of 1/16. This leads to our next suggested heuristic: build a
compressor that lacks the low-probability transition in every state. Naturally,
this causes our attack to fail, if one bit of the known keystream was generated
using such a transition. Therefore, instead of eliminating all the low probability
transitions, we eliminate them only on the first 32 blocks of the compressor
BDD. This means that the probability of performing a successful attack on a
given known keystream is (15/16)32 = 12.6%. This heuristic lowered the size of
the synthesized OBDD by 14%. Thus, the overall complexity of the attack using
an intentionally defective compressor has decreased, but is still around O(287).

4.4 Changing the order of synthesis

Another type of heuristic we tried was to change the order in which the OBDD’s
are synthesized: the order in which the various LFSR consistency OBDD’s are
synthesized does not affect the final outcome. The default synthesis order was by
increasing bit index order. However, we conjectured that the OBDD will grow
more slowly if we order the synthesis so all the LFSR OBDDs that “hit” some
compressor block are synthesized consecutively, then those that hit some other
compressor block, etc. We built a simulation to calculate the best order using
the above criterion, and then ran the algorithm using the order produced by
the simulation. Unfortunately, this heuristic produced poor results: the attack
in which 4 bits of LFSR’s #3 and #4 are guessed crashed for lack of memory
(whereas the same attack using the default order ran to completion).



4.5 Enumerating satisfying assignments

The typical failure mode of the BDD attack is that all available memory is
exhausted. However, just before such a failure occurs, we can trade time for the
missing space, and still run the attack to completion. The idea is to stop the
synthesis operation when the synthesized OBDD is close to the memory upper
limit. Then, we enumerate all the satisfying assignments for the last synthesized
OBDD, and test each assignment by generating the corresponding keystream for
that assignment and comparing it to the given keystream. The overall complexity
of this procedure is dominated by either the size of the synthesized OBDD or the
number of satisfying assignments, whichever is larger. The time complexity of
this approach is obviously poorer than using the previous heuristics—it’s main
advantage is that it allows one to obtain results even if the available RAM is
insufficient.

5 Conclusion

We have presented an implementation of a BDD-based attack that is a short key
cryptanalysis of the E0 cipher. We have shown that several significant reductions
and changes needed to be made to Krause’s general attack. These changes in-
clude using OBDD’s instead of FBDD’s, using the exact size of the LFSR’s, and
skipping the use of a hash table in the implementation of the synthesis operation.
We also performed an accurate complexity analysis of this attack. Furthermore,
we presented some heuristics that lower the time and space complexity of this
attack, and to allow parallelization of the attack on multiple machines. Our best
heuristic has a time complexity which is roughly equivalent to that of the attacks
of S. Fluhrer and S. Lucks ([FL01]) and O. Levy and A. Wool ([LW05]), and
has significantly better space complexity than the recent work of Krause and
Stegemann [KS06].
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Appendix

A Detailed specifications of the encryption system

When two Bluetooth devices wish to establish a secure communication link, they
first undergo through the pairing and authentication process. The specific details
of this process are not given in this paper, see [SW05] for the full details of this
process. At the end of this process, both devices hold a 128 bit secret key (the link
key, Kab). This key is stored in a non-volatile memory area of the two devices,
for future communication between these devices. This key is used to generate the
encryption key (Kc), also known as the session key. Using an algorithm (E3),
both devices derive the encryption key from the link key (Kab), a ciphering offset
number (COF ), that is generated during the authentication process done prior
to the encryption phase, and a public known random number (EN RAND) that
is exchanged between the devices. The encryption key (Kc) is then modified
into another key denoted K ′

c. This modification is done to lower the effective
size of the session key, according to the effective length the devices have decided
upon negotiation in a preliminary phase. K ′

c is used in a linear manner, along



Table 3. The finite state machine transition function. NS stands for Next State. Each
of the five main columns stands for a possible sum of the 4 LFSR bits that is input to
the state machine

Input

Current 0 1 2 3 4
State Out NS Out NS Out NS Out NS Out NS

0 0 0 1 0 0 4 1 4 0 8

1 0 12 1 12 0 8 1 8 0 4

2 0 4 1 4 0 0 1 0 0 12

3 0 8 1 8 0 12 1 12 0 0

4 1 5 0 1 1 1 0 13 1 13

5 1 9 0 13 1 13 0 1 1 1

6 1 1 0 5 1 5 0 9 1 9

7 1 13 0 9 1 9 0 5 1 5

8 0 14 1 14 0 2 1 2 0 6

9 0 2 1 2 0 14 1 14 0 10

10 0 10 1 10 0 6 1 6 0 2

11 0 6 1 6 0 10 1 10 0 14

12 1 11 0 7 1 7 0 3 1 3

13 1 7 0 11 1 11 0 15 1 15

14 1 15 0 3 1 3 0 7 1 7

15 1 3 0 15 1 15 0 11 1 11

with some publicly known values (the Bluetooth address of the master device
and a clock, which is different for every packet) to form the initial value of E0,
for a two level keystream generator. E0 generates a binary keystream, Kcipher,
which is xor-ed with the plaintext. The cipher is symmetric; decryption shall be
performed in exactly the same way using the same key as used for encryption.

B Detailed bounds calculation

B.1 Bound due to the number of satisfying assignments

Using the first bound term, we get that:



n = 1 |P | ≤ m · 23 On the first step, we have 3 free bits,
and the last bit is determined

n = 2 |P | ≤ m · 26 Same for the next step

n ≤ 25 |P | ≤ m · 23n Same for the next steps, as long as
we take initial bits from LFSR #1

25 ≤ n ≤ 31 |P | ≤ m · 275 · 22n−25 One bit is already set due to the
consistency condition of LFSR #1;
So we have two free bits, and the
last bit is determined

31 ≤ n ≤ 33 |P | ≤ m · 275 · 212 · 2n−31 Two bits are already set due to
the consistency condition of LFSR’s
#1, #2; So we have one free bit, and
the last bit is determined

33 ≤ n ≤ 39 |P | ≤ m · 275 · 212 · 22 Three bits are already set due to
the consistency condition of LFSR’s
#1, #2, #3; The last bit is deter-
mined

39 ≤ n |P | ≤ m · 275 · 212 · 22 · 239−n Four bits are already set due to
the consistency condition of LFSR’s
#1, #2, #3, #4; Only half of
the satisfying assignments survive
in each step



B.2 Bound due to magnitude of the synthesis result

n ≤ 25 |C OBDD| No synthesis operations
done so far, since all
bits are native

25 ≤ n ≤ 31 |C OBDD| · 2n−25 One synthesis opera-
tion per each bit pro-
duced by LFSR #1

31 ≤ n ≤ 33 |C OBDD| · 2n−25 · 2n−31 Two synthesis opera-
tions per each tick; One
for the bit produced by
LFSR #1, the other
for the bit produced by
LFSR #2

33 ≤ n ≤ 39 |C OBDD| · 2n−25 · 2n−31 · 2n−33 Three synthesis opera-
tions per each tick; For
the three bits produced
by LFSR #1, #2, #3

39 ≤ n |C OBDD| ·2n−25 ·2n−31 ·2n−33 ·2n−39 Four synthesis opera-
tions per each tick; For
the four bits produced
by LFSR #1, #2, #3,
#4

Where |C OBDD| denotes the size of the OBDD representing the compressor.


