
All-Or-Nothing Encryption and The PackageTransformRonald L. RivestMIT Laboratory for Computer Science545 Technology Square, Cambridge, Mass. 02139rivest@theory.lcs.mit.eduAbstract. We present a new mode of encryption for block ciphers,which we call all-or-nothing encryption. This mode has the interestingde�ning property that one must decrypt the entire ciphertext beforeone can determine even one message block. This means that brute-forcesearches against all-or-nothing encryption are slowed down by a factorequal to the number of blocks in the ciphertext. We give a speci�c wayof implementing all-or-nothing encryption using a \package transform"as a pre-processing step to an ordinary encryption mode. A packagetransform followed by ordinary codebook encryption also has the inter-esting property that it is very e�ciently implemented in parallel. All-or-nothing encryption can also provide protection against chosen-plaintextand related-message attacks.1 IntroductionOne way in which a cryptosystem may be attacked is by brute-force search: anadversary tries decrypting an intercepted ciphertext with all possible keys untilthe plaintext \makes sense" or until it matches a known target plaintext. Ourprimary motivation is to devise means to make brute-force search more di�cult,by appropriately pre-processing a message before encrypting it.In this paper, we assume that the cipher under discussion is a block cipherwith �xed-length input/output blocks, although our remarks generalize to otherkinds of ciphers. An \encryption mode" is used to extend the encryption functionto arbitrary length messages (see, for example, Schneier [9] and Biham [3]).In general, the work required to search for an unknown k-bit key to a knownblock cipher is 2k in the worst-case, or 2k�1 on the average. Here (and through-out this paper) we measure the work by the number of elementary decryptionsattempted, where an elementary decryption is a decryption of one block of ci-phertext. For example, in the \electronic codebook" encryption mode the ad-versary needs to decrypt only the �rst block of ciphertext to obtain the �rstblock of plaintext; this is usually su�cient to identify the correct key. (If not,the second block can be decrypted as well...)Sometimes the size of the key space for one's encryption algorithm is �xed,\marginal," and can't be improved. For example, one can argue that a 56-bitDES key is marginal (see Blaze et al. [4]). Or, one may be encumbered by export

regulations that restrict one to a 40-bit secret key. The question posed hereis: is there any way to signi�cantly increase the di�culty for an adversary ofperforming a brute-force search, while keeping the key size the same and notoverly burdening the legitimate communicants?We show that the answer to the question is yes.2 Strongly non-separable encryptionThe problem with most popular encryption modes is that the adversary canobtain one block of plaintext by decrypting just one block of ciphertext.We illustrate this point with cipher-block chaining (CBC mode). Let the sblocks of the message be denoted m1, m2, : : : , ms. The CBC mode utilizesan initialization vector IV and a key K. The algorithm produces as outputciphertext ci for 1 � i � s+ 1, wherec1 = IVand ci+1 = E(K; ci �mi) for i = 1; 2; : : : ; s :Thus mi = ci �D(K; ci+1) for i = 1; 2; : : :; s ;and so any one of the s message blocks can be obtained with the decryptionof just one ciphertext block. This makes the adversary's key-search problemrelatively easy, since decrypting a single ciphertext block is generally enough totest a candidate key.Let us say that an encryption mode for a block cipher is separable if it has theproperty that an adversary can determine one block of plaintext by decryptingjust one block of ciphertext. Thus, CBC mode is separable.We wish to design non-separable encryption modes. More precisely, we wishto design strongly non-separable modes, de�ned as follows.De�nition. Suppose that a block cipher encryption mode transforms a sequencem1;m2; : : : ;msof s message blocks into a sequencec1; c2; : : : ; ctof t ciphertext blocks, for some t, t � s. We say that the encryption mode isstrongly non-separable if it is infeasible to determine even one message blockmi (or any property of a particular message block mi) without decrypting all tciphertext blocks.

3 All-Or-Nothing TransformsWe propose to achieve strongly non-separable modes as follows:{ Transform the message sequence m1, m2, : : : , ms into a \pseudo-message"sequence m01, m02, : : : , m0s0 (for some s0 � s) with an \all-or-nothing trans-form", and{ Encrypt the pseudo-message with an ordinary encryption mode (e.g. code-book mode) with the given cryptographic key K to obtain the ciphertextsequence c1, c2, : : : , ct.We call encryption modes of this type \all-or-nothing encryption modes." Aspeci�c instance of this mode would be \all-or-nothing codebook mode," whenthe encryption mode used is codebook mode, (or \all-or-nothing CBC mode",etc.).To make this work, the all-or-nothing transform has to have certain proper-ties.De�nition. A transformation f mapping a message sequence m1, m2, : : : , msinto a pseudo-message sequence m01, m02, : : : , m0s0 is said to be an all-or-nothingtransform if{ The transformation f is reversible: given the pseudo-message sequence, onecan obtain the original message sequence.{ Both the transformation f and its inverse are e�ciently computable (thatis, computable in polynomial time).{ It is computationally infeasible to compute any function of any messageblock if any one of the pseudo-message blocks is unknown.We note that an all-or-nothing transformation must really be randomized, sothat a chosen or known message attack does not yield a known pseudo-message,and so that a deterministic function which computes the �rst pseudo-messageblock is not available as a function to contradict the last requirement above.We note that the all-or-nothing transformation is not itself \encryption,"since it makes no use of any secret key information. It is merely an invertible \pre-processing" step that has certain interesting properties. The actual encryptionin an all-or-nothing encryption mode is the operation that encrypts the pseudo-message resulting from the all-or-nothing transform. An all-or-nothing transformis a �xed public transform that anyone can perform on the message to obtainthe pseudo-message, or invert given the pseudo-message to obtain the message.Theorem1. An all-or-nothing encryption mode is strongly non-separable.\Proof": We assume that the underlying encryption mode is such that allciphertext blocks must be decrypted in order to obtain all pseudo-message blocks.(If this were not the case, the encryption mode would not be e�cient, and a moree�cient reduced mode could be derived from it.) Thus, all ciphertext blocks mustbe decrypted in order to determine any (property of any) message block. ut

4 The Package TransformThe all-or-nothing scheme we propose here (the \package transform") is quitee�cient, particularly when the message is long; the cost of an all-or-nothingtransform is approximately twice the cost of the actual encryption. We shallalso see that all-or-nothing encryption admits fast parallel implementations.The legitimate communicants thus pay a penalty of approximately a factorof three in the time it takes them to encrypt or decrypt in all-or-nothing mode,compared to an ordinary separable encryption mode. However, an adversaryattempting a brute-force attack pays a penalty of a factor of t, where t is thenumber of blocks in the ciphertext.As an example, if I send you a eight-megabyte message encrypted in all-or-nothing CBC mode with a 40-bit DES key, the adversary must decrypt the entireeight-megabyte �le in order to test a single candidate 40-bit key. This expandsthe work-factor by a factor of one-million, compared to breaking ordinary CBCmode. Since one million is approximately 220, to the adversary this feels likehaving to break a 60-bit key instead of a 40-bit key!Using this scheme, it can clearly be advantageous for the communicants to\pad" the message with random data, as it makes the adversary's job harder.We propose here a particular all-or-nothing transform, which we call the\package transform." We note that while it uses a block cipher itself as a prim-itive, no secret keys are used. (Instead, a randomly chosen key is used, and thiskey can be easily determined from the pseudo-message sequence.) The block ci-pher used in the package transform need not be the same as the block cipher usedto encipher the pseudo-message (the package transform output), although it maybe. (If it is the same encryption algorithm, note that we assume below that thekey space for the package transform block cipher is su�ciently large that brute-force search is infeasible, while the motivation for the use of an all-or-nothingencryption mode was that the key space for the outer encryption algorithm wasmarginal. This situation can arise for variable-key-length block ciphers such asRC5. For concreteness, the reader may imagine that we are working with RC5for both the package transform encryption algorithm and the outer encryptionalgorithm, with 128-bit input/output blocks, a 128-bit encryption key for thepackage transform, and a 40-bit key for the outer encryption transform.)For this exposition, then, we assume that the key size of the package trans-form block cipher is the same as its block size; this assumption can easily beremoved and is made here only for convenience in exposition. We also assumethat the key space for the package transform block cipher is su�ciently largethat brute-force searching for a key is infeasible. The scheme also uses a �xedpublically-known key K0 for the package transform block cipher.Here is the package transform:{ Let the input message be m1, m2, : : : , ms.{ Choose at random a key K 0 for the package transform block cipher.{ Compute the output sequence m01, m02, : : : , m0s0 for s0 = s + 1 as follows:� Let m0i = mi � E(K 0; i) for i = 1; 2; 3; : : :; s.

� Let m0s0 = K 0 � h1 � h2 � � � � � hs ;where hi = E(K0;m0i � i) for i = 1; 2; : : : ; s ;where K0 is a �xed, publically-known encryption key.The intent here is that the key K 0 be chosen from a large space (for example,chose K0 as a 128-bit RC5 key). Since K 0 is not a secret shared key (it is disclosedin the pseudo-message), it is not restricted by the limitations of the followingencryption mode.The package transformation is similar to encrypting in counter mode, exceptthat the key is randomly chosen rather than �xed, and the last pseudo-messageblock is the exclusive-or of the key and a hash of all previous pseudo-messageblocks (computed as the exclusive-or of the encryptions of variants of these blocksunder a �xed key, where the i-th variant is computed as the exclusive-or of i andthe block). This technique ensures that simple modi�cations to the ciphertext,such as permuting the order of two blocks or duplicating a blocks, is highly likelyto change the key K 0 computed by the receiver.One could also de�ne variant package transforms based on block-chainingtechniques instead of counter mode.It is easy to see that the package transform is invertible:K0 = m0s0 � h1 � h2 � � � � � hs ;mi = m0i � E(K 0; i) for i = 1; 2; : : : ; s :We also note that if any block of the pseudo-message sequence is unknown,then K 0 can not be computed, and so it is infeasible to compute any messageblock. (Formal proof omitted here, but we recall that the key K 0 is assumed tobe drawn from an infeasibly large set, so that (for example) a meet-in-the-middleattack is not more e�cient than decrypting all the ciphertext blocks.)5 DiscussionA related well-known approach towards getting more security out of �xed num-ber of key bits is to use encryption techniques that have a long \set-up" time(see Quisquater et al. [8], or Schneier's \Blow�sh" algorithm [9]). This penalizesthe legitimate user whenever he performs a key-change, whereas all-or-nothingencryption incurs a �xed penalty for each block encrypted. While this may seemto favor the increased set-up time approach, we note that{ An all-or-nothing transform is merely a pre-processing step, and so it can beused with already-existing encryption devices and software, without chang-ing the encryption algorithm.

{ Increasing the set-up time may still yield an algorithm that is e�ciently im-plemented with a special-purpose brute-force chip, since there may be littleneed for inter-chip communications. On the other hand, the two-pass natureof all-or-nothing encryption may necessitate large amounts of input/output,something that usually slows down operations considerably.{ In any case, the approaches are complementary, and can easily be combined.We note that all-or-nothing encryption modes are only de�ned here whenthe message to be encrypted is a �nite sequence; an in�nitely long message cannot be encrypted in an all-or-nothing mode, whereas other modes such as CBCwork perfectly well in this case. All-or-nothing encryption modes work very wellin cases such as for encrypting packets in a network.We observe, however, that one can begin encrypting in package CBC mode(or package codebook mode) before one knows the end of message sequence,since the inner package operation and the outer CBC (or codebook) encryptionmodes can both be implemented in a sequential manner. However, decryptinga package mode ciphertext more-or-less requires two passes and/or having theentire ciphertext available at once.Package codebook mode is particularly interesting, since the outer codebookdecryption and the inner package transformation can both be performed e�-ciently in parallel. (I don't mean that they are performed at the same time, butthat each one separately admits an e�cient parallel implementation.) With asu�cient number of encryption units, a message of length s can be encrypted ordecrypted in time O(log s). This may be an advantage for the legitimate commu-nicants in a high-speed communications scenario. Note that the same advantageis available to the adversary{although he has to decrypt the entire ciphertext, hecan also do it in parallel. However, for the adversary this advantage is probablymeaningless, since it is the total search time that is important to him, not thelatency for performing a single decryption. Thus package codebook mode hasmuch to recommend it from a performance perspective.We note that all-or-nothing encryption modes can provide protection againstdi�erential attacks and other forms of attack that depend on chosen plaintext,since a randomized all-or-nothing transformation can e�ectively destroy any pat-terns in the actual input (the pseudo-message) to the underlying encryptionoperation.In addition, an all-or-nothing transformation can be useful before RSA en-cryption, as it prevents various kinds of \related message" or other attacks (e.g.those of Coppersmith et al. [5]). Indeed, the package transform described herecan be viewed as a special case of the \simple embedding scheme" proposed byBellare and Rogaway [2] in their \optimal asymmetric encryption" preprocesingscheme (used before applying RSA encryption):x� G(r) jj r �H(x� G(r)) :Here x is the message to be encrypted (like our message m), r is a randomlychosen quantity (like our key K 0), G(r) is a pseudo-random output (like ourE(K 0; 1), E(K 0; 2), : : :), and H is a hash function (like our h1 � h2 � : : :hs).

The correspondence would be closer if we had proposed using m0s0 = K 0 �MD5(m01; : : : ;m0s), which would also give some improved e�ciency, but wewished to con�ne ourselves to just using the block cipher as a primitive opera-tion. We are applying these ideas to symmetric block cipher modes of operationrather than asymmetric encryption, but the principles are essentially the same.However, it may also be the case that a rather di�erent approach can be appliedto achieve our goals with substantially greater e�ciency than the approach sug-gested here or by Bellare and Rogaway's approach in general.There are many approaches one might take towards devising all-or-nothingtransforms. One might consider computing the pseudomessage as the concatena-tion of a description of a hash function h chosen randomly from a universal familyof hash functions with a suitably large range, followed by the application of hto the message. Another approach that may work well is to use a scheme basedon an FFT-like arrangement of randomized multipermutations (see Schnorr etal. [10]).Or, one can base an approach on secret-sharing schemes. Actually, the pack-age transform can be viewed as a s0 out of s0 secret-sharing threshold scheme;each of the s0 pseudo-message blocks can be viewed as one \share" of the under-lying message. Decrypting so as to obtain fewer than s0 pseudo-message blocksyields no information at all about the underlying message. This is \computa-tional secret sharing" (see [6]) since the shares are shorter than the message itself.Indeed, one can design all-or-nothing schemes based on Krawczyk's proposals.An entirely di�erent approach is given by Anderson and Biham [1], whodesign block ciphers (such as BEAR and LION) from scratch that seem to havean \all-or-nothing" property. Their approach is di�erent because they designblock ciphers with variable-length blocks to accomodate messages of varyinglengths, whereas our focus is on designing an encryption mode for �xed-lengthblock ciphers that provide an all-or-nothing property. Nonetheless, their schemesmay be the method of choice in some situations.We note that all-or-nothing encryption has terrible error-propagation prop-erties: if any ciphertext block is damaged, then it is likely that every messageblock will be damaged. Thus, ciphertext should be transported with reliabletransmission means. (One could interpose an error-correction phase between theall-or-nothing transformation and the encryption; this could help handle errorswhile only modestly decreasing non-separability.)Using this error-propagation property to one's advantage, one can extendall-or-nothing mode by appending a suitable block of redundancy (such a blockof all zeros, or the sum of all the previous message blocks) to the message beforeapplying the all-or-nothing transformation. This redundancy can be veri�ed andremoved upon decryption. This helps to detect corrupted ciphertext.As a variation on the idea of the previous paragraph, the redundancy blockmay be computed as the sum of previous message blocks and a secret valuethat is known only to the two parties communicating; this provides a form ofmessage authentication. The redundancy block could of course also be computedwith more conventional keyed hashing techniques.

The preceding paragraphs touch upon an important issue: that an encryptionmode should provide integrity as well as con�dentiality. Mao and Boyd [7] makethis point well. Bellare and Rogaway prove that their simple embedding schemeprovides non-malleability, for example.6 ConclusionWe have presented an encryption mode|the all-or-nothing encryption mode|and a speci�c means of implementing it using the package transform. Otherforms of all-or-nothing encryption are presumably yet to be devised.We leave it as an open problem to devise an all-or-nothing encryption modethat is substantially more e�cient than the scheme presented here. Is it possible,for example, to reduce the cost of implementing an all-or-nothing mode from afactor of three greater than CBC to just a factor of two greater?AcknowledgmentsI would like to thank Don Coppersmith, Oded Goldreich, Sha� Goldwasser,Mihir Bellare, Burt Kaliski, and the referees for helpful comments and conver-sations. Silvio Micali deserves special thanks for suggesting the term \all-or-nothing." David Wagner deserves thanks for pointing out signi�cant bugs inearlier versions of this paper, and for pointing out the relationship between thiswork and the Bellare-Rogaway work on optimal asymmetric encryption. Andthanks to Mihir Bellare for noting the relationship with secret-sharing schemes.References1. Ross Anderson and Eli Biham. Two practical and probably secure block ciphers:BEAR and LION. In Dieter Gollman, editor, Fast Software Encryption, pages114{120. Springer, 1996. (Proceedings Third International Workshop, Feb. 1996,Cambridge, UK).2. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption|how to en-crypt with RSA. In EUROCRYPT94, 1994.3. Eli Biham. Cryptanalysis of multiple modes of operation. 1995. Pre-Proceedingsof ASIACRYPT '94. Submitted to J. Cryptology.4. Matt Blaze, Whit�eld Di�e, Ronald L. Rivest, Bruce Schneier, Tsutomu Shi-momura, Eric Thompson, and Michael Wiener. Minimal key lengths for sym-metric ciphers to provide adequate commercial security: A report by an ad hocgroup of cryptographers and computer scientists, January 1996. Available athttp://www.bsa.org.5. Don Coppersmith, Matthew Franklin, Jacques Patarin, and Michael Reiter. Low-exponent RSA with related messages. Technical Report IBM RC 20318, IBM T.J.Watson Research Lab, December 27, 1995. (To appear in Eurocrypt '96).6. Hugo Krawczyk. Secret sharing made short. In Douglas R. Stinson, editor, Proc.CRYPTO 93, pages 136{146. Spring-Verlag, 1993.7. Wenbo Mao and Colin Boyd. Classi�cation of cryptographic techniques in authen-tication protocols. In Proceedings 1994 Workshop on Selected Areas in Cryptogra-phy, May 1994. (Kingston, Ontario, Canada).

8. J.-J. Quisquater, Yvo Desmedt, and Marc Davio. The importance of \good" keyscheduling schemes (how to make a secure DES scheme with � 48 bit keys). InH. C. Williams, editor, Proc. CRYPTO 85, pages 537{542. Springer, 1986. LectureNotes in Computer Science No. 218.9. Bruce Schneier. Applied Cryptography (Second Edition). John Wiley & Sons, 1996.10. C. P. Schnorr and S. Vaudenay. Black box cryptanalysis of hash networks basedon multipermutations. In EUROCRYPT94, 1994.

This article was processed using the LaTEX macro package with LLNCS style

